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Abstract

Understanding the origin of thermostability is of fundamental importance in protein biochem-
istry. Opposing views on increased or decreased structural rigidity of the folded state have
been put forward in this context. They have been related to differences in the temporal reso-
lution of experiments and computations that probe atomic mobility. Here, we find a signifi-
cant (p = 0.004) and fair (R? = 0.46) correlation between the structural rigidity of a well-
characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA) and their thermo-
dynamic thermostability. We apply the rigidity theory-based Constraint Network Analysis
(CNA) approach, analyzing directly and in a time-independent manner the statics of the
BsLipA mutants. We carefully validate the CNA results on macroscopic and microscopic
experimental observables and probe for their sensitivity with respect to input structures. Fur-
thermore, we introduce a robust, local stability measure for predicting thermodynamic ther-
mostability. Our results complement work that showed for pairs of homologous proteins that
raising the structural stability is the most common way to obtain a higher thermostability.
Furthermore, they demonstrate that related series of mutants with only a small number of
mutations can be successfully analyzed by CNA, which suggests that CNA can be applied
prospectively in rational protein design aimed at higher thermodynamic thermostability.

Introduction

Sufficiently high thermostability of proteins is important for both organisms living in high
temperature environments and for biotechnological applications where enzymes are used as
biocatalysts under often harsh reaction conditions [1, 2]. From a mechanistic point of view,
“protein thermostability” embraces at least two different meanings [3, 4]: (1) thermodynamic
thermostability describes the folded-unfolded equilibrium of a protein, and (2) kinetic thermo-
stability refers to the length of time a protein remains active before undergoing irreversible
denaturation at an elevated temperature. Several factors have been frequently attributed to ele-
vated protein thermostability including improved hydrogen bonding [5], ion pair and salt

PLOS ONE | DOI:10.1371/journal.pone.0130289 July 6, 2015

1/24


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130289&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Structural Rigidity and Thermostability

bridge networks [6], better hydrophobic packing [7], shortened loops [8], and higher secondary
structure content [9], in all favoring an increased structural rigidity of the folded state [10-13].
As an opposing view, proteins from thermophilic organisms have been reported to be as flexi-
ble as or even more flexible than homologs from mesophilic organisms [14-17].

These different views on the relation between protein thermostability and structural rigidity
have been a matter of ongoing discussion [10, 18-23]. In particular, it has been argued that
atomic movements, which are the primary mobility data from which information on protein
statics (rigidity and flexibility) is derived, cover a wide range of timescales within a protein [15,
24, 25]. Hence, depending on the temporal resolution of the experimental technique or compu-
tational analysis used to detect such movements, (parts of) a protein can come out as rigid or
flexible [26-32]. Here, we address the question of the relation between protein thermostability
and structural rigidity by analyzing directly the static properties of a well-characterized set of
16 mutants of lipase A from Bacillus subtilis (BsLipA). We do so by applying the rigidity the-
ory-based Constraint Network Analysis (CNA) approach developed by us [33-35], thereby
considering the BsLipA variants to be in static equilibrium, hence avoiding that the results
depend on the temporal resolution of the approach.

BsLipA is an important member of the lipase class of enzymes and used in diverse biotech-
nological applications [36, 37]. Owing to its importance, BsLipA has been extensively studied
with respect to structure [38-41] and thermostability [42-48]. As to the latter, Reetz et al.
applied iterative saturation mutagenesis on the most flexible amino acids as identified by crys-
tallographic B-factors, which resulted in BsLipA mutants that were more thermostable than
the wild type showing an increase in Tso™° (the temperature required to reduce the initial enzy-
matic activity by 50% within 60 min) of < 45 K [42]. Subsequent biophysical characterization
of the three most thermostable mutants revealed that the improved activity retention resulted
from a reduced rate of protein unfolding and a reduced precipitation of the unfolding interme-
diates, i.e., due to kinetic reasons [49]. In contrast, Rao et al. sequentially developed several
thermostable BsLipA mutants using directed evolution assisted by structural information.
These mutants were shown to be more thermostable than the wild type due to predominantly
thermodynamic reasons [44-48, 50]; the most thermostable mutant displayed an increase in
the melting temperature T, of ~22 K.

In the CNA approach, a protein is modeled as a constraint network where bodies (repre-
senting atoms) are connected by sets of bars (constraints, representing covalent and noncova-
lent interactions) [51]. A rigidity analysis performed on the network [52, 53] results in a
decomposition into rigid parts and flexible links in between. By analyzing a series of “per-
turbed” networks in which noncovalent interactions are included in a temperature-dependent
manner [11, 13, 54], the loss of rigidity of a protein is simulated, which can be related to ther-
mal unfolding [12, 13, 54]. Results of these analyses can be linked to biologically relevant char-
acteristics of a biomolecular structure by a set of global and local indices [55]. In particular, a
phase transition point T}, can be identified during the thermal unfolding simulation at which a
largely rigid network becomes almost flexible; this phase transition point has been related to
the thermodynamic thermostability of a protein [11-13]. For improving the robustness of the
analyses, the rigidity analyses are performed on ensembles of network topologies (ENT*N<)
[56]. That way, thermal fluctuations of a protein are considered without actually sampling
conformations.

The main outcome of this work is the finding of a significant and good correlation between
the structural rigidity of all BsLipA variants and their thermodynamic thermostability. On the
way, we carefully probed for the sensitivity of the results with respect to the input structures
and developed an approach for detecting outliers based on differences in the pathways of ther-
mal unfolding. We furthermore introduced a local stability measure for predicting
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thermodynamic thermostability, which complements the detection of the (global) phase transi-
tion point T),. As the BsLipA variants are sequentially closely related, these results have impor-
tant implications for applying CNA in a prospective manner in rational protein design aimed
at higher thermodynamic thermostability. Finally, we discuss our results in terms of potentially
different mechanisms underlying the increased protein thermostabilities of mutants isolated by
Reetz et al.and Rao et al.

