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Abstract
Variations in tobacco-related cancers, incidence and prevalence reflect differences in to-

bacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk

could be related to smoking behavior. Polymorphisms altering DNA repair capacity may

lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common prob-

lems in genetic association studies, such as presence of gene-by-environment (G x E) cor-

relation in the population, may reduce the validity of these designs. The main purpose of

this study was to evaluate the independence assumption for selected SNPs and smoking

behaviour in a cohort of 320 healthy Spanish smokers. We found an association between

the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensi-

ty (OR = 12.98, 95% CI = 2.86–58.82 and OR=16.90, 95% CI=2.09-142.8; respectively).

Although preliminary, the results of our study provide evidence that genetic variations in

DNA-repair genes may influence both smoking habits and the development of lung cancer.

Population-specific G x E studies should be carried out when genetic and environmental

factors interact to cause the disease.

Introduction
Smoking is the single biggest preventable cause of death in contemporary societies [1]. Its con-
sumption results in greater incidence of cardiovascular disease, pulmonary disease and many
cancers [2].

Cigarette smoke contains large quantities of carcinogens, including polycyclic aromatic hy-
drocarbons, which damage DNA by covalent binding or oxidation [3]. Although cigarette
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smoking is the major cause of lung cancer, only a small fraction of smokers develop smoking-
related lung cancer, suggesting that other causes, including genetic susceptibility, may contrib-
ute to the variation in individual lung cancer risk [4–6]. This genetic susceptibility may be due,
in part, to genetically determined variation in carcinogen metabolism [7] and/or in the capacity
of DNA repair [8–10]. DNA-repair activities are essential for the protection of the genome
from environmental damage such as tobacco smoke [11]. However, contradictory results are
often reported by various studies, making it difficult to interpret them [12,13]. Approximately
160 genes mediate DNA repair have been found in human cells [14]. Several polymorphisms
in DNA repair genes contribute to genetic instability and error accumulation due to reduced
protein activity being associated to relatively risk of lung cancer in Caucasian population
[15,16,17,18]. The NER (nucleotide excision repair) pathway repairs DNA damage caused by
the tobacco-related carcinogen benzo(a)pyrene, while the BER (base excision repair) pathway
repairs DNA caused by reactive oxygen species (ROS) results from cigarette smoke [19]. In ad-
dition, DSBR (double strand break repair) pathway is the responsible for repairing double-
strand breaks produced by exogenous agents such as environmental carcinogens present in to-
bacco smoke and endogenous generated ROS [20].

Variants in the genes encoding aforementioned proteins are very common in the popula-
tion. Most of studies have analyzed genetic polymorphisms in XPD, XRCC1, APEX1 and
XRCC3 genes. The presence of the alleles 312Asn and 751Gln of XPD has been associated with
risk of lung cancer in Caucasian individuals [15,16]. BER genes repair DNA damage from oxi-
dation, deamination and ring fragmentation [21]. XRCC1 Arg399Gln polymorphism and lung
cancer risk has been analyzed in relatively high number of studies [22,23,24,18]. XRCC3 partic-
ipates in repair DNA-double strand break via homologous recombination, the polymorphism
of XRCC3 Thr241Met has been indicated to be involved in the development of some cancers
[25]. In addition, APE1 protein plays a role in repairing abasic sites [26]. Single-nucleotide
polymorphisms of the APE1 gene have been demonstrated to be involved in carcinogenesis.
However, the association between APE1 Asp148Glu polymorphism and lung cancer risk re-
mains inconclusive in Caucasian population [27].

Variants in DNA repair genes modulate DNA repair activity in smokers and therefore
could alter cancer risk [28]. Inconsistent results have been published possibly due to low statis-
tical power, false-positive results, heterogeneity across studies populations, failure to consider
environmental exposures or publication bias [29].

Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobac-
co consumption in addition to genetic factors. Besides, genes related to lung cancer risk could
be related to smoking behavior.

Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco
carcinogen-induced lung cancer risk [30].

Published control group data on the associations of interest for gene-by-environment
(G×E) interaction are limited [31]. Common problems in genetic association studies, such as
presence of G x E correlation in the population, may reduce the validity of these designs. The
main purpose of this study was to evaluate the independent assumption for selected SNPs and
smoking behaviour in a cohort of healthy Spanish smokers.

