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Abstract
Accurately delineating the brain on magnetic resonance (MR) images of the head is a pre-

requisite for many neuroimaging methods. Most existing methods exhibit disadvantages in

that they are laborious, yield inconsistent results, and/or require training data to closely

match the data to be processed. Here, we present pincram, an automatic, versatile method

for accurately labelling the adult brain on T1-weighted 3D MR head images. The method

uses an iterative refinement approach to propagate labels from multiple atlases to a given

target image using image registration. At each refinement level, a consensus label is gener-

ated. At the subsequent level, the search for the brain boundary is constrained to the neigh-

bourhood of the boundary of this consensus label. The method achieves high accuracy

(Jaccard coefficient > 0.95 on typical data, corresponding to a Dice similarity coefficient of >

0.97) and performs better than many state-of-the-art methods as evidenced by independent

evaluation on the Segmentation Validation Engine. Via a novel self-monitoring feature, the

program generates the "success index," a scalar metadatum indicative of the accuracy of

the output label. Pincram is available as open source software.

Introduction
A prerequisite for many analytic approaches applied to magnetic resonance (MR) images of
living subjects is the identification of the target organ on the image. When images are analysed
visually, this usually happens implicitly, ie. the observer’s attention is naturally focussed on the
region of interest. Due to the exquisite pattern recognition capabilities of the human visual sys-
tem, no specific treatment of the image is usually required to achieve this analytic separation.
Contrariwise, automatic image analysis generally demands a mask that distinguishes the organ
or region of interest from parts of the image that correspond to extraneous structures or to
background. For structural 3D imaging of the human brain, especially MR imaging, a variety
of brain extraction, skull stripping, or intracranial masking methods have been proposed.
These can be distinguished by the level of expert involvement:
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1. Manual delineation protocols require a rater to outline the region of interest on all or a sub-
set of the acquired sections [1]. The amount of laborious expert input increases linearly with
the number of subjects in the target cohort. Manual delineation results often serve as a gold-
standard reference to evaluate new approaches.

2. Semi-automated masking procedures achieve good results at reduced cost, but still require
detailed expert interaction with each target image (e.g. MIDAS [2]).

3. Methods that use heuristics to estimate a brain label from a combination of geometric
image properties and signal intensities (e.g. Exbrain [3]; FSL BET [4]; SPM [5]) are techni-
cally suitable for batch automation with multiple target images. The same is true for
approaches that transform a reference label from a standard space into the target space,
using the inverse of the normalizing transformation [6].

4. Some algorithms achieve brain labelling on cohorts of images using expert segmentations of
a subset of the cohort (e.g. [7–9]). The labelled subset is called atlas, training, or library set.
These methods rely on the target images being sufficiently similar to the training set for the
algorithm to transfer the expert knowledge. They often require extensive preprocessing,
including spatial and intensity normalization.

Users of the automatic methods of categories 3. and 4. should generally apply caution and
review each resulting label, because the performance on a given target can vary unpredictably,
for example when subtle image artifacts are present. To our knowledge, none of the existing
methods provide explicit warnings or performance indices to indicate possible segmentation
failures.

In this work, we present pincram, a method that fits with those in Category 4) above in that
it uses expert brain labels in an atlas set to identify the brain on target images. Development
goals were accuracy, robustness, and versatility, and practicality, in particular the ability to pro-
cess any given target image using atlas data of arbitrary provenance. We also aimed to intro-
duce self-monitoring, ie. the capability of predicting the accuracy of an individual
segmentation and warning the user of potentially inaccurate results. Using a variety of sample
data sets and experiments, we quantify the extent to which these goals have been attained. Pin-
cram is publicly available at http://soundray.org/pincram as free software under the MIT
(“Expat”) License.

Materials and Method

Material
We used T1-weighted MR images of the human brain obtained from a variety of sources. Scan-
ner manufacturers, sequence characteristics, acquisition strategies, postprocessing, and field
strengths varied between the test sets, as well as the visual appearance of the images (Fig 1). We
refer to the combination of an image with a spatially corresponding, manually or automatically
generated label volume by the term atlas.