Materials and Methods
Data set

The wild type structure of BsLipA with the highest resolution (PDB ID: 1ISP; resolution = 1.3
A) was obtained from the Protein Data Bank (PDB; www.pdb.org) [57]. For probing the sensi-
tivity of the CNA results on the conformation of the input structures, five additional crystal
structures of wild type BsLipA were analyzed (PDB IDs: 116W, 1R4Z, 1R50, 2QXT, 2QXU).
We included in our study all mutants from Rao et al. for which T,, values were determined
[44-48]. In addition, we included the three most thermostable mutants developed in the last
rounds of iterative saturation mutagenesis by Reetz et al. [42]. Models of mutant structures for
which crystal structures were not available in the PDB were generated with the SCWRL pro-
gram [58], using the respective BsLipA structure as a template that is closest in sequence to the
mutant. SCWRL constructs mutant models by predicting backbone-dependent side chain con-
formations with the help of a rotamer library; coordinates of backbone atoms remain
unchanged. Conformations of side chains of all residues within 8 A of a mutated residue were
re-predicted in order to allow for a local structural relaxation. For all structures, hydrogen
atoms were added using REDUCE [59]; side chains of Asn, Gln, and His were flipped in this
stage if necessary to optimize the hydrogen bond network. All water molecules, buffer ions,
and crystal solvents were removed from the structures. Finally, all structures were minimized
by 5000 steps of conjugate gradient minimization (including an initial steepest descent minimi-
zation for 100 steps) or until the root mean-square gradient of the energy was < 1.0-10™* kcal
mol ' A", The energy minimization was carried out with Amber11 [60] using the Cornell et al.
force field [61] with modifications for proteins (ff99SB) [62] and the GBOB¢ generalized Born
model [63]. All variants of BsLipA used in this study are summarized in Table 1.

Construction of the constraint network and rigidity analysis

As described in the previous section, only the protein part was considered for network con-
struction, i.e., all non-protein molecules including water molecules were discarded. This was
done based on previous findings that including water molecules does not significantly change
the rigidity analysis results [64, 65]. Proteins were modeled as constraint networks in a body-
and-bar representation (see section “Body-and-bar networks” in S1 File) [66, 67] using the
CNA software [35] that acts as a front- and back-end to the Floppy Inclusion and Rigid Sub-
structure Topography (FIRST) program [51, 68]. Once the constraint network is built, rigidity
analysis is carried out, which identifies (rigid) clusters of atoms with no internal motion and
flexible links in between, using the pebble game algorithm [52, 53] as implemented in the
FIRST software [51].

Thermal unfolding simulation

By sequentially removing non-covalent constraints from a network, one can simulate a loss of
structural rigidity due to a temperature rise. Specifically, hydrogen bonds were removed from
the network in increasing order of their strength following the idea that stronger hydrogen
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Table 1. Summary of BsLipA variants used in the study.

BsLipA PDB Resolution!  Mutations Tm(K) Ti(K) Tso(K) T neibor Reference
variant[a] |D[b] Ll

(kcal (K)

mol™)
Wild type 11SP 1.3 - 329.15 324.95 321.1511 -0.87 o 317.4 " [39, 42,

(-0.80) (315.9) 44]
IX 1I1SP* = K112D, M134D, Y139C, [157M = 318.75 335.959 .0.67 3135 [42, 49]
X 1I1SP* - R33Q, D34N, K35D, K112D, - 321.65 362.151 -0.73 3145 [42, 49]

M134D, Y139C, I1157M
XI 11SP* - R33G, K112D, M134D, Y139C, = 32245 366.15" -0.74 314.9 [42, 49]
57M

™ 1T2N 1.8 L114P, A132D, N166Y 33435 - = -0.88 317.6 [44]
1-14F5 1T2N* - TM + N89Y 336.15 - = -0.98 319.5 [44]
1-17A4 3D2A 1.73 T™M + 157M 336.55 - = -1.00 319.9 [44]
1-8D5 1T2N* - TM + F17S 33755 - = -0.81 316.3 [44]
2D9 3D2B 1.95 TM + F17S, N89Y, [157M 34055 - = -0.98 319.7 [44]
3-18G4 3D2B* - 2D9 + G111D 34155 - = -0.92 318.5 [44]
3-11G1 3D2B* - 2D9 + A20E 34175 - = -0.98 319.6 [44]
3-3A9 3D2B* - 2D9 + A15S 34185 - = -0.87 317.5 [44]
4D3 3D2C 2.18 2D9 + A15S, A20E,G111D 34435 - = -1.18 323.6 [44]
5-D 3D2C* - 4D3 + S163P 34535 - = -1.00 320.0 [45]
5-A 3D2C* - 4D3 + M134E 346.05 - - -0.97 319.4 [45]
5-B 3D2C* - 4D3 + M137P 34725 - = -1.03 320.5 [45]
6B 3QMM  1.89 4D3 + M134E, M137P, S163P 351.35 - = -1.20 324.0 [47]

(81 Names of BsLipA structures are taken from the respective references.

bl A PDB ID marked with an asterisk indicates that the model of the corresponding variant was built using the structure with that PDB ID as a template.
©n A

[l The temperature at which the unfolding transition begins.

[¢] Median stability of rigid contacts between residue neighbors computed by applying the ENTFNC approach (see section “Median stability of rigid contacts
between residue neighbors as a new measure for predicting thermodynamic thermostability”) (left column). Values in the right column were obtained by
converting the median stabilities to a temperature scale according to Eq 1.

M 75,6 values, i.e., the temperature required to reduce the initial enzymatic activity by 50% within 60 min.

61 754'® values, i.e., the temperature required to reduce the initial enzymatic activity by 50% within 15 min.

(M Average IC; neighbor OVET Six Wild type structures (see the main text for details).

doi:10.1371/journal.pone.0130289.t001

bonds break at higher temperatures than weaker ones [69]. As such, only hydrogen bonds with
an energy Eyp < E,(0) were included in the network of state . A thermal unfolding trajectory
of 60 network states was generated for each input network by decreasing E, from —0.1 kcal
mol ™ to —6.0 kcal mol ™" with a step size of 0.1 kcal mol . According to the linear relationship
between E,, and the temperature T introduced by Radestock and Gohlke on 20 pairs of ortho-
logs from mesophilic and thermophilic organisms, respectively (Eq 1) [12, 13], the range of
E.,: used in this study is equivalent to increasing the temperature of the system from 302 K to
420 K with a step size of 2 K. Because hydrophobic interactions remain constant or become
even stronger as the temperature increases [70, 71], the number of hydrophobic tethers were
kept unchanged throughout the thermal unfolding simulation. Rigidity analysis was performed
on all such generated network states, and then local and global rigidity characteristics were cal-
culated (see section “Local and global rigidity indices” in S1 File). The setup of the thermal
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unfolding simulation and the subsequent rigidity analysis were performed using the CNA soft-
ware [35], which is available from http://cpclab.uni-duesseldorf.de/software. A web service for
performing CNA analysis can be accessed via http://cpclab.uni-duesseldorf.de/cna [34].