Polymorphisms of interest were single nucleotide changes (SNPs) in XRCC1 (Arg399Gln)
[rs25487], APEX1 (Asp148Glu) [rs1130409], XRCC3 (Thr241Met) [rs861539], XPD
(Asp312Asn) [rs1799793] and (Lys751Gln) [rs13181]. Lung cancer susceptibility has been ex-
amined in numerous epidemiological studies that have investigated the association between
the development of the pathology and variants in candidate genes. We have analysed the afore-
mentioned polymorphisms attending to previous publications and prevalence in Caucasian
population [23,24,32,33,34]. We have selected five functional polymorphisms that have been
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considered as lung cancer risk factors in Caucasian population in order to replicate in a healthy
smokers population.

Methods

Ethics statement
Approval was obtained from the local Ethics Committee (Hospital Carlos III, Madrid) and all
patients provided written informed consent. The study was in accordance with the Helsinki
Declaration.

Subjects
Three hundred and twenty healthy smokers (all of Caucasian (Spanish) descent for�3 genera-
tions) between 25 and 65 years of age were recruited from the Health and Safety Committee of
Banco Popular, Madrid (Spain); Department of Neumology, Hospital Carlos III, Madrid,
Spain; and Department of Neumology, Hospital Gregorio Marañón, Madrid, Spain; from 2010
to 2013. Eligible participants were 25–65 years old and reported smoking� 1 cigarette per day
for� 5 years. Exclusion criteria included suffer from any illness related to smoking.

Phenotype assessment
All participants completed a questionnaire regarding demographic characteristics, smoking
habits, self-reported cigarettes per day (CPD), the number of years the person had smoked and
pack years smoked (PYS). The PYS is used to describe the number of cigarettes a person has
smoked over a lifetime and it is calculated by multiplying the number of cigarettes smoked per
day by the number of years the person has smoked and divided by 20. Nicotine dependence
was assessed with the Fagerstrom Test for Nicotine Dependence (FTND) [35]. In addition, CO
levels and lung function (spirometry) were measured in each participant. We divided the
smokers attending CO levels (ppm) in: very light smoker (0–6), light smoker (7–10), smoker
(11–20) and heavy smoker (>20). In order to check CPD reported we measure cotinine levels
in 30% of participants.

Genotype assessment
Peripheral blood samples were obtained by venipuncture. Blood leukocyte DNA was extracted
using a standard phenol chloroform protocol. The DNA isolation and genotype analyses were
performed in the Biomedicine laboratory at the Universidad Europea, Madrid (Spain). The
study followed recommendations for replicating genotype-phenotype association studies [36]:
genotyping was performed specifically for research purposes, and the researchers in charge of
genotyping were totally blinded to the participants’ identities (blood and DNA samples were
tracked solely with bar-coding and personal identities were only made available to the main
study researcher who was not involved in actual genotyping). The DNA samples were diluted
with sterile water and stored at -20°C until analysis.

Genotyping was performed by Real-time PCR and Taqman probes with a Step One Real-
Time PCR System (Applied Biosystems, Foster City, CA).

Statistical analysis
We compared smoking phenotypes among the different genotypes and combination of geno-
types with the unpaired Student’s t-test. We used the χ2 test to assess deviations of genotype
distributions from the Hardy-Weinberg equilibrium (HWE). Logistic regression analysis was
carried out to calculate G-E interactions between smoking habits and genotypes or genotype
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combinations adjusted for different covariates (i.e., age and gender). All statistical analyses
were adjusted for multiple comparisons using the Bonferroni method, in which the threshold
P-value is obtained by dividing 0.05 by the number of tests. All analyses were performed with
the PASW/SPSS Statistics 20.0 (SPSS Inc, Chicago, IL) program.

Results
The study included 320 healthy current smokers, 55.00% men, all Caucasian with a mean age
of 48.64 years (SD = 13.48). On average, they had been smoking for 24.57 years (SD = 10.88).
The CPD and PYS ranged from 5 to 70 and 2 to 175 with an overall mean of 17.60 (10.59) ciga-
rettes/day and 28.16 (24.44) PYS, respectively.