Hammers brain atlases. The Hammers atlases are a publicly available database of manu-
ally labelled cranial images of 30 adult subjects (age range 20 to 54, mean 31 years; www.brain-
development.org). The images originate from a Signa Echospeed scanner (field strength 1.5
Tesla; GE Medical Systems, Milwaukee, USA) at the National Society for Epilepsy in Chalfont,
UK. Further acquisition details are available in Hammers et al. [10]. Image postprocessing con-
sisted in bias field correction (N3 [11]), reorientation along the anterior and posterior commis-
sures, and isotropic reconstruction (0.9375 × 0.9375 × 0.9375 mm3) using a single windowed
sinc interpolation.
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The Hammers atlas database includes spatially corresponding label volumes that identify 83
cortical and subcortical regions. To obtain reference brain masks, we merged these multi-
region label sets into a single binary mask. We applied additional processing to fill intracranial
regions that are not covered by the resulting label: blurring with a Gaussian kernel (8 mm
width), thresholding at 50%, erosion with a 3 × 3 × 3 voxel kernel in two iterations, and merg-
ing with the original combined label.

We use H as a shorthand reference to the Hammers atlases.
OASIS brain atlases. This data set consists of images from 30 healthy subjects (age range

18 to 90, mean 34.3 years), originating from the Open Access Series of Imaging Studies
(OASIS) (www.oasis-brains.org/), with labels provided by Neuromorphometrics, Inc. (neuro-
morphometrics.com/) under academic subscription. The images had been acquired at 1.5
Tesla. The atlases had been published for theMICCAI 2012 Grand Challenge and Workshop on
Multi-Atlas Labeling [12]. From the original set of 35 atlases, we excluded those that were
based on repeat scans of the same subjects. We applied N4ITK bias field correction without
masking to the images [13].

Fig 1. Sample images chosen randomly from each dataset. Images were visually centred at the level of
the commissures approximately in the centre of the left thalamus to acquire a transverse (top rows) and a
sagittal (bottom rows) slice. Left column,O, H, L: manual reference masks, X: generated mask (OX setup).
Middle column,O, H, L, X: generated masks (HX setup in the case of X). Right column,O, H, L, X:
discrepancies between the masks—green indicates overinclusion, red indicates underinclusion. Individual
JCs were 0.9512 (O), 0.9704 (H), 0.9647 (L), and 0.9503 (X).

doi:10.1371/journal.pone.0129211.g001
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The label volumes map 138 regions. As in the case of the Hammers atlases, the labels do not
cover the entire intracranial space. We generated brain masks using the filling procedure
described in Section Hammers brain atlases.

The resulting data set is denoted by O.
IXI brain images. To obtain images acquired at 3 Tesla, we accessed the publicly available

IXI repository of MR images (brain-development.org). The database consists of 575 images of
healthy volunteers, 185 of which had been acquired at 3 Tesla at Hammersmith Hospital, Lon-
don, UK (Intera scanner; Philips Medical Systems, Best, The Netherlands). No segmentation
labels were available for this database. We randomly selected 30/185 images and labelled this
set as X (age range 24.3 to 74.6, mean 49.4 years). From the remainder of 155, we selected
another random set of 30 and combined the resulting set with X to yield a set of 60, denoted by
X+ (age range 20.2 to 74.6, mean 45.3 years). All images underwent bias field correction with
N4ITK without masking.

LPBA40 atlases. The LPBA40 repository holds images of 40 adults (age range 16 to 40,
mean 29.2 years) imaged at 1.5 Tesla (shattuck.bmap.ucla.edu/resources/ lpba40/ [14]). We
obtained the full MR images in native space as well as their skull-stripped versions. We thre-
sholded the skull-stripped images at zero to obtain binary brain masks. We use L to refer to
this data set.

