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Abstract

Background and Purpose

Advanced MRI studies have revealed regional alterations in the sensorimotor cortex of

patients with relapsing-remitting multiple sclerosis (RRMS). However, the organizational

features underlying the relapsing phase and the subsequent remitting phase have not been

directly shown at the functional network or the connectome level. Therefore, this study

aimed to characterize MS-related centrality disturbances of the sensorimotor network

(SMN) and to assess network integrity and connectedness.

Methods

Thirty-four patients with clinically definite RRMS and well-matched healthy controls partici-

pated in the study. Twenty-three patients in the remitting phase underwent one resting-state

functional MRI, and 11 patients in the relapsing-remitting phase underwent two different

MRIs. We measured voxel-wise centrality metrics to determine direct (degree centrality,

DC) and global (eigenvector centrality, EC) functional relationships across the entire SMN.

Results

In the relapsing phase, DC was significantly decreased in the bilateral primary motor and

somatosensory cortex (M1/S1), left dorsal premotor (PMd), and operculum-integrated

regions. However, DC was increased in the peripheral SMN areas. The decrease in DC in

the bilateral M1/S1 was associated with the expanded disability status scale (EDSS) and

total white matter lesion loads (TWMLLs), suggesting that this adaptive response is related

to the extent of brain damage in the rapid-onset attack stage. During the remission process,

these alterations in centrality were restored in the bilateral M1/S1 and peripheral SMN

areas. In the remitting phase, DC was reduced in the premotor, supplementary motor, and

operculum-integrated regions, reflecting an adaptive response due to brain atrophy.
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However, DC was enhanced in the right M1 and left parietal-integrated regions, indicating

chronic reorganization. In both the relapsing and remitting phases, the changes in EC and

DC were similar.

Conclusions

The alterations in centrality within the SMN indicate rapid plasticity and chronic reorganiza-

tion with a biased impairment of specific functional areas in RRMS patients.

Introduction
Multiple sclerosis (MS) is a chronic disease with inflammatory demyelination and neural
degeneration. MS is the most common non-traumatic cause of neurological disability in young
adults in North America and Europe [1], and the severity of this disease is also a major health
concern in China [2]. Most MS patients (approximately 85%) are diagnosed with relapsing-
remitting MS (RRMS), which is marked by alternating episodes of disability and recovery. Cur-
rent pharmacological treatments are aimed at limiting inflammation, decreasing the rate of
relapse, and relieving symptoms. During the transition from the relapsing phase to the remit-
ting phase, clinical function may be maintained via central plasticity or reorganization to com-
pensate for (limited) neurological dysfunction [3–6]. Comprehensive knowledge about central
plasticity/reorganization in RRMS patients is important for the development of novel thera-
peutic strategies that may be highly beneficial for these patients. However, because this plastic-
ity or chronic reorganization has not been fully characterized in the relapsing and remitting
phases using large-scale imaging in vivo; therefore, the exact mechanisms that sustain these
phenomena remain unclear.

The analysis of sensorimotor deficits and recovery, which are characteristic of RRMS, pro-
vides an opportunity to probe central plasticity or reorganization. These characteristics of MS
have previously been described in pathology [7], neuroimaging [8,9], transcranial magnetic
stimulation (TMS)[10], and motor training studies [11]. The majority of neuroimaging studies
that have assessed sensorimotor plasticity or reorganization in MS were based on structural [8]
and functional [11] magnetic resonance imaging (fMRI), which provides the average neural
activity during a defined task [12] or in a resting state [13]. In a previous seminal study [14],
observations in the remitting phase of RRMS strongly suggested that regional changes (pre-
sumably adaptive) had occurred in the sensorimotor cortex (SMC), which were invisible with
structural imaging [8,14]. These changes may have been due to an adaptive disability [15,16] or
compensatory activation/recruitment [14]. These observations suggest preservation of the
functional adaptive reserve in the brain. In the relapsing phase of RRMS, several studies have
reported rapid functional plasticity [17–19] accompanied by a loss of neuronal integrity
(reduced N-acetylaspartate) [17] in the SMC.