—20K

=™ E
kcal * mol !

cut

+300K (1)

Ensemble of networks generated by using fuzzy noncovalent constraints

For improving the robustness of rigidity analyses, CNA is generally carried out on an ensemble
of structures (e.g., generated by molecular dynamics (MD) simulations), and then results are
averaged [11, 64]. The preceding MD simulation compromises the efficiency of the rigidity
analysis, however. To overcome this drawback, Pfleger et al. [56] recently introduced an
approach that performs rigidity analyses on an ensemble of network topologies (ENT™) gen-
erated from a single input structure by using fuzzy noncovalent constraints. Here, the number
and distribution of non-covalent constraints (hydrogen bonds and hydrophobic tethers) are
modulated by random components within certain ranges as specified in ref. [56], thus simulat-
ing thermal fluctuations of a biomacromolecule without actually moving atoms. An ensemble
of 2000 network configurations was generated using these definitions of fuzzy noncovalent
constraints for all BsLipA variants, respectively. Finally, average local indices were calculated,
as were average phase transition temperatures identified by the global index cluster configura-
tion entropy Hiyper. The index Hype, monitors the degree of disorder in the realization of a
given network state o: As long as a network is dominated by a very large rigid cluster, Hyp.eo
tends to be low because there are only a few configurations of a system with a large rigid cluster
possible; Hyype, increases when larger rigid clusters break down in smaller clusters (see section
“Local and global rigidity indices” in S1 File and ref. [55] for details).

Clustering of unfolding pathways

Recently, we showed that curves of the rigidity order parameter, which characterizes the gen-
eral percolation behavior of a constraint network during thermal unfolding, for mesophilic
proteins and their thermophilic counterparts are almost identical except for a shift of the curve
of the thermophilic protein to higher temperatures [12]. This finding supported the hypothesis
of corresponding states according to which mesophilic and thermophilic enzymes are in corre-
sponding states of similar rigidity and flexibility at their respective optimal temperature [12].
The percolation index p; is a local analog to the rigidity order parameter. It monitors for each
bond when it segregates from the largest rigid cluster present at the beginning of a thermal
unfolding simulation (see section “Local and global rigidity indices” in S1 File and ref. [55] for
details). That way, a residue-wise p; profile of a protein, generated by taking the lower of the p;
values of the two backbone bonds for each residue, expresses the hierarchical break-down of
the largest rigid cluster during a thermal unfolding simulation.

We thus reasoned that the (dis)similarity of unfolding pathways of BsLipA variants can be
measured by Manhattan distances between their respective p; profiles. We used this distance
measure for clustering the network topologies of all BsLipA variants into 10 clusters using the
Partitioning Around Medoids algorithm [72] as implemented in the R program (http://www.r-
project.org). This optimal number of clusters was chosen based on monitoring the change in
the objective function of the clustering (the mean of the dissimilarities of all objects to their
nearest medoids) as a function of the number of clusters (Figure A in S1 File) and visual inspec-
tion of cluster medoids for their dissimilarity to other medoids (residue-wise p; profiles for
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Fig 1. Residue-wise p; plots for medoids of the 10 clusters. Secondary structure elements as computed by the DSSP program [88, 89] are indicated on
the top of the plots and are labeled: a-helix (red rectangle), B-strands (green rectangle), loop (black line).

doi:10.1371/journal.pone.0130289.g001

medoids of the 10 clusters are shown in Fig 1). A clustering in more than 10 clusters essentially
created additional clusters that were very similar to other clusters. From this, the cluster distri-
bution (frequencies of network topologies in each of the 10 clusters out of in total 2000 network
topologies) for each BsLipA variant was calculated by counting the number of networks that
belongs to each of the 10 clusters. A high (low) correlation between cluster distributions for
two BsLipA variants then indicates that both variants unfold in a similar (different) manner.
Finally, a matrix of all pairwise correlations of cluster distributions of BsLipA variants was
generated.

PLOS ONE | DOI:10.1371/journal.pone.0130289 July 6, 2015 6/24



o ®
@ ) PLOS | ONE Structural Rigidity and Thermostability

Results
Data set

BsLipA is a protein of 181 amino acids with a minimal o/p hydrolase fold; in this fold, a central
parallel B-sheet of six B-strands is surrounded by six a-helices. Ser77, Asp133, and His156 con-
stitute the catalytic triad (Fig 2). Unlike other lipases, the catalytic site in BsLipA is not covered
with a lid. Hence, BsLipA does not show interfacial activation [40]. The data set used in this
study contains structures of the wild type BsLipA, thirteen mutants from Rao et al. [44-48],
and three mutants from Reetz et al. [42, 49] (Table 1). The mutants differ from the wild type by
three to twelve mutations, i.e., the sequence identity is > 93%. Models for the mutants for
which X-ray structures were not available were built using the SCWRL program. As the num-
ber of mutations in the modeled variants is < 7 with respect to the template structures (< 4%
with respect to the sequence length) (Table 1), an overall similar backbone confirmation can be
expected as can be an overall reliable modeling of side chain conformations by SCWRL. This
was also evident from a very good structural alignment and low root-mean-square deviations
(RMSD) between the wild type and those mutants for which crystal structures were available
(C,, atom-based RMSD values between the wild type and the mutants < 0.38 A). The high
structural similarity allows a direct comparison of results from rigidity analyses for these struc-
tures [11-13].