Preprocessing
The number of atlases in each ofH, O, X, and L was doubled by mirroring (left/right flipping)
the image and corresponding mask. X+ was the only data set that was not doubled in this fash-
ion, so it could serve as a reference for evaluating the effect on accuracy of the mirroring
procedure.

Iterative brain labelling procedure
For a given target, labels were generated at three levels of progressive refinement, termed rigid,
affine, and nonrigid, according to the type of image registration performed. At each level, a
consensus mask was generated. To select a subset of the most suitable atlases to be used at the
subsequent level, the similarity of each atlas with the target within the expected boundary
region was measured. The expected boundary region was determined by generating a tight
mask of the boundary neighborhood (margin) from the consensus mask. A new consensus
mask was generated from the selected atlases, and this was used to estimate a more generous
margin space to constrain the search in the subsequent level. Fig 2 shows the workflow. A
detailed description of the calculations at each iteration or refinement level (l 2 0, 1, 2) follows.
Initially (l = 0), the full available set of n0 atlases was used.

1. Label sets were generated from nl atlases using a standard label propagation approach based
on image registration (cf. Section Image registration).

2. The nl label sets were fused in the target space using summation, thresholding (tl), and
binarization, generating a crisp fused brain mask (Cl). The value of tl is configurable and
determines the balance between false positive and false negative voxels. A tl of 50% would
correspond to majority voting, but tends to lead to an overly inclusive mask. We found set-
tings of t0 = 56, t1 = 60, and t2 = 60 to yield optimal results.

3. A margin maskMl was generated, consisting of all voxels within a distance of 4 voxels from
the boundary of Cl. This serves to reduce the data to be considered in the subsequent rank-
ing evaluation.
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4. The nl individual atlas subjects were ranked in descending order of the similarity (normal-
ized mutual information) of the transformed atlas image with the target image within the
margin mask. The nl+1 top-ranking atlases were identified for use in the subsequent level l

+1, with nlþ1 ¼ max fnl
ffiffiffiffiffiffiffiffiffiffi
8=n0

3
p

; 7g. This approach ensures that selection only takes place if
the number of atlas sets is larger or equal to 10, and that at least 7 atlas sets are used at every
level. It also entails more aggressive selection when atlas set sizes are larger.

5. The selected transformed labels were fused by summation to create a fuzzy label Fl.

6. Fl was thresholded (tl) and binarized in the target space, generating a second crisp fused
brain mask C0

l .

7. Fl was converted to a crisp margin mask by setting all voxels with values between 15% and
99% to 1, and all other voxels to zero. The resulting margin maskM 0

l was applied to the tar-
get used to restrict the region within which registration parameters were optimized in the
subsequent level. This ensured that only the margin that presumably contained the true
boundary was considered for the similarity calculation during the registration step in the
subsequent iteration.

The final fused brain mask C0
2 was retained as the result label. C0 and C1 were discarded except

for an experiment that demonstrates the evolution of the brain mask through the three itera-
tions (cf. Section “Effect of registration level on accuracy”).

Image registration
Image registration consisted in optimizing a transformation based on maximizing normalized
mutual information between a given atlas and target [15]. Initially, the degrees of freedom were
set to 6 (rigid translation and rotation). For affine registration, scaling and shearing were

Fig 2. Overview diagram of pincramworkflow. Step numbers in the text correspond to numbered boxes.
Cl: pre-selection fused mask;Ml: tight margin (boundary neighborhood) mask; Fl: fuzzy label summed from
rank-selected subset; C0

l : brain mask generated from Fl by thresholding and binarization;M0
l : wide margin

mask generated from Fl by thresholding and binarization

doi:10.1371/journal.pone.0129211.g002
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additionally allowed (12 degrees of freedom). Nonrigid registration consisted of applying dis-
placements to the atlas image via a lattice of control points (spacing 6 mm), blended using B-
spline basis functions. The stopping condition for the optimization was either no further
improvement in similarity or reaching 40 iterations.

All registration steps were carried out using the Image Registration Toolkit (IRTK, https://
github.com/BioMedIA/IRTK).