These MRI studies focused on regional disturbances in the sensorimotor network (SMN)
[7,20] but ignored the complexity of the functional network or the connectome as a whole. The
functional features of network organization and architecture across the entire SMN have not
been directly revealed, particularly the features that underlie the relapsing and remitting phases
of RRMS. Voxel-wise centrality (including degree [21] and eigenvector centrality [22], DC and
EC) is a class of graph theory-based network measurements that assess centrality and func-
tional connectivity, which has received significant attention. DC or EC measurements may be
used to determine the functional relationship between a given voxel (node) and the entire
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connectivity matrix (connectome) rather than between specific nodes or regions [21,22]. In
contrast to regional functional (the amplitude of low-frequency fluctuations [23] or regional
homogeneity [24]) and hypothesis-driven functional connectivity [25] analyses, this index of
network centrality emphasizes network integrity and connectivity. Accordingly, centrality
analyses reveal direct (DC) and global (EC) information processing within the SMN without
requiring a priori nodes or regions of interest to be selected.

This study used voxel-wise DC and EC mapping to determine the spatial pattern of the sen-
sorimotor network in RRMS patients during the remitting and relapsing phases and to investi-
gate changes in functional connectivity in these patients (Fig 1). First, DC/EC maps were
constructed for a group of RRMS patients and healthy controls (HCs). Subsequently, the DC/
EC maps were compared between the HCs and the patients in the relapsing and remitting
phases. A simple linear regression analysis was conducted for the relapsing and remitting
groups to evaluate the correlation between the clinical metrics and the centrality index of
abnormal regions. This study could reveal that abnormalities in the connectome of the RRMS
patients according to the measure of direct network connectivity (DC) and the sum of centrali-
ties of the node’s direct neighbors (EC), which were indexed across the entire SMN. This study
also provides novel and deeper insights into the dysfunctional and compensatory mechanisms
of RRMS and improves our understanding of the intrinsic functional plasticity or reorganiza-
tion in these patients.

Fig 1. A flowchart of the voxel-wise functional network centrality analysis in the SMN. (a)
Preprocessing of the resting-state fMRI data. (b) The time series of each voxel in the SMN template was
extracted in MNI space, and (c) Pearson’s linear correlation was used to construct the voxel-wise weighted
matrix. (d) Voxel-wise degree and eigenvector centrality (DC and EC) were calculated using the “REST-DC”
and “fast ECM” toolkits, respectively. (e) The voxel-wise mapping of the SMN. (f) A comparison of network
centrality between the groups. (g) Additional intrinsic functional connectivity patterns.

doi:10.1371/journal.pone.0130524.g001
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Results

2.1. Demographic and clinical data
The demographic and clinical characteristics of the RRMS patients and HCs are summarized
in Table 1. Significant differences were observed between the patients in the remitting and
relapsing phases and the HCs with respect to the brain parenchymal fraction (BPF) values. The
BPF is the ratio of brain parenchymal volume to intracranial volume. Significant differences
were also found in the expanded disability status scale (EDSS) results between the relapsing
and remitting groups, which revealed functional recovery from disability in the remission
phase.

2.2. Spatial distribution of DC/EC maps constructed within the SMN
Using spatial distribution maps, the mean DC values for the SMN in the relapsing patients
(n = 11), remitting patients (n = 34) and HCs (n = 34) were identified according to different
correlation thresholds (r0 = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4). The results for the DC spatial
distribution maps (S1a–S1c Fig) and the between-group differences (S1d and S1e Fig) were
highly similar and were not dependent on the different correlation thresholds. We mainly
report the results for DC, which were calculated using the weighted sum of the positive correla-
tions (thresholding cutoff = 0.25). The statistical significance of each result was based on a
threshold of P< 0.001. In this study, fast ECM (S2 Fig) did not require thresholding or binariz-
ing of the connectivity matrix [22].

2.3. Alterations in network centrality in the relapsing patients
Compared with the healthy controls (n = 11), the RRMS patients who were in the relapsing
phase (n = 11) exhibited significantly decreased DC in the bilateral primary motor and somato-
sensory cortex (M1/S1), the bilateral precuneus/middle cingulate cortex (PCUN/MCC), the
left operculum parietale/insula (OP/Ins), the left dorsal premotor (PMd), and the left cerebel-
lum anterior lobe (CAL). In the relapsing patients, DC was significantly increased in the left
PMd, the left supramarginal gyrus/S1 (SMG/S1), the right supplementary motor area (SMA),
and the right SMG/S1 (S1 Table and Fig 2a).