The melting temperature T, of the wild type is 329.15 K. The T, values of the mutants of
Rao et al. range from 334.35 to 351.35 K (Table 1). For the mutants of Reetz et al. no T, values
are available. Rather, unfolding initiation temperatures T; were reported, which are lower by

Fig 2. Cartoon representation of wild type BsLipA with mutated residues indicated by spheres of their C, atoms (mutations from Rao et al. [44-48]:
magenta; Reetz et al. [42, 49]: orange; mutations common in both data sets: cyan). The catalytic triad (Ser77-Asp133-His156) is shown in stick
representation with yellow carbons. The protein is colored according to secondary structure (a-helices: red; B-sheets: yellow; loops: green). The right view (B)
differs from the left (A) by an anti-clockwise rotation of ~90° about a horizontal axis. All figures of BsLipA structures were generated with PyMOL (http://www.

pymol.org).
doi:10.1371/journal.pone.0130289.9002
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2.5t0 6.2 K than that of the wild type. This suggests that mutants of Reetz et al. are thermody-
namically less thermostable than the wild type [49], in contrast to mutants from Rao et al. [44-
48]. However, we note that, while T;,, reports on the temperature at which 50% of the protein is
unfolded and, hence, properly describes the folded-unfolded equilibrium of a protein, T; only
reports on the temperature at which the unfolding transition begins. Therefore, we will only
consider relations within mutants of Rao et al. and to the wild type and distinguish those from
relations within mutants of Reetz et al. and to the wild type. Finally, the Ts,' values of the
mutants of Reetz et al. are higher than that of the wild type (Table 1), showing that these
mutants more efficiently refold upon cooling after incubation at high temperatures than does
the wild type. The location of mutations in all of the mutants investigated in this study is
shown in Fig 2; all mutations are located on the protein surface.

Thermal unfolding pathway of BsLipA

From monitoring the loss in rigidity percolation during thermal unfolding simulations, major
phase transitions in the protein can be identified that relate to the unfolding pathway [11-13,
54, 73]. Here, we describe the loss of rigidity percolation of the wild type BsLipA (PDB ID
1ISP) as an example. Similarity or dissimilarity, respectively, of the unfolding pathways across
all variants is described below. During the thermal unfolding, a giant rigid cluster that exists at
low temperature (equivalent to a high E,,,) breaks down in smaller sub-clusters until, finally,
the whole protein becomes flexible at a high temperature (Fig 3; see also S1 Video showing the
loss of rigidity percolation during the thermal unfolding of the wild type). As such, nearly the
entire protein structure constitutes a single giant rigid cluster initially (at 302 K; Fig 3). As the
temperature increases, loops segregate first from the giant rigid cluster. Then, at 314 K, a-helix
D (oD) and oE segregate to form individual small rigid clusters (Fig 3), as do a:A and oF at 318
K. The giant rigid cluster at this temperature is formed by the central 3-sheet region and the
two helices 0B and o.C (Fig 3). Next, the B-sheet region becomes sequentially flexible, begin-
ning with 4 and B8 at 320 K (Fig 3). Then, the remaining B-strands become flexible in the
order B3, B7, and B5—f6, leading to a completely flexible B-sheet region at 332 K (Fig 3 The
immediate next step at which aB and o.C become two separate rigid clusters is identified as a
phase transition point: Now most of the structure has become flexible. This transition is most
prominent with respect to going from a structurally stable wild type BsLipA to an unfolded one
(Figure B in S1 File). After this phase transition point, the remaining rigidity is sequentially
lost, and the structure finally becomes completely flexible at 374 K (Fig 3).

During the thermal unfolding of BsLipA, helices segregate from the giant rigid cluster as
independent small rigid clusters. This is due to two reasons: First, in the body-and-bar network
representation, a helix with a minimum of seven amino acids is already rigid by itself due to
constraints arising from covalent and backbone hydrogen bonds [66]. Second, with the current
energy function Eyp [69], all backbone hydrogen bonds are assigned a very similar strength,
irrespective of their location along a helix. Thus, a helix will persist as an independent rigid
cluster during the thermal unfolding simulation until all backbone hydrogen bonds break
almost simultaneously at a high temperature, which most likely represents an overstabilization
of a helix [74]. Considering this behavior, the unfolding pathway identified for the wild type
BsLipA is in good agreement with respect to the early segregation of c-helices with experimen-
tal findings on the unfolding of proteins with an o/ hydrolase fold [75, 76]. This indicates that
side chain-mediated interactions between amino acids are well represented by the applied defi-
nitions of non-covalent constraints in the network. This is important as we want to detect
effects of changes in such interactions due to mutations.
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b -

-4
Fig 3. Average loss of structural rigidity of the wild type BsLipA during a thermal unfolding
simulation. Rigid clusters are depicted as uniformly colored bodies, with the largest rigid cluster shown in

blue and smaller rigid clusters in the order of the colors green, magenta, cyan, orange, and violet.
Temperatures are indicated for each depiction of a rigid cluster decomposition. At the beginning of the
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thermal unfolding simulation (302 K), almost the complete structure is part of the giant rigid cluster; in
contrast, the structure becomes completely flexible at temperatures >374 K. The right views differ from the
left ones by an anti-clockwise rotation of ~90° about a horizontal axis. Important secondary structure
elements are labeled. Note that the unfolding pathway shown here represents an average loss of rigidity
percolation calculated from a stability map (see section “Local and global rigidity indices” in S1 File) averaged
over all unfolding trajectories obtained for the ensemble of 2000 network topologies. Hence, the temperature
at the phase transition point identified that way (Figure B in S1 File) cannot be compared to the average phase
transition temperature, which is obtained from 2000 individual T, values and used for predicting the
thermodynamic thermostability of BsLipA variants (see section “Prediction of thermodynamic thermostability
of BsLipA variants”)

doi:10.1371/journal.pone.0130289.9003

Prediction of thermodynamic thermostability of BsLipA variants based
on the global index Hiypeo

From the thermal unfolding simulations, the temperature of the phase transition point T, was
identified as described in the section “Local and global rigidity indices” in S1 File. Note that T,
values determined that way should be considered relative values only, as stated in previous
studies [12, 34, 35]. Initially, we calculated phase transition points using single network topolo-
gies generated from the input structures of wild type BsLipA and mutants of Rao ef al.; how-
ever, this resulted in a very poor prediction of thermodynamic thermostability with a
coefficient of determination (R?) for a linear fit between experimental T,, and predicted T}, of
0.22 (Figure C in S1 File). We anticipated that this result reflects the high sensitivity of CNA on
the conformation of the input structures as also found previously [11, 56, 64, 65]. We thus
resorted to averaging T}, values over an ensemble of BsLipA, applying the recently developed
ENT™NC approach. This approach generates an ensemble of network topologies from a single
input structure and has been shown to yield results of rigidity analyses both at the local and
global level that agree almost perfectly with those obtained from MD simulations-generated
ensembles of structures [56]. However, this yielded a significant (p = 0.002) correlation
between T, and T, with R* = 0.58 only if the two structures with the lowest (wild type) and
highest (mutant 6B) T, were considered outliers (Fig 4A; see below for an explanation regard-
ing the outliers; note that removing the two outliers in the case of using single network topolo-
gies only marginally improved R from 0.22 to 0.29). The mutants IX, X and XI of Reetz et al.
were predicted to be slightly less thermostable than the wild type (Fig 4A). This is in line with
experimental findings by Reetz et al. that suggest that these mutants are thermodynamically
less stable than the wild type [49]. In summary, these results suggest that CNA coupled with
the ENT™N approach can sense effects on the thermodynamic thermostability that arise from
only a few sequence variations (pairwise sequence identity > 93%; pairwise RMSD < 0.38 A).
However, the false predictions for wild type BsLipA and mutant 6B are dissatisfying.