In order to check the number of CPD reported, the levels of CO (ppm) expired were tested
in each smoker, resulting the following percentage in each category: very light smoker (19.6%),
light smoker (15.6%), smoker (39.2%), and heavy smoker (25.6%). Statistically significant dif-
ferences were found (P<0.001) among the following categories: very light smoker 9.77 CPD
(SD = 6.52), light smoker 12.86 CPD (SD = 7.11), smoker 19.58 CPD (SD = 10.43), and heavy
smoker 22.94 CPD (SD = 10.69). In addition, significant differences were found between PYS
and CO levels (P<0.001): very light smoker 11.52 PYS (SD = 10.88), light smoker 14.91 PYS
(SD = 10.38), smoker 24.38 PYS (SD = 22.06), and heavy smoker 29.43 PYS (SD = 19.68) (Figs
1 and 2).

All genetic polymorphisms studied in the population were in Hardy Weinberg Equilibrium
(HWE) except XRCC1 Arg399Gln polymorphism (P = 0.02). No differences in genotype
distribution between females and males were observed (data not shown). Genotype frequencies
were, respectively: XRCC1 Arg399Arg = 42.6%, Arg399Glu = 52.7, Glu399Glu = 4.7%;
APEX1 Asp148Asp = 31.1, Asp148Gln = 45.1, Gln148Gln = 23.9; XRCC3 Thr241Thr =
35.3, Thr241Met = 48.0, Met241Met = 16.7; ERCC2 Asp312Asp = 43.9, Asp312Asn = 45.2,
Asn312Asn = 10.9; KLC3 Lys751Lys = 41.8, Lys751Gln = 45.1 and Gln751Gln = 13.1; showed
similar frequency as reported in previous studies in Spanish population [17].

Analyses focused on associations with genotype categorized using a recessive model (i.e. ho-
mozygotes of the most common allele plus heterozygotes were the referent group, compared to
homozygotes of the minor allele).

Association between DNA repair variants and smoking behaviour
Genotype-smoking associations between XRCC3 Thr241Met and smoking intensity (PYS) and
years smoking were found (P = 0.001 and P = 0.004, respectively). Logistic regression analysis
showed an association between the most common allele of XRCC3 Thr241Met and greater
smoking intensity (OR = 12.98, 95% CI = 2.86–58.82) and more years smoking (OR = 20.66,
95% CI = 2.57–166.62).

In addition, we found an association between the most common allele of KLC3 Lys751Gln
and greater smoking intensity (OR = 16.90, 95% CI = 2.09–142.8) and years smoking
(OR = 12.19, 95% CI = 1.49–100.00). For the remaining genotypes we didn´t find a statistically
association with smoking habits. For additional data see Table 1.

Under the assumption that the combination of polymorphism can have additive or more
than additive effects, the combination of two significant variants was investigated.

We analysed the combination of the most common alleles of KLC3 Lys751Gln and XRCC3
Thr241Met. When the study population was categorized according to the number of risk al-
leles, smoking habits (PYS) and years smoking were statistically significantly increased in indi-
viduals bearing three-four risk alleles (P<0.001) in both.
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Discussion
The case-only study design has been increasingly used to estimate the magnitude of statistical
interaction between 2 measured exposures with respect to a given outcome, most commonly a
genetic and an environmental exposure [37].

However, results from the case-only design can be misleading due to, at least, two problems.
First, the assumption of independence of genetic and environmental factors, meaning that
when genetic and environmental factors are associated, the design may wrongly lead to the
conclusion that interaction exists [38]. Second, a statistical interaction does not guarantee a bi-
ological relationship when genetic and environmental factors interact to cause the disease. The
independent effect of either exposure, or interaction on the additive scale, cannot be estimated.

Little empirical work has been conducted to quantitatively assess the magnitude of control-
only associations between DNA repair gene variations and smoking. Moreover, to our knowl-
edge, only a few studies have investigated the associations between in vitro-induced DNA
adduct levels and genetic variations in DNA repair genes in normal cells from healthy
individuals.