In addition, EC was decreased in the bilateral M1/S1, the bilateral PCUN/MCC, the left OP/
Ins, the left PMd, and the left CAL. However, EC was significantly increased in the left PMd,

Table 1. The demographic and clinical characteristics of the study population.

Relapsing patients vs. remitting patients (n = 11) Remitting patients vs. healthy controls (n = 34)

Relapsing patients Remitting patients P values Remitting patients Healthy controls P values

Gender (M/F) 6/5 6/5 1 13/21 13/21 1

Mean age (range) (years) 43.8 (34–57) 43.8 (34–57) 0.95 42.1 (20–58) 41.8 (21–58) 0.96

Mean disease duration (range) (months) 20.71 (0.3–72) 28.1 (0.7–72.5) 0.496 26.6 (1.5–150) - n/a

BPF 0.830±0.004 0.830±0.005 0.968 0.826±0.004 0.861±0.003 0.000

TWMLL (ml) 20.36±6.18 19.16±5.84 0.744 18.33±3.19 - n/a

Mean EDSS (range) 3.40 (2–5.5) 2.30 (0–3.5) 0.040 1.97 (0–3.5) - n/a

Mean head motion 0.046 ± 0.028 0.029 ± 0.012 0.089 0.044 ± 0.020 0.039 ± 0.018 0.266

Note: - = no data; BPF = brain parenchymal fraction; EDSS = expanded disability status scale; F = female; M = male; n/a = not applicable; relapsing

patients = multiple sclerosis patients in the relapsing phase; remitting patients = multiple sclerosis patients in the remitting phase; TWMLL = total white

matter lesion loads; the same abbreviations are used for all figures and tables.

doi:10.1371/journal.pone.0130524.t001
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the left SMG/S1, the right SMA, the right SMG/S1, and the right precentral opercular cortex/
insula (PrCO/Ins) (S1 Table and Fig 2b).

2.4. The relationship between the clinical indices and centrality in the
relapsing patients
In the relapsing patients (n = 11), sample linear regression analyses revealed that decreased DC
in the bilateral M1/S1 was negatively correlated with the EDSS (P = 0.044) and the TWMLLs
(P = 0.008). Decreased EC in the left M1/S1 was negatively correlated with the EDSS
(P = 0.035) and the TWMLLs (P = 0.066). In addition, decreased EC in the right M1/S1 was
associated with the EDSS (P = 0.156) and the TWMLLs (P = 0.102). In the relapsing group, the
correlation analysis did not reveal significant correlations between the lesion load (TWMLL),
brain atrophy (BPF), disease duration, or physical disability (EDSS) and enhanced DC or EC
(S2 Table).

2.5. A comparison of network centrality between the relapsing and
remitting patients
Compared with the relapsing patients (n = 11), the remitting patients (n = 11) exhibited signifi-
cantly decreased DC in the right ventral premotor and PrCO (vPM/PrCO), the left ventral pre-
motor (PMv) and PMd, the bilateral MCC, the right PCUN, the right SMA and the right
parietal-integrated regions (inferior and superior parietal lobule, IPL/SPL). DC was signifi-
cantly decreased in the bilateral M1/S1 and the left rolandic operculum/temporo-parietal junc-
tion (OP/TPJ) (S3 Table and Fig 3a).

Additionally, decreased EC was observed in the bilateral MCC, the bilateral supplementary
motor area (SMA), and the right IPL/SPL/PCUN. EC was significantly increased in the left
operculum-integrated regions (OP/superior temporal gyrus, STG, and OP4/Ins), the left M1/
S1 and the right M1/S1 (S3 Table and Fig 3b). S3 Fig displays a comparison of the network cen-
trality within the sensory-motor network between the remitting patients (n = 34) and the
relapsing patients (n = 11).