Experiments
Notation and overview. We use the notation AB to refer to an experiment where a data

set A consisting of multiple atlases was used to segment images from set B. The source of refer-
ence data for evaluating the segmentation result is denoted by :C. Thus, AB:B denotes an exper-
iment where A was used to segment B, and the result was evaluated with the reference brain
masks available in B. Since the atlas generation can be chained, an arbitrary number of letters
can appear before the colon. For example, ABCC:C would denote an experiment where A was
used to segment B; the resulting segmentations were used to build a new atlas set, which was
applied to C; the result was again used to build an atlas set, which was applied to C again, and
finally the segmentations ABCC were compared with the reference segmentations in set C.

An overview of the experiments is shown in Table 1.
Quality measures. To assess the quality of a generated brain label, we assessed its agree-

ment with the reference mask using four complementary measures: the overlap ratio or Jaccard
coefficient (JC; intersection divided by union), the volume error, the sensitivity [intersection
divided by (intersection + false negatives)], and the 95th percentile of the symmetric surface
distance. We did not determine specificity (true negative rate), because it depends on the size
of the background and is therefore meaningless for comparisons between data sets with differ-
ing fields of view.

Table 1. Overview of experiments.

Experiment Setup Characteristic to be assessed

HH:H Leave-two-out cross-comparison Within-group accuracy

OH:H Cross-scanner (same FS) Robustness towards scanner diff.

OXH:H Cross-scanner (different FS) Robustness towards FS diff.

OXHH:H Cross-scanner with customization Effect of customization

OX+H:H Cross-scanner without mirroring Effect of mirroring

OO:O Leave-two-out cross-comparison Within-group accuracy

HO:O Cross-scanner (same FS) Robustness towards scanner diff.

HXO:O Cross-scanner (different FS) Accuracy across FS

HXOO:O Cross-scanner with customization Effect of customization

HX+O:O Cross-scanner without mirroring Effect of mirroring

LL:L Leave-two-out cross-comparison Within-group accuracy

HL:L Cross-scanner Robustness towards scanner diff.

HL30L:L Cross-scanner with selection Effect of forward selection

HX:OX Cross-scanner Consistency

OX:HX Cross-scanner Consistency

X+H:H Cross-scanner Influence of varying n0

FS: field strength, diff.: differences

doi:10.1371/journal.pone.0129211.t001
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Overlap measures do not yield information about volume differences between the label pair.
We therefore determined volume error as a percentage, calculated as

DV ¼ 200 � Vr � Vg

Vr þ Vg

ð1Þ

where Vr is the volume of the reference label and Vg the volume of the generated label.
Since averaging of positive and negative volume errors can hide poor performance, we also

calculated the mean of jΔVj.
We determined the JC between the final fused brain mask C0

2 (generated at Step 6, fused
from n3 transformed atlas labels) and mask C2 (generated at Step 2, fused from n2 transformed
atlas labels). We investigated the value of this “success index” as a predictor of segmentation
accuracy that is independent of reference segmentations.

Within-group cross-comparisons. To determine within-group performance of pincram,
we carried out three leave-two-out cross-comparisons; one within each of the Hammers (HH:
H), OASIS (OO:O), and LPBA40 (LL:L) set. Each image was labelled in turn, using n−2 data
sets as atlases, excluding the target itself as well as the mirrored version of the target.

Cross-scanner accuracy. Most atlas-based methods require atlas and target images to
have similar intensity characteristics. The mapping between signal and grey scale value varies
between scanners to the extent that pairwise registration between images from different sources
can fail [16]. In developing pincram, we overcame this restriction thanks to the robustness of
the underlying registration algorithm, including the use of normalized mutual information as
the optimization target [17]. This section describes a series of experiments we used to assess
segmentation accuracy in cross-scanner scenarios.

We segmented the Hammers atlas images using the OASIS atlases, comparing the resulting
labels with the Hammers reference masks (OH:H). We then inverted the setup and segmented
the OASIS images using the Hammers atlases, comparing the results with the OASIS labels
(HO:O).