Difference in unfolding pathways explains outliers

Next, we investigated why the thermostabilities of the wild type and the mutant 6B were pre-
dicted falsely. Since the precision of the computations shown in Fig 4A is high (the standard
error in the mean is < 0.38 K in all cases), we reasoned that the false prediction must arise
from a systematic difference between the wild type and 6B versus all other mutants of Rao et al.
Thus, we mutually compared all unfolding pathways of the systems as described in “Materials
and Methods”. After partitioning unfolding pathways of BsLipA variants characterized on a
residue basis by the percolation index p; into 10 clusters (see Fig 1 for the p; profiles of the 10
cluster medoids), we calculated correlation coefficients from the resulting cluster distributions
for all pairs of variants (Fig 5; Tables A and B in S1 File).
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Fig 4. Correlation between predicted and experimental thermostabilities (T, values) of BsLipA
variants; for the predictions, the ENT™C approach was used. A: Correlation between Tp derived from the
global index Hyype2 and Ty, values for thermodynamically thermostabilized mutants from Rao et al. Data
points colored red were considered outliers (see main text for explanation) and excluded when calculating R?
values and the correlation lines. B: Correlation between rc; ..., and T, values for thermodynamically
thermostabilized mutants from Rao et al. Data points shown as empty squares represent rc; ... values for
five additional wild type crystal structures (see main text for details; two of the squares closely overlap; mean
IC; reignoor OVET all six data points for wild type structures is shown as a small horizontal line: 315.9 £ 0.6 K). A
and B: Error bars represent the standard error in the mean. T, and c; ..., values for kinetically
thermostabilized mutants from Reetz et al. are marked by arrows on the corresponding ordinates.

doi:10.1371/journal.pone.0130289.9004

These results revealed that the wild type enzyme shows an unfolding pathway distribution
very distinct from other BsLipA variants from Rao et al. with correlation coefficients r ranging
from —0.69 to 0.54 (Fig 5, Table A in S1 File). The average r value for the wild type against all
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regression, and the 68% data ellipsis. The figure was generated using the “corrgram” package [92] of the R program (http://www.r-project.org).

doi:10.1371/journal.pone.0130289.g005
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other variants from Rao et al. is —0.06 + 0.14 (mean + SEM), which is lower than that of the
other variants (>°0.16 except for the outlier 6B) (Table A in S1 File). The second outlier,
mutant 6B, has an average r value of 0.12 + 0.16 when comparing its unfolding pathway distri-
bution to those of other variants from Rao et al. This average r value is lower than the corre-
sponding average r values of all other mutants from Rao et al. (Table A in S1 File). The thermal
unfolding pathway of 6B is shown in Figure D in S1 File. While the overall unfolding pathway
of 6B is comparable with that of the wild type BsLipA in that the helices segregate from the
giant rigid cluster as individual rigid clusters in the early phase of unfolding, they do so in a dif-
ferent order (oD, aA—oF, oE, oB—aC; Figure D in S1 File). A probability density function
(PDF) of r values of unfolding pathway distributions of the two outliers wild type and mutant
6B with all other variants shows a bimodal distribution and is shifted towards lower r values
compared to the PDF of the r values of other mutants from Rao et al. Furthermore, about half
of this distribution is related to negative r values (Figure E in S1 File). In all, this suggests that
the two outliers have unfolding pathways different from all other mutants from Rao et al. for
which the prediction of thermodynamic thermostability was successful. Finally, we note that
the unfolding pathway distributions of the wild type and the three mutants from Reetz et al.
are highly similar to each other (r > 0.79; p < 0.001; Table B in S1 File).

These findings have important implications: First, the results strongly suggest that the mis-
prediction of the thermostabilities of the wild type and mutant 6B arises from them showing
different unfolding pathways from all of the remaining mutants from Rao et al.. Apparently,
the present approach of identifying phase transition points by monitoring the global index
Hiypes (see section “Local and global rigidity indices” in S1 File) is too sensitive with respect to
the details of such pathways. Consequently, alternative methods should be explored (see sec-
tion “Median stability of rigid contacts between residue neighbors as a new measure for pre-
dicting thermodynamic thermostability”). Second, the results suggest that the history of the
generation of the BsLipA structures may play a role for the observed differences in the unfold-
ing pathways: generally, the most similar unfolding pathways (Tables A and B in S1 File) (and
then the most coherent T, predictions) are found for those variants that originate from a com-
mon structural “ancestor” (Table 1). Third, the results propose to apply the similarity/dissimi-
larity of unfolding pathway distributions as a measure to judge the reliability of thermostability
predictions in future studies: the lower the similarity for two variants, the less confident should
one be that relative thermostability predictions are correct. Finally, we cannot exclude at the
present stage that thermostabilizing mutations lead to an unfolding pathway that is different
from the one of the wild type. Considering that intrinsic and extrinsic modifications in other
systems that led to thermostabilization have been shown to influence not just the folded state
but the entire (un)folding free energy landscape [77, 78], this possibility also exists for BsLipA
mutants [45, 47].