Fig 2. Altered centrality of the sensory-motor network in the relapsing phase of RRMS patients. The
spatial distribution of abnormal DC (a) and EC (b) in the relapsing patients compared with the HCs (paired t-
test, n = 11, P < 0.05, AlphaSim corrected critical cluster size k = 20). Spatial distribution was visualized using
surface brain imaging in Brainnet Viewer (www.nitrc.org/projects/bnv/). Note: DC = degree centrality;
EC = eigenvector centrality; fO = frontal operculum; IPL = inferior parietal lobule; k/k0 = normalized DC;
LH = left hemisphere; M1 = primary motor cortex; MNI = Montreal Neurological Institute; MCC =middle
cingulate cortex; RRMS = relapsing-remitting multiple sclerosis; PMd = premotor dorsal; RH = right
hemisphere; OP/Ins = operculum parietale/insula; PostG = postcentral gyrus; SPL = superior parietal lobule;
SMA = supplementary motor area; u/u0 = normalized EC; the same abbreviations are used for all the figures
and tables.

doi:10.1371/journal.pone.0130524.g002
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2.6. Alterations in network centrality in the remitting patients
Compared with the HCs (n = 34), the remitting RRMS patients (n = 34) exhibited significantly
decreased DC in the left fO, the OP/Ins, the IPL, the left MCC, the left PMd, and the right
SMA. DC was significantly increased in the right M1, the left PMd and the left SPL (S4 Table
and Fig 4).

Additionally, EC was decreased in the left fO, the left IPL, the bilateral MCC, the right SMA,
and the left postcentral gyrus (PostG). However, EC was significantly increased in the right M1
and the left SPL (S4 Table and Fig 4).

2.7. The relationship between the clinical indices and centrality in the
remitting patients
In the remitting patients (n = 11), linear regression analyses of the lesion load (TWMLL), brain
atrophy (BPF), disease duration, physical disability (EDSS) and the DC or EC in the SMN
regions revealed significant group differences. Only decreased DC in the left OP/Ins
(P = 0.030) and the right SMA (P = 0.030) were positively correlated with BPF. Increased DC
in the right M1 was positively correlated with the EDSS (P = 0.018), and decreased EC in the
left IPL was positively correlated with the EDSS (P = 0.008) (Fig 5). By contrast, no significant

Fig 3. A comparison of network centrality between the remitting and relapsing phase of RRMS
patients. Altered degree (a) and eigenvector (b) centrality of the sensory-motor network in the remitting
RRMS patients compared with the relapsing RRMS patients (paired t-test, n = 11; P < 0.05, AlphaSim
corrected critical cluster size k = 20). Network centrality was visualized using surface brain imaging with
Brainnet Viewer (www.nitrc.org/projects/bnv/).

doi:10.1371/journal.pone.0130524.g003

Fig 4. Altered centrality of the sensory-motor network in the remitting phase of RRMS patients. The
spatial distribution of abnormal DC (a) and EC (b) in the remitting phase of RRMS patients (P < 0.05,
AlphaSim corrected critical cluster size k = 20) as visualized using surface brain imaging in Brainnet Viewer
(www.nitrc.org/projects/bnv/).

doi:10.1371/journal.pone.0130524.g004
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relationship was found between the clinical indices and the other abnormal centrality values
for the remitting patients (S5 Table).

Discussion
The primary finding of this study was that the RRMS patients exhibited functionally relevant
rapid plasticity and chronic reorganization in the relapsing phase and remitting phase, which
may be adaptive mechanisms to maintain sensory and motor function. In the relapsing
patients, DC was significantly decreased in the bilateral M1/S1, the bilateral PCUN/MCC, the
left OP/Ins, the left PMd, and the left CAL. However, DC was increased in the peripheral SMN
areas. In addition, the decrease in DC in the M1/S1 was associated with the EDSS and
TWMLLs, which suggest that this adaptive response is related to the extent of brain damage in
the rapid-onset attack stage. These alterations in centrality were restored in the bilateral M1/S1
and peripheral SMN areas of the patients who were in the remission process. In the remitting
patients, DC was decreased in the premotor, supplementary motor and related integrated
regions, which suggests that the adaptive response is related to the extent of brain damage
(associated with BPF). However, DC was enhanced in the right M1 and the left SPL, which
indicates that the chronic reorganization may have been due to less efficient motor information
processing. In the relapsing and remitting phase of RRMS patients, the changes in EC were
similar to those of DC.