Both the Hammers and OASIS images had been acquired at 1.5 T. We could not set up a
similarly simple experiment showing segmentation accuracy across field strengths (e.g. HX:X),
because no reference masks :X were available for the 3 T IXI images. We were, however, able to
obtain indirect performance measures that can indicate the applicability of pincram across
field strengths in the following experiments.

We segmented a set of 30 IXI images twice: once with the Hammers atlases and once with
the OASIS atlases. We determined the agreement of the two label sets (HX:OX) as a measure of
consistency as demonstrated in previous work (cf. Fig 5 in Heckemann et al. [18]).

We subsequently generated two “synthetic” (based on automatic segmentations) atlas sets
from the 3 T images and measured the performance of these sets when applied to 1.5 T image
data. The Hammers-based synthetic atlas set (HX, 30 unflipped and 30 flipped atlases) was
used to segment the OASIS images, and the OASIS-based synthetic atlas set (OX, 30 unflipped
and 30 flipped atlases) was used to segment the Hammers images. Both result sets were then
compared to the original manual segmentations (HXO:O, OXH:H). The accuracy of the output
segmentations is thus affected by two traversals of the field-strength boundary between the
respective data sets. The accuracy of the direct segmentations (Hammers with OASIS, OH:H
and vice versa, HO:O) served as a reference for estimating the size of the accuracy-reducing
effect.

Secondary synthetic atlases. We set out to assess the effect on accuracy of customizing an
atlas set to an ensemble of target images. The reasoning was that if pincram yields inaccurate
results in a part of a given ensemble due to acquisition differences between the atlas and target
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images, accuracy is potentially recoverable by exploiting the similarity of the images within the
ensemble.

We set up three experiments of this type, one using a subset of the target ensemble and two
using the full target set to generate synthetic atlases.

To assess the effect of forward selection on accuracy, we used the Hammers atlases to seg-
ment the LPBA40 images and evaluated the resulting segmentations against the reference
masks provided with the latter (HL:L). From the thirty most successful segmentations on the
JC criterion, we built an atlas setHL30, applied this back to all 40 LPBA40 sets, and compared
with the reference masks (HL30L:L).

Since a reference for evaluating segmentation success is not normally available, we exam-
ined the effectiveness of non-selectively building a synthetic atlas set from all images in the tar-
get ensemble. We used theHXO and OXH data described in the previous section to this end,
segmenting again the data in O and H, respectively. The shorthand notation is thusHXOO:O
and OXHH:H.

Effect of mirroring on atlas accuracy. Adding left/right-flipped versions of each atlas and
label is a frequently employed procedure that doubles the size of an atlas resource [7, 8],
exploiting the slight shape asymmetry that occurs naturally in the head. Whether an atlas data-
base that has been enlarged in this fashion is equivalent to an equally large database consisting
only of original, native images is open to question. To find the answer in the context of using
pincram, we compared the OX and HX sets described above (Section Cross-scanner accuracy),
which had been doubled by mirroring, with sets consisting of 60 native images each (OX+ and
HX+). Again, we used the OASIS-derived atlases to segment Hammers images and the Ham-
mers-derived atlases to segment OASIS images. We compared the results of the experiment
OXH:H with those of OX+H:H. Likewise, we compared HXO:O with HX+O:O. We assumed
that significantly lower quality measures for the doubled sets would indicate that the doubling
manoeuvre incurs a cost in terms of accuracy.

Effect of varying atlas number. For all experiments described above, we set the number of
atlases n0 to the maximum possible, given the size of the database and the experimental con-
straints. To examine the impact on accuracy of using fewer than the available atlases, we set up
the following experiment. We chose X+ as the atlas set, with labels generated from H. This
enabled a maximum n0 of 60. As the target set, we chose H (n = 30). We then obtained random
subsets of varying size (HX+nH:H with n 2 7, 9, 12, 17, 25, 38, 60) and used these to segment
H, yielding runs of the pattern HX+nH:H.