Median stability of rigid contacts between residue neighbors as a new
measure for predicting thermodynamic thermostability

The above findings called for predicting the thermodynamic thermostability in a way that is
less sensitive to the details of the unfolding pathway than the present approach relying on the
global index Hype,. The sensitivity arises here from the need to accurately identify the phase
transition point from the percolation behavior of the constraint network as the most pro-
nounced jump in Hyy., during the unfolding (Figure B in S1 File). As shown previously, how-
ever, the percolation behavior of networks from protein structures is complex [13] (in contrast
to that of network glasses [54, 79]), reflecting that a protein structure is hierarchical and
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composed of modules. As a consequence, often more than one pronounced jump in Hy,.; is
observed, which then makes it difficult to assign a phase transition point (Figure B in S1 File).
As an alternative, we set out to characterize thermodynamic thermostability at the local
level [55], i.e., by monitoring residue pair-wise descriptors of local stability within a protein
structure as a function of the temperature. The most comprehensive information in that direc-
tion is provided by stability maps rc;; [12], which depict when a rigid contact rc between two
residues i and j ceases to exist along a thermal unfolding trajectory. As such, rc;; contains infor-
mation cumulated over all states o of a network along the trajectory as to which parts of the
network are (locally) mechanically stable at a given state ¢, and which are not [12, 55]. Of note,
this stability information is not only available in a qualitative manner (i.e., in terms of local
rigidity and flexibility) but also quantitatively in that each rc;; has associated with it the energy
E ¢ at which this rigid contact is lost. Thus, %;; . ; rc;; represents the chemical potential energy
due to non-covalent bonding, obtained from the coarse-grained, residue-wise network repre-
sentation of the underlying protein structure. With respect to a reference state where no non-
covalent interactions are present anymore (i.e., an unfolded state), ¥;; - ; rc;; can be considered
an unfolding energy then. Three modifications were applied to ¥;; - ; rc;; here for technical rea-
sons. I) In order to stress the locality of interactions within a protein, which will later aid in
understanding how structural differences relate to thermostability differences (see section
“Influence of mutations on local structural rigidity”), we focused on the stability of rigid con-
tacts 7¢ij neighbor between structurally close residues only (i.e., those residues where at least one
pair of respective atoms is within 5 A distance). IT) To suppress the influence of extreme values
in the double summation on the outcome of the unfolding energy, we used the median stability

of rigid contacts rc; instead. Such extreme values can occur in regions that are highly sta-

ij,neighbor
bilized by interactions to hydrophobic atoms [56]. III) Applying the ENT*™ approach,

TC; ighvor WeTE averaged over ensembles of 2000 constraint networks, which has been shown to

significantly improve the robustness of rigidity analyses [56]. The rc values are given in

ij,neighbor
Table 1. In addition, Table 1 and Fig 4B show these values after converting them to a tempera-
ture scale via Eq 1

A significant and fair linear correlation of r¢ with T, values of the thermodynami-

ij,neighbor
cally stable mutants from Rao et al. is obtained (R* = 0.46, p = 0.004; Fig 4B). No outlier is
observed now, indicating that our definition of an average local stability correctly reflects dif-
ferences in the thermodynamic thermostability. This finding substantiates our above interpre-

tation of rc, as an approximation to the unfolding energy, because under the condition of

ij neighbor
a temperature-independent heat capacity the unfolding energy is linearly correlated to the
melting temperature, with the heat capacity as the scaling factor [80]. The slope of the correla-
tion line (0.26) in Fig 4B deviates from unity. This indicates that the linear relationship in Eq 1
used for converting 7¢; ..., t0 @ temperature scale, which was derived for Hiyp,;-based ther-
mostability prediction [12, 13], may need to be reparameterized for application with 7c; .5~
In this case, as the heat capacity has been shown to scale linearly with the number of residues
for small globular proteins [80, 81], a normalization with respect to protein size needs to be
applied. When only considering the six X-ray structures in the dataset of Rao et al., a good cor-
relation of 7¢;; .., With T, values of R*=0.87 (p = 0.007) is found (Table 1). In contrast, a
weaker correlation (R* = 0.33, p = 0.07) is obtained for the eight variants that were modeled
using SCWRL (). This suggests an influence of the quality of the input structures on the predic-
tion of thermodynamic thermostability. Finally, as before, the mutants from Reetz et al. are
found to have a lower thermodynamic thermostability than the wild type, in very good agree-

ment with experimental findings (see above and Table 1) [49].
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The rc,,

i neighbor~Das€d measure is apparently less sensitive to differences in the unfolding path-
way because the wild type and mutant 6B are now much better ranked. However, comparing

the prediction of thermostabilities by ¢, ;.- a0d Hiypeo, the latter yields a better correlation

ype2>
with T, for mutants with similar unfolding pathways. From an application point of view, we

thus recommend using Hiype,-derived T}, values for comparing thermostabilities of variants of
a protein unless the underlying unfolding pathways are dissimilar; in that case, we recommend
uSing 7¢; v ighbor-
When applied to hen egg white lysozyme the ENT™ approach has been shown to signifi-
cantly improve the robustness of rigidity analyses with respect to the conformation of the input

structures [56]. To probe if this also holds for BsLipA investigated here, we computed ¢, ,;14,0r

using the ENT*™NC approach for five additional crystal structures of wild type BsLipA (see sec-

tion “Materials and methods”). The standard error of the mean in rc over all six wild

ij,neighbor
type BsLipA structures is 0.57 K (Fig 4B) including PDB ID 1ISP discussed so far. This error is
likely within the experimental uncertainty, confirming our previous results of robust rigidity

analyses with ENT™NC [56]. Still, if the average TC,; neighvor OVeT all six crystal structures (315.9 K;

see horizontal line in Fig 4B;Table 1) is considered for the rc versus Ty, correlation, the

ij,neighbor
quality of the correlation improves considerably to R* = 0.55 (p = 0.001) compared to if only

rc of PDB ID 1ISP is used (see above). This indicates that the use of multiple input struc-

rcij,neighbor
FNC
T

tures in connection with the EN
ity predictions.

approach further increases the accuracy of thermostabil-

Influence of mutations on local structural rigidity

Considering that the average local stability defined above correctly reflects differences in the
(macroscopic) thermodynamic thermostability, we analyzed on a residue basis how changes in
thermostability relate to changes in local structural stability (rigidity). First, we compared sta-
bility maps of variants from Rao et al. with distinct thermostabilities to analyze the effect of
mutations on the local rigidity. In particular, we compared the wild type to a more thermosta-
ble variant 1-14F5 and the most thermostable variant 6B. We averaged stability maps of the six
wild type structures (see above and Fig 4B) and used this average for comparison against the
thermostable variants of BsLipA. Difference stability maps for 1-14F5/wild type (Fig 6A) and
6B/wild type (Fig 6B) pairs demonstrate that mutations in general improve the strength of
rigid contacts to and in between neighboring residues of the mutations (lower triangles in Fig
6A and 6B) but also in between residue pairs not in contact distance (upper triangles in Fig 6A
and 6B). This effect is more pronounced for 6B/wild type than 1-14F5/wild type.