3.1. Evidence of rapid plasticity due to altered centrality in the relapsing
phase
The presence of SMN abnormalities (Fig 2 and S1 Table) in the relapsing phase of RRMS
patients was not surprising because of previous evidence [26]. This finding suggests functional

Fig 5. The correlations between the centrality (DC and EC) metrics within the entire SMN and the
clinical variables in the remitting phase of RRMS patients.

doi:10.1371/journal.pone.0130524.g005

Altered Centrality of the SMN in RRMS

PLOSONE | DOI:10.1371/journal.pone.0130524 June 25, 2015 7 / 16



disconnections in the M1 (or the S1), which provides the descending signals to execute move-
ments or receives dense somatosensory information. In the acute relapsing phase, a negative
correlation was observed between decreased DC in the bilateral M1/S1 and the EDSS and
TWMLLs. Our data suggest that impaired connectivity in the M1/S1 was due to dysfunction
during the acute attack stage.

This study also found functional disconnections in several multimodal integration regions
(e.g., premotor, operculum-/cingulate-integrated regions), particularly in OP/Ins. The OP/Ins
is the junction region of the insula and operculum areas, and it appears to play a key role in the
integrative process between motor and somatosensory functions [27]. The multimodal integra-
tion regions were also vulnerable regions in MS according to previous studies[13,28].
Decreased activity levels in multimodal integration regions have been detected in a previous
study on the “rubber hand illusion [13,29]” and also exist in cervical myelopathy patients with
perception loss [30]. Our data also suggest that impaired connectivity in the multimodal inte-
gration regions was an important plastic adaptation due to MS pathology.

Furthermore, this rapid cortical plasticity was involved in enhanced connectivity in the sur-
rounding peripheral regions (e.g., premotor, SMA, and parietal-integrated regions). Functional
restoration during the transition from the relapsing phase to the remitting phase may be lim-
ited by the impaired expression of rapid-onset synaptic plasticity in RRMS patients [31]. In
these patients, this synaptic plasticity, together with remyelination and repair of neuronal dam-
age, are important mechanisms that lead to recovery [32].

These findings, both of loss and of enhanced DC in SMN, indicate that rapid cortical plastic-
ity processes occur during the acute relapsing and remitting phases of RRMS, and that these
processes are associated with incomplete symptom recovery.

3.2. Evidence of chronic reorganization due to altered centrality in the
remitting phase
This study found that the remitting patients exhibited a significant reduction in DC in the pre-
motor (left PMd) and supplementary motor area (right SMA), which are involved in motor
control and planning. The left PMd is densely connected to the operculum-integrated pathway
[33] (e.g., Ins [34]) and the cingulate motor regions [35], which selectively mediate the concor-
dance of somatosensory-motor information and self-initiated movements. Therefore, these
connections may play a key role in selecting appropriate motor plans to achieve desired end
results. However, such connections were weaker in the remitting phase of RRMS patients. A
similar reduction in functional connectivity (FC) has been observed in the rubber hand illu-
sion, which may be a perceptual illusion caused by multisensory integration in the premotor
cortex [29]. Previous structural MRI studies have identified reductions in gray matter and ana-
tomical connectivity [36] in the premotor and supplementary motor area, which suggests mor-
phological impairments in both motor input pathways. Therefore, decreased DC in the left
PMd and the right SMA and reduced FC between the operculum-integrated and cingulate
motor regions in remitting phase of RRMS patients indicates that neural impairments are the
underlying deficits in sensorimotor and sensory-guided actions. These findings provide a basis
for understanding decreased excitability and central motor plasticity in the PMd and the SMA
during the remitting phase [37].

Compared with the relapsing phase of RRMS patients, DC was more significantly decreased
in the sensorimotor-related integrated regions (left fO, left OP/Ins, left IPL, and left MCC) of
the remitting patients. These regions share connectivity with multi-regions that are involved in
the primary sensory and motor, operculum-/parietal-/cingulate-integrated pathways. The left
fO is part of the operculum-integrated pathway, and both the fO and the OP/Ins are crucial for
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the multimodal receptive fields that are involved in multimodal action recognition [33]. The
IPL is involved in the interpretation of sensory information, and the MCC (cingulate motor) is
more directly involved in somatic motor control, which plays a crucial role in action initiation
[35]. This abnormality has been identified in previous functional and structural MRI studies,
which suggests that the sensorimotor-related integrated pathway plays a neuro-modulatory
role in biasing sensor-motor-spatial processing and modulation [6,15,38]. In this study, the
decrease in DC in the left OP/Ins and the right SMA was positively correlated with the BPF. In
contrast to the lesion load, brain atrophy measurements can provide an estimate of the amount
of tissue destruction due to chronic pathological processes [39,40]. These results suggest that
cortical adaptive responses may play an important role in the chronic reorganization process
in RRMS.