Effect of registration level on accuracy. For one of the experimental runs described in the
previous section, HX+60H:H, we retained the masks C0

0 (rigid level output, generated from 30
selected atlases (n1)) and C0

1 (affine level output, n2 = 15), in addition to the final label C0
2 (non-

rigid level output, n3 = 7). For each mask, we determined JC with the reference masks, enabling
comparison to assess the impact that the registration refinement had.

Comparison with FSL BET. The brain extraction tool (BET, [4]) from the FSL suite is
widely used. We therefore applied BET to the H and O cohorts to provide an additional point
of reference for assessing the results we obtained with pincram. We used the invocation “bet
image mask -R -m”. The parameter “-R” improves the tool’s results by iterating the brain
extraction to achieve a robust brain centre estimation. The parameter “-m” is required for sav-
ing the binary output mask. For each subject, we assessed the overlap of the output mask with
the reference mask using JC.

Computing environment. The experiments were carried out in a mixed cluster environ-
ment at the Centre for High Performance Computing at Imperial College, London. We
recorded the runtime and resource allocation for the pincram procedure in one experiment,
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HX+O:O. The 30 target images were segmented on cluster servers equipped with 16 GB RAM
and two quadruple-core Xeon E5-2620 CPUs (Intel Corp., Santa Clara, CA, USA) clocked at
2.0 GHz. The task was configured so that it ran sequentially, ie. all atlas-target registrations for
a given target ran in succession on a single core. This allowed a more meaningful assessment of
the runtime behaviour than a parallelized configuration where different registration subtasks
are processed on diverse server hardware.

Independent evaluation
We followed the procedure for independent evaluation of brain extraction methods provided
by the Segmentation Validation Engine (SVE, sve.bmap.ucla.edu [19]). The program we used
for the submission was an early development version of pincram. The current version could
not be evaluated because the SVE was closed to new submissions at the time of manuscript
preparation.

Results
Table 2 and Fig 3 summarize all experimental results by target data set. The corresponding raw
data are provided as a supplement (S1 File). Fig 4 shows projection maps highlighting the pre-
dominant locations of false positive (top row) and false negative (bottom row) errors for exper-
iment LL:L. The brain volume as estimated by pincram was 1.37 L on average, with a typical
coefficient of variation of 10.3%. The volume of the reference masks was 1.35 L on average,
with similar variation (9.7%). Volume error was positive in the majority of individual setups.

As expected, the overlaps were largest (JC> 0.96) for the within-group comparisons, with
LL:L leading the ranking. This may be due to the strong similarity between the images in L.
Also, the reference masks appeared visually smoother and more generous for L than for H and
O. The mean volume of the reference masks was larger in L than in the other two, albeit not sig-
nificantly so (1.36 L (L); 1.34 L (H), 1.33 L (O)). The variation of overlaps inHH:H and LL:L
was small, whereas for O it was twice as high, indicating that the reference segmentations may
not have been as consistent in O as in the other data sets.

In cross-scanner setups, overlaps are only slightly reduced. For example, while theHH:H
setup yielded an overlap of 0.963± 0.005, the OH:H setup resulted in a mean JC of 0.946±
0.011, with a single outlier at 0.905. (The segmentation quality of the outlier would still be
acceptable for many applications.) Some of the discrepancy may be due to limitations of cross-
scanner accuracy, but also to differences betweenH and O in terms of the manual segmentation
protocols. We note that the generation of the OXH atlas involved crossing the field strength
boundary twice, ie. we segmented a 3 T data set (X) with a 1.5 T atlas set (O) and used the
resulting set of synthetic atlases to segment a different 1.5 T set (H). The fact that the OXH:H
setup yields approximately the same overlap as OH:H while eliminating a low outlier suggests
that the agreement-reducing effect of scanner differences is small by contrast with the protocol
difference. Going one step further and generating a “custom” atlas for H on the same basis
even yields a significant improvement (OXH:H: 0.946, OXHH:H: 0.952, p< 10−6). The setup
where half of the atlas images are mirrored (OXH:H) yields the same overlap results to three
decimal places as the one where the atlas consists of only native images (OX+H:H).