In more detail, the four mutations (indicated by arrows in Fig 6A and shown in Fig 6D) on
1-14F5 stabilize contacts of oD with its neighboring helix o.C and contacts of oA with oF (Fig
6A and 6D). More importantly, the contacts of helices .A and oF with their neighboring B-
strands in the central B-sheet region are stabilized, which delays the early loss of these helices
observed during the thermal unfolding of the wild type (Fig 3). Similarly, the contacts between
oB and the central B-sheet region also become stronger, which delays the decay of structural
stability of the B-sheet during thermal unfolding. On average, contacts between all residue
neighbors are ~—0.1 kcal mol™" or ~2 K more stable in 1-14F5 than in the wild type.

Residues mutated in 6B (indicated by arrows in Fig 6B and shown in Fig 6E) include the
mutations already found in 1-14F5. This explains a strengthening of inter-helical contacts and
of the contacts between o helices and the central B-sheet region as discussed already for 1-14F5
(Fig 6D and 6E). However, the additional mutations in 6B stabilize contacts between other a-
helices (oD and oE) and the central B-sheet region and further reinforce those between oA or
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Fig 6. Differences in the stability of rigid contacts between wild type and mutants of BsLipA. Maps depict differences between stability maps of the
respective mutants and an average stability map of the six wild type structures (see the main text for explanation) for A: mutant 1-14F5, B: mutant 6B, and C:
mutant X. A red (blue) color indicates that a rigid contact in the mutant is more (less) stable than in the wild type (see color scale at the bottom). The upper
triangles show differences in the stability values for all residue pairs; the lower triangles show differences in the stability values only for residue pairs that are
within 5 A of each other, with values for all other residue pairs colored gray. Secondary structure elements as computed by the DSSP program [88, 89] are
indicated on both abscissa and ordinate and are labeled: a-helix (red rectangle), B-strands (green rectangle), loop (black line). Arrows represent the mutation
positions with respect to the wild type sequence: Common mutations in 1-14F5 (A) and 6B (B) are shown in magenta, unique mutations in 6B (B) are shown
in green, and mutations in X (C) are shown in orange. The differences in the stability of rigid contacts for residue neighbors is also displayed on the structures
of the mutants by sticks connecting C, atoms of residue pairs colored according to the color scale of the maps for D: 1-14F5, E: 6B, and F: X. Only those
contacts that are stabilized by > 4 K or destabilized by > 3 K are shown for clarity; for the same reason, contacts between two residues of the same
secondary structure element are not shown. Mutated residues are shown as sticks and a sphere at their C, atoms (D, E, and F) in the same color used for
arrows (A, B, and C).

doi:10.1371/journal.pone.0130289.9006

oF and the B-sheet. On average, contacts between all residue neighbors are ~—0.4 kcal mol ™" or
~8 K more stable in 6B than in the wild type (Fig 6E).

Taken together, contacts between peripheral helices and the central B-sheet region are stron-
ger in 6B than in 1-14F5. This delays the loss of a-helices during thermal unfolding (Fig 3) to a
larger extent in 6B than in 1-14F5, explaining at a structural level why 6B is more stable than 1-
14F5. Remarkably, many of these stabilizations must arise from the long-range aspect of rigid-
ity percolation [52, 64, 82, 83], because almost all mutations in 6B are on the surface, i.e., far
from the central B-sheet region. In contrast, inter-helical contacts of the aB/o.C helix pair
become weaker in the mutants than in wild type (Fig 6D and 6E) indicating that the strength-
ened stability between these helices and the central B-sheet region is sufficient to keep the struc-
ture folded. At last, for all other thermodynamically more thermostable mutants, a similar
profile of changes in contact stability between various secondary structure elements was
observed (Figure F in S1 File). Not unexpected, the increase in contact stability compared to
wild type (Figure F in S1 File) was generally the more pronounced the higher the thermody-
namic thermostability is of the mutant (Table 1).

Second, we compared the mutants from Reetz et al. to the wild type. Regarding mutant X,
seven residues have been mutated (indicated by arrows in Fig 6C and shown in Fig 6G). In
strict contrast to what was observed for the thermodynamically thermostabilized mutants, this
mutant showed a destabilization of rigid contacts both locally and globally (Fig 6C and 6F; see
also Figure G in S1 File, where a similar finding is depicted for mutants IX and XI). For mutant
X, the average decrease in stability over all residue neighbors is ~0.06 kcal mol ™" or ~1.2 K. The
destabilization found on the local scale agrees with results of a lower T}, found when analyzing
the mutants globally. Furthermore, the results are in line with experimental findings which
suggest that the mutants are thermodynamically less stable than the wild type (Table 1) [49].
Our findings are also in good agreement with results obtained by comparative crystal structure
analysis of wild type and variant X [49]: Loop region 14-21, for which lower B-factors in X
than in the wild type structure were observed, shows increased contact stabilities with its neigh-
boring residues in X (Fig 6C and 6F; Figure H in the S1 File). Likewise, regions 129-153 and
177-181, for which higher B-factors in X than in the wild type structure were observed, show
decreased contact stabilities with their neighboring residues in X (Fig 6C and 6F; Figure H in
the S1 File). However, region 60-70 shows increased contact stabilities in X (Fig 6C and 6F and
Figure H in the S1 File) despite higher B-factors observed in the comparative crystal structure
analysis. The latter may reflect increased motions of a stabilized region as a whole, taking into
consideration that B-factors can report on rigid body motions of a structurally stable part [84].

Finally, it would be very satisfying from both the biochemical and structural biology point
of view, if the effects of the three to twelve mutations on increased or decreased local rigidity
could be immediately related to the changes in specific interactions with neighboring residues.
Our above observation for the mutants from Rao et al. that many of the stability changes must
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arise from the long-range aspect of rigidity percolation [52, 64, 82, 83] speaks against such an
endeavor. Nevertheless, we analyzed differences in the per-residue number of hydrogen bonds
and hydrophobic tethers of the variants 1_14F5, 6B, and X with respect to the wild type
(Figure Iin S1 File). While these analyses reveal differences in the number of interactions > 1
indeed only for a small set of residues, between ~10 and ~35% of all residues show differences
of 1. This finding is remarkable given the small number of mutations in the variants and the
high structural similarity between crystal structures of the wild type and mutants found for
backbone atoms above; apparently, these differences arise from subtle changes in the confor-
mations of the side chains due to the mutations. This finding also suggests that an interpreta-
tion of the relationship between increased or decreased local rigidity due to changes in specific
interactions of a mutated residue and a change in thermostability of a mutant may fall short of
the actual complexity underlying this relationship.