In addition, we found that DC was significantly increased in the primary motor (right M1),
the premotor (left PMd) and the parietal integrated pathway (left SPL). The increase in DC in
the right M1 was positively correlated with the EDSS. Bodini et al. [41] have suggested that T2
brain lesions are an important contributor to the progression of disability, and a recent resting-
state functional MRI (rs-fMRI) study revealed that increased functional connectivity was asso-
ciated with the severity of impairment [42]. Recent evidence suggests that synapses in the M1
may result in dynamic plasticity following pathological changes to facilitate cognitive and
motor activities [43]. This study’s finding of increased functional connectivity in the remitting
phase of RRMS patients indicates less efficient neuronal processing in the executive frontal-
motor-parietal integrated pathway.

3.3. Similarity alteration between degree and eigenvector centrality of
sensorimotor network
In this study, the distribution changes in EC were similar to the changes in DC in both the
relapsing and remitting phases of RRMS patients, when compared with the HCs. DC is primar-
ily a local measurement of the connectome graph, which is used to index the number of direct
connections and direct functional relationships for a given node [21]. EC is a relative global
measurement that indexes the qualitative superiority of node connections rather than the num-
ber of direct connections, which provides global information processing [21,22]. The popula-
tion of voxels exhibited relatively high correlation between EC and DC. Relative to DC, EC
demonstrated significantly higher centrality for subcortical regions but similar distribution pat-
terns within SMN. The decreased functional connectivity[13] and EC [44] in sensorimotor
activity associated with physical disability was demonstrated in MS patients. We interpret
these findings regarding the similarity alteration between DC and EC within the sensorimotor
network as supporting the hypothesis that although the direct connectivity of these regions
decreases with MS-related damage, it also affects their connections at a global level.

This study had several technical and biological limitations. First, the acquired images were
limited in spatial resolution due to a 4-mm slice thickness. Future studies that use higher-reso-
lution fMRI should be implemented. Second, the number of paired RRMS patients was rela-
tively low; therefore, a larger sample should be used in future studies. Third, this study lacked a
related assessment of sensorimotor functional integration in the participants. Finally, this
study focused on alterations in the SMN, and the SMNmask was obtained from HCs using the
Group ICA Toolbox (http://mialab.mrn.org/data/index.html), which includes the classical sen-
sorimotor cortex and related integrated regions. Other SMN masks may identify different DC
and SC levels in undiscovered regions. However, using a different mask may not affect the
overall results reported in this study. The comparison of functional centrality among the
groups was independent of the image mask, excluding the voxels near the mask boundary.
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Conclusion
This study characterized the intrinsic functional plasticity or reorganization in RRMS patients
using DC and EC mapping. The findings expand our understanding of the functional charac-
teristics of RRMS, which include relatively reduced centrality (e.g., left OP/Ins) in response to
the destructive aspects of MS and relatively enhanced centrality (e.g., right M1) that acts as a
functional adaptive reserve. An intriguing speculation is that these functional integrated
regions may be more decompensated in the chronic remitting phase, which may have implica-
tions for the treatment of sensorimotor function in RRMS patients.