The five segmentation experiments carried out on O targets corroborate the observations
made on H targets. We note in addition that theHXO:O setup produced four outliers. On
visual review, the relevant images were noticeably different from the remainder of the O cohort
in that they showed pronounced degrees of atrophy and white-matter disease, as well as an
unusual intensity distribution where subcutaneous scalp fatty tissue appears substantially
brighter than grey and white brain matter. Other images in set O presented this intensity
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pattern to a lesser degree. The “custom” atlas setupHXOO:O did not lead to an improvement
of the mean overlap, but it eliminated the outliers and produced visually similar segmentations
for all target images (cf. example in Fig 5). The setup that replaced mirrored images with native
images in the atlas set (HX+O:O) yielded similar results to the standard setup (HXO:O), with
one fewer failed segmentation.

The customization experiment where we employed a selection step to include only the
“best” secondary atlases also yielded the expected result, although the extent of the improve-
ment ofHL30L:L overHL:L was small (0.938 compared to 0.935, p< 10−8). Both sets of auto-
matic segmentations (HL andHL30L) were consistently and substantially smaller than the
reference segmentations L (volume error -5.7% and -5.3%). On visual review, we did not
observe problematic underinclusions in the generated masks. A substantial number of discrep-
ancies appear in the hindbrain region, where the reference masks include larger parts of the
medulla oblongata than the atlas masks.

Table 2. Volumes and accuracy.

Pairing n0 Tgt
(n)