Although asking for the number of CPD is currently accepted as the gold standard measure
of exposure, it may not be a good indicator. There are many factors that alter the real exposure,

Fig 1. Association of CO levels and cigarettes reported.Note: The smokers were divided considering CO levels (ppm) into: very light smoker (0–6), light
smoker (7–10), smoker (11–20) and heavy smoker (>20). Abbreviations: CPD, cigarettes per day.

doi:10.1371/journal.pone.0129374.g001
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such as individual variability, gender, type of cigarette or the lack of precision reporting the
number of CPD. There is wide recognition that a proportion of current smokers underesti-
mates tobacco consumption or even denies smoking entirely. In our sample, CPD reported by
smokers were in accordance to CO levels tested, so the population was correctly phenotyped.

Expired CO levels correlate closely with specific cotinine assays and reliably reflect smoking
habits [39]. Our results showed that there was a significantly positive association between daily
consumption of cigarettes and CO levels, and between PYS and CO levels in healthy smokers.
We considered strict criteria for phenotypic measures. Despite of smoking may seem to be a
simple phenotype with measurable parameters as cigarette smoked per day, describing a reli-
able phenotype could be a difficult problem in scientific research because subjective estimations
are used instead of real measures [40].

Analysing the effect of DNA repair variants in smoking behaviour we found associations be-
tween XRCC3 Thr241Met and KLC3 Lys751Gln variants and smoking habits in Spanish popu-
lation. Furthermore, when we investigated the combination of KLC3 Lys751 and XRCC3
Thr241 alleles, a highly significant association with smoking was observed in the subjects carry-
ing three or more risk alleles. PYS showed the highest association, thus PYS is a feasible way to
measure the amount a person has smoked over a long period of time [41].

Fig 2. Association of CO levels and packs year smoked. Note: The smokers were divided considering CO levels (ppm) into: very light smoker (0–6), light
smoker (7–10), smoker (11–20) and heavy smoker (>20). Abbreviations: PYS, packs year smoked.

doi:10.1371/journal.pone.0129374.g002
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Smoking amount (PYS) may be causally associated with the most common alleles of XRCC3
Thr241Met and KLC3 Lys751Gln. In addition, smokers with the XRCC3 Thr241or KLC3
Lys751 alleles presented more nicotine addiction measured by FTND and more years smoking.
There is evidence that XRCC1 Arg399Gln, KLC3 Lys751Gln and XRCC3 Thr241Met variants
are functional [42,43]. Several authors have analysed the effect of different combinations of
DNA repair SNPs and the levels of DNA adducts [43–47]. Inverse significant associations on
DNA adducts have been detected in XRCC3Met241Met carriers [46]. In the same way, other
authors have also been described for XRCC3Met241 carriers an association with reduced re-
pair of X-ray-induced cytogenetic damage measured by chromatid aberrations [43,47]. The
XRCC3 Thr241Met polymorphism is a non-conservative substitution with possible biological
implications for the function of the enzyme and/or the interaction with others DNA repairing
proteins. Amino acid variants in different domains of DNA repair proteins may not only affect
different protein interactions, resulting in the expression of different phenotypes [48], but also
the same polymorphism may have divergent effects on different DNA repair pathways and on
different types of DNA damage [43].

Attending our results, across SNPs, XRCC3 Thr241Met and KLC3 Lys751Gln polymor-
phisms could be related to nicotine addiction measured as smoking amount (PYS) or
years smoking.

In a meta-analysis Hodgson et al. reported similar associations as those we found [31].
There is some evidence that variation in DNA repair activity may affect neurological and/or re-
spiratory outcomes, which could in turn affect smoking behaviour [49,50]. Different aspects of
smoking behaviour (smoking initiation, smoking cessation, intensity etc.) operate through

Table 1. Relationship between genotypes and smoking behaviour.