Experimental Procedures

5.1. Subjects
We recruited 34 patients with clinically definite RRMS according to McDonald’s criteria [1] at
the First Affiliated Hospital of Nanchang University fromMay 2010 to December 2013. The
inclusion criteria for the patients included an RRMS course [45] and a history of treatment
with immunomodulatory medication (20 with β-interferons and 4 with glatiramer acetate). In
this study, 23 patients underwent one MRI scan during the remitting phase, and 11 patients
underwent two MRI scans-one scan each during the relapsing and remitting phases, respec-
tively. Because RRMS patients who have relapses usually recover within 2–3 months after
onset, we scheduled a follow-up neurological assessment and MRI 12 weeks after relapse onset.
Thirty-four HC participants from the local community were individually matched with the
patients for sex, age, and education level. The control patients had no history of hypertensive
disease, traumatic brain injuries, neurology diseases, or brain abnormalities based on conven-
tional MRI scans. This study was approved by the Medical Research Ethics Committee and the
Institutional Review Board of the First Affiliated Hospital of Nanchang University. This study
was performed according to approved guidelines and was conducted in compliance with the
principles of the Declaration of Helsinki. All of the patients signed written consent forms
before participating in the study. The detailed demographic and clinical data are displayed in
Table 1.

5.2. Image acquisition
All participants underwent MRI scans using a 3.0 T MRI scanner (Trio Tim, Siemens Medical
Systems, Erlangen, Germany). The rs-fMRI images were acquired using the echo planar imag-
ing (EPI) sequence (repetition time [TR]/echo time [TE] = 2,000/30 ms; flip angle = 90°; field
of view [FOV] = 200 × 200 mm; matrix = 64 × 64; 30 interleaved axial slices, 4-mm thickness
with an interslice gap of 1.2 mm; and 240 functional volumes for each patient). In addition, the
scan consisted of three-dimensional high-resolution T1-weighted imaging (T1WI) (TR/
TE = 1,900/2.26 ms; matrix = 240 × 256; FOV = 215 × 230 mm; number of excitations [NEX]
= 1; 176 sagittal slices with a 1.0-mm slice thickness) and T2-weighted turbo spin echo imaging
(TR/TE = 5,100/117 ms; NEX = 3; echo train length = 11; matrix = 416 × 416;
FOV = 240 × 240 mm; slice number = 22; slice thickness = 6.5 mm; and orientation = axial).
During rs-fMRI scanning, the patients were instructed to keep their eyes closed, to avoid think-
ing systematically, and not to fall asleep. A foam pad was used to minimize the head motion of
all of the patients.

5.3. Preprocessing of fMRI data
The fMRI data were preprocessed using the Data Processing Assistant for Resting-State fMRI
Advanced Edition (DPARSFA) V2.3 (http://www.restfmri.net), which was run on the Matlab

Altered Centrality of the SMN in RRMS

PLOSONE | DOI:10.1371/journal.pone.0130524 June 25, 2015 10 / 16

http://www.restfmri.net/


2012a (MathWorks, Inc., Natick, MA, USA) platform. Briefly, the first 10 functional volumes
were discarded to allow for stabilization of the initial signal and to eliminate magnetic satura-
tion effects. The remaining fMRI images were processed with slice time correction for inter-
leaved slice acquisition and three-dimensional motion corrections. No patient was excluded
based on head motion criteria, which included cardinal directions (x, y, z) of less than 2 mm
and a maximum spin (x, y, z) of less than 2°. We also respectively evaluated the group differ-
ences in head motion among the relapsing patients (n = 11), remitting patients (n = 34) and
HCs (n = 34) according to the criteria of Van Dijk et al. [46]. The results indicated that the 3
groups displayed no significant differences in head motion (1-way analysis of variances [ANO-
VAs] with Bonferroni-corrected post hoc t tests, P = 0.451; Table 1). Then, the high-resolution
individual T1WI images were coregistered to the mean functional image after motion correc-
tion using a linear transformation, and the images were segmented into gray matter (GM),
white matter, and cerebrospinal fluid tissue maps using a priori SPM tissue maps as a reference
and a unified segmentation algorithm [47]. The resultant GM, white matter, and cerebrospinal
fluid images were further nonlinearly registered in Montreal Neurological Institute (MNI)
space using the estimates in the unified segmentation, and the images were averaged across all
the patients to create custom GM, white matter, and cerebrospinal fluid templates (also for the
measurement of brain atrophy). Next, the coregistered T1 images were segmented again using
the custom tissue templates as reference images and the unified segmentation algorithm [47] to
reduce the risk of inaccuracy in the spatial normalization of the functional volumes due to GM
atrophy. Then, we resampled the transformational functional images to 3-mm cubic voxels.
Spatial smoothing using a full-width half-maximum Gaussian kernel (FWHM-6 mm) and
temporal band-pass filtering (0.01–0.08 Hz) was used to reduce low-frequency drift and physi-
ological high-frequency noise. Finally, nuisance linear regression was performed using white
matter, cerebrospinal fluid, and six head motion parameters as covariates. The residuals were
used for the network centrality analysis.