Discussion

Understanding the origin of thermostability is of fundamental importance in protein biochem-
istry. Here, we have probed the relation between protein thermostability and structural rigidity
by directly analyzing static properties of a well-characterized set of 16 BsLipA mutants. The
main outcome of this work is the finding of a good correlation between the structural rigidity
of all BsLipA variants and their thermodynamic thermostability. This finding of a quantitative
relation between structural rigidity and thermodynamic thermostability within a series of
closely related protein variants complements a previous study that showed for pairs of homolo-
gous proteins from thermophilic and mesophilc organisms that raising the structural stability
is the most common way (~77% of all cases) to obtain a higher thermostability [85].

Intense discussions are ongoing regarding the question if elevated protein thermostability is
related to increased or decreased structural rigidity of the folded state [10, 18-23]. Part of this
discussion is related to how information on structural rigidity is derived from information on
mobility, in particular with respect to the temporal resolution of the experimental techniques
and computational analysis [26-32]. In this context, the finding we describe here is highly rele-
vant. As the rigidity theory-based CNA approach applied characterizes rigidity and flexibility
of proteins directly, i.e., without the requirement of information on atomic movements, it does
not suffer from such time dependence. Another part of the discussion is related to the fact that
changes in the enthalpy, entropy and/or heat capacity can lead to thermodynamic stabilization;
these changes can be linked to distinct effects on the structural stability of the folded state [19].
It was thus instructive to observe that the general increase in rigidity in the mutants of Rao
et al. is accompanied by certain inter-helical contacts becoming weaker than in the wild type;
these weakened contacts between the “modular” helices may increase the entropy of the folded
state and so may further contribute to the overall stability of the systems [17, 86, 87]. This find-
ing again calls attention to analyzing the origin of thermostability with methods that cover a
wide range of temporal and spatial resolution because otherwise one effect may be hidden
beneath another.

Our results are backed up with a careful validation of the accuracy and robustness of the
CNA approach on the data set both from a macroscopic and microscopic point of view. As to
the former, good and statistically significant correlations between experimental melting tem-
peratures (T,,) of mutants of Rao et al. and predicted thermodynamic thermostabilities have
been found based on two independent measures (Hiypez and 7¢; ,,,)> 38 Was correctly pre-
dicted that the thermodynamic thermostability of the mutants of Reetz et al. is lower than that

of the wild type. Furthermore, 7¢; .1.5,,-based predictions of the thermodynamic thermostabil-

ity on six crystal structures of wild type BsLipA revealed a standard error of the mean likely
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within experimental error, confirming previous results of robust rigidity analyses when apply-
ing the ENT*™® approach [56]. As to the latter, the detailed analysis of the unfolding pathway
of wild type BsLipA revealed a good agreement with respect to the early segregation of o-helices
with experimental observations on other proteins with an o/p hydrolase fold. These findings
are in line with previous successful applications of CNA in predicting melting temperatures
and identifying structural weak spots [11-13].

From a methodological point of view, some additional comments are in order. First, in the
present study we successfully predicted the thermodynamic thermostability for mutants that
differ by as few as three to twelve mutations from the wild type. Compared to previous applica-
tions of CNA on either pairs of mesophilic and thermophilic homologues [12, 13] or a series of
homologous proteins from different organisms living at varying temperatures [11], this finding
considerably broadens the application domain of CNA towards data-driven protein engineer-
ing: There, related series of mutants with only a small number of respective mutations will be
the major focus of investigations. Second, we introduced a measure for the similarity/dissimi-
larity of unfolding pathways of mutants and used it for explaining false thermostability predic-
tions. We suggest to use the measure in future studies as a significance criterion to judge the
reliability of thermostability predictions from CNA. Third, we introduced the median stability
of rigid contacts as a new local measure for predicting thermodynamic thermostability and
showed that this measure is less sensitive to details of the unfolding pathway. The measure is
thus recommended for comparing thermostabilities of mutants the underlying unfolding path-
ways of which are dissimilar.

Finally, regarding the subset of mutants of Reetz et al., we find a decreased local rigidity
compared to wild type, in line with findings of lower unfolding initiation temperatures, yet the
mutants are more “thermostable” than the wild type in that they preserve enzymatic activity
better after subjecting them to higher temperatures [42]. It would have been tempting to inves-
tigate how this relates to a potential kinetic stabilization of the mutants. However, we refrained
from doing so due to the lack of direct experimental evidence for such a kinetic stabilization
[49]. In turn, this finding draws attention to the fact that the term “protein thermostability” is
often used in a non-discriminating sense, i.e., data reported in the literature does not allow to
establish whether a protein is thermodynamically or kinetically stable [49]. This adds another
layer of complexity to the question of the relation between protein thermostability and struc-
tural rigidity as it may be required to decouple observations on “increased vs. decreased struc-
tural rigidity” from the general description of “protein thermostability” in future studies.

Supporting Information

S1 File. The file contains additional information to the manuscript: Pairwise Pearson cor-
relation coefficients r and corresponding p values between cluster distributions of BsLipA
variants from Rao et al. (Table A) and Reetz et al. (Table B), objective function of the cluster-
ing (Figure A), cluster configuration entropy Hyp.e, vs. temperature obtained from the average
loss of rigidity percolation of wild type BsLipA (Figure B), correlation between predicted T,
derived from the global index Hy, and experimental thermostabilities (T, values) of BsLipA
variants using single input structures. (Figure C), average loss of structural rigidity of mutant
6B during a thermal unfolding simulation (Figure D), probability density functions (PDFs) of
all pairwise Pearson correlation coefficients between cluster distributions of BsLipA variants
(Figure E), differences in the stability of rigid contacts between wild type and variants of
BsLipA from Rao et al. (Figure F) and Reetz et al. (Figure G), differences in the stability of rigid
contacts between variant X and wild type for selected residue neighbors (Figure H), and differ-
ences in the number of hydrogen bonds and hydrophobic tethers between BsLipA mutants and
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wild type (Figure I).
(PDF)

S$1 Video. The video file shows the average loss of structural rigidity during thermal unfold-
ing of wild type BsLipA and the corresponding global rigidity index Hyy., vs. temperature
plot. See captions of Fig 3 in the main text and Figure B in S1 File for details.
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