N FTND CPD PYS YS

Mean (SD) aP-value Mean (SD) aP-value Mean (SD) aP-value Mean (SD) aP-value

XRCC1 Arg399Gln

Arg/Arg,Arg/Gln 297 4.2 (2.8) 0.952 17.6 (10.7) 0.895 27.4 (24.1) 0.562 24.4 (10.8) 0.998

Gln/Gln b 23 5.2 (2.8) 16.2 (8.4) 36.8 (28.3) 31.0 (11.5)

APEX1 Asp148Glu

Asp/Asp,Asp/Glu 243 4.4 (2.8) 0.804 16.2 (10.8) 0.608 29.5 (25.7) 0.083 24.6 (10.9) 0.267

Glu/Glu b 77 3.9 (2.9) 16.0 (9.8) 24.8 (20.9) 24.2 (11.0)

XRCC3 Thr241Met

Thr/Thr, Thr/Mer 266 4.5 (2.8) 0.076 18.2 (10.4) 0.629 29.2 (24.2) 0.001 25.1 (10.9) 0.004

Met/Met b 54 3.2 (2.6) 15.1 (11.0) 23.5 (25.5) 22.1 (10.4)

ERCC2 Asp312Asn

Asp/Asp,Asp/Asn 284 4.2 (2.8) 0.167 17.9 (10.6) 0.322 28.7 (24.7) 0.110 26.7 (10.8) 0.242

Asn/Asn b 36 4.1 (2.5) 15.6 (11.1) 24.3 (24.1) 22.7 (11.5)

KLC3 Lys751Gln

Lys/Lys, Lys/Gln 278 4.3 (2.9) 0.166 17.9 (10.5) 0.342 28.4 (24.1) 0.008 25.1 (10.7) 0.02

Gln/Gln b 42 3.8 (2.1) 15.5 (11.1) 27.4 (27.1) 21.9 (11.9)

Number of risk alleles

0–2 85 3.5 (2.6) 0.065 15.7 (12.0) 0.714 27.7 (30.1) <0.001 22.9 (11.4) <0.001

3–4 235 4.6 (2.8) 18.0 (9.4) 28.7 (21.0) 25.2 (10.6)

FTND, Fagerstrom test for nicotine dependence; CPD, cigarettes per day; PYS, pack years smoked; YS, years smoking.
a Adjusted P value by age and gender.
b Reference allele.

doi:10.1371/journal.pone.0129374.t001
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multiple overlapping pathways, therefore would not be expected to be identically affected by
DNA repair variation [43].

Population stratification could have contributed to the heterogeneity in G-E associations.
Variant alleles are found at different frequencies in different ethnic groups within the same
study, and smoking behaviour may also differ by ethnicity [31]. Moreover most of the studies
of G-E interaction with smoking amount information are lung cancer studies [51]. G-E associ-
ations in controls may be population-specific.

Hung and cols., published typical problems regarding investigations of G-E interactions, in
particular, the fact that among the generally negative results, some seemingly noteworthy asso-
ciations are identified in subgroups of subjects who are defined on the basis of their tumor his-
tology or smoking habits. In some cases exists the probability that the associations found are
attributable to chance (i.e., false positives). The challenge is to distinguish the false-positive as-
sociations from the true positives [52]. Several authors propose a simple Bayesian approach
that is based on the estimation of a prior probability and the calculation of posterior probability
[52]. Meta-analysis or functional analysis can be extremely useful for obtaining prior estimates
[51,53].

A weakness of our study was the low sample size of healthy smokers, yet we believe this can
be partly overcome by the fact that our population is homogeneous, not stratified and well de-
fined in terms of phenotype assessment.

Although preliminary, the results of our study provide evidence that several genetic varia-
tions in DNA-repair genes may influence not only smoking habits but also the development of
lung cancer.

To our knowledge, there are no previous studies G-E on DNA repair genes polymorphisms
and smoking habits in healthy Spanish population. The results of our study are overall consis-
tent, as they comply with the following published guidelines [54]: the smoking phenotypes and
the study outcome were properly measured and accurately recorded by a researcher who was
blind to the genetic information and was an expert in the area (Neumologist), we corrected all
statistical inferences for multiple comparisons (Bonferroni’s criteria for the p-values); and the
results are overall in accordance with previous research in the field. Studies with more sophisti-
cated designs (including more appropriate smoking phenotype measurements and representa-
tive population) are required even with the risk of smaller sample size [21, 55].
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