5.4. Voxel-wise degree and eigenvector centrality analysis
DC values were obtained in MNI space for the resting-state fMRI time series using the
“REST-DC” toolkit in the REST V1.8 package (http://www.restfmri.net)[21]. A voxel-wise
measurement of ‘‘degree centrality” was captured for the weighted networks in terms of graph
theory. First, a voxel-wise (Pearson’s linear) correlation matrix was computed within the sen-
sory-motor network mask (N voxels = 14,106), and a functional template was generated in an
independent component analysis (ICA) from the “Medical Image Analysis (MIA) Lab (http://
mialab.mrn.org/data/index.html)”. We then calculated the voxel-wise DC using the following
equation:

DC ¼
XN

j¼1

kvoxelðiÞ ¼
XN

j¼1

rijðrij>r0Þ ð1Þ

where rij is the correlation coefficient between voxel i and voxel j and r0 is a threshold that is set
to eliminate weak correlations [21,48,49]. Different r0 values (r0 = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
and 0.4) were considered in this study. The k (i) of each voxel was divided by the individual
global mean of k0 within the SMNmask to normalize the values and to reduce the effect of
individual variability. Then, the individual data were converted using Fisher’s Z-transforma-
tion for the group comparisons [21,50]. DC is a characterization of the strength of functional
connectivity of a voxel with respect to the observational whole network, which is used to index
the number of direct connections for a given node. DC is the most directly quantifiable central-
ity measurement.
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Voxel-wise EC values within the sensorimotor network were obtained using a fast ECM
toolkit (https://code.google.com/p/bias/source/browse/matlab/fastECM) [22]. Similarly to
degree centrality, EC relies on the assumption that each node's centrality is the sum of the cen-
trality values of the nodes to which it is connected. However, in contrast to degree centrality,
EC specifically favors nodes that are connected to other central nodes within the network. EC
was defined as follows:

ECðiÞ ¼ m1ðiÞ ¼
1

l1
Am1 ¼

1

l1

XN

j¼1

aijm1ðjÞ ð2Þ

where λ1 is the largest (principal) eigenvalue. Because fast ECM does not require thresholding
or binarizing of the connectivity matrix, all of the patient networks had the same topology and
were the same size [22]. The EC value of each voxel was normalized using normally distributed
form centrality (tied) ranks. The u(i) of each voxel was divided by the individual global mean
of u0 within the SMNmask to normalize the values and to reduce the effect of individual vari-
ability. Then, the individual data were converted using Fisher’s Z-transformation for the group
comparisons.

A comparison of the DC and EC maps was made using a general linear model (GLM), stan-
dard statistical parametric mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm), and one-way
analysis of covariance (ANCOVA). Age and gender were used as covariates. Post hoc, two-
sample t-tests were performed using the SMNmask. The significance level was set at a cor-
rected P value< 0.05. Multiple comparisons were corrected using Monte Carlo simulations
and the AlphaSim program with the REST package and the following parameters: for individ-
ual voxels, P = 0.01, FWHM = 6 mm, rmm = 5, and iterations = 1,000.

Sample linear regression (in SPSS) was performed to assess the relationship between the
clinical metrics (EDSS, BPF and TWMLL) and the voxel-wise centrality of the obtained regions
with significant group differences, controlling for gender and age. All statistical analyses were
performed using SPSS with a statistical significance level of P< 0.05, and the analyses were
corrected for multiple comparisons using the Bonferroni correction.

5.5. Measurements of brain atrophy and white matter lesions
The brain parenchymal fraction (BPF), which is the ratio of brain parenchymal volume to
intracranial volume, was used to calculate brain atrophy.

An experienced neuroradiologist manually marked hyperintense white matter lesions on
T2-weighted images, which is a common practice in brain imaging studies. Subsequently, each
individual binary lesion mask was coregistered and normalized to MNI space for standardiza-
tion. The inter-rater reliability of the TWMLLs was 93.8% (on two separate occasions at least
three months apart).
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