Ref
Litre

CV
%

Gen
Litre

CV
%

ΔV % jΔVj % Overlap JC Overlap
Dice

Sensitivity
mm

SD95

HH:H 29×2 30 1.343 10.17 1.354 10.15 0.870
±0.930

1.069
±0.683

0.9628
±0.0049

0.9810
±0.0025

0.9854
±0.0049

1.857
±0.462

OH:H 30×2 30 1.343 10.17 1.377 10.48 2.495
±1.847

2.495
±1.847

0.9458
±0.0107

0.9721
±0.0057

0.9845
±0.0052

2.975
±0.958

OXH:H 30×2 30 1.343 10.17 1.367 10.55 1.737
±1.882

1.868
±1.748

0.9463
±0.0105

0.9724
±0.0055

0.9810
±0.0055

3.020
±0.948

OXHH:
H

30×2 30 1.343 10.17 1.365 10.58 1.649
±1.234

1.697
±1.165

0.9522
±0.0076

0.9755
±0.0040

0.9836
±0.0048

2.712
±0.743

OX+H:H 60 30 1.343 10.17 1.366 10.66 1.647
±1.770

1.765
±1.649

0.9469
±0.0100

0.9727
±0.0053

0.9808
±0.0056

2.968
±0.856

OO:O 29×2 30 1.333 10.11 1.368 10.21 2.617
±1.677

2.707
±1.521

0.9548
±0.0106

0.9768
±0.0056

0.9898
±0.0052

2.101
±0.502

HO:O 30×2 30 1.333 10.11 1.362 10.12 2.189
±1.291

2.224
±1.228

0.9519
±0.0076

0.9753
±0.0040

0.9862
±0.0060

2.562
±0.363

HXO:O 30×2 30 1.333 10.11 1.419 10.87 6.182
±10.572

6.182
±10.572

0.9237
±0.0797

0.9583
±0.0497

0.9891
±0.0055

3.694
±3.159

HXOO:
O

30×2 30 1.333 10.11 1.374 10.04 3.093
±1.303

3.093
±1.303

0.9493
±0.0077

0.9740
±0.0040

0.9893
±0.0053

2.672
±0.384

HX+O:
O

60 30 1.333 10.11 1.405 11.22 5.135
±9.387

5.135
±9.387

0.9315
±0.0703

0.9630
±0.0441

0.9885
±0.0055

3.351
±2.781

LL:L 39×2 40 1.358 9.42 1.356 10.57 -0.166
±1.178

0.925
±0.733

0.9666
±0.0047

0.9830
±0.0024

0.9822
±0.0050

1.748
±0.213

HL:L 30×2 40 1.358 9.42 1.282 10.40 -5.734
±1.219

5.734
±1.219

0.9349
±0.0079

0.9663
±0.0042

0.9395
±0.0095

2.850
±0.360

HL30L:L 30×2 40 1.358 9.42 1.288 10.52 -5.310
±1.218

5.310
±1.218

0.9377
±0.0080

0.9678
±0.0043

0.9428
±0.0094

2.691
±0.358

HX:OX 30×2 30 1.373 8.12 1.400 8.24 1.970
±1.183

1.999
±1.132

0.9489
±0.0062

0.9738
±0.0033

0.9835
±0.0046

3.213
±0.514

OX:HX 30×2 30 1.400 8.24 1.373 8.12 -1.970
±1.183

1.999
±1.132

0.9489
±0.0062

0.9738
±0.0033

0.9643
±0.0081

3.213
±0.514

Atl: atlases, Tgt: targets, Ref: Reference, CV: coefficient of variation, Gen: generated, ΔV: Volume error, jΔVj: absolute volume error, SD: standard

deviation, JC: Jaccard coefficient, Dice: Dice coefficient, SD95: symmetric surface distance (95th percentile). ± indicates standard deviation

doi:10.1371/journal.pone.0129211.t002
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Fig 3. Jaccard coefficients. Colours distinguish target data sets. Centre lines: median, boxes: interquartile range, whiskers: truncated range, dots: outliers,
arrowheads: off-scale outliers.

doi:10.1371/journal.pone.0129211.g003

Fig 4. Projection maps for LL:L. Binary error maps images identifying false negative and false positive
voxels were generated for all 40 individuals. After spatial normalization to a subject with a typical head shape
(Subject 32) and averaging of the error maps, projection maps were created by summation along the cardinal
axes. The maps are scaled individually to maximize the dynamic range. The procedure was adapted from
http://sve.bmap.ucla.edu/instructions/metrics/projections/. Top row: false positive, bottom row: false
negative.

doi:10.1371/journal.pone.0129211.g004
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The overlap results between HX and OX indicate strong agreement and high consistency
(JC 0.950± 0.0036), showing that pincram yields similar results in spite of the differences
between the atlas setsH and O.

The strongest agreement between generated and reference segmentations was achieved
when using all available atlases. Reducing the number of atlases leads to a reduction in accu-
racy, as shown in Fig 6. Although significant (n0 = 7 versus n0 = 60: p = 4 � 10−5 on paired t-
test), the difference is small. The spread and number of outliers, however, and the outliers’ rela-
tive degree of failure, diminish markedly with increasing numbers of atlases up to 25.

The registration level had a substantial influence on the accuracy of the generated masks. In
Experiment HX+60:H, the mean JC across 30 target subjects was 0.900 ± 0.0262 for C0

0,
0.917 ± 0.0148 for C0

1, and 0.951 ± 0.0140 for C0
2.

A typical segmentation, involving one target brain and 60 atlas brains, occupied a single
CPU core for 195± 28 minutes.

The success index—the agreement between the final output mask (C0
2) and its predecessor

(C2)—correlated strongly with the agreement of C0
2 with the target reference masks in the

experiments where such a reference was available (Table 3, Fig 7). At a cutoff value of 0.96, the
index would have drawn attention to all five low outliers in this set of experiments.

The JC overlap results obtained with FSL BET were lower than those obtained with pincram
in all tested cases. For theH cohort, the average JC was 0.933 ± 0.010 (compare with “Overlap
JC” in Table 2, rows 1 to 5); for O, it was 0.810 ± 0.074 (compare with “Overlap JC” in Table 2,
rows 6 to 10). Deviations from the reference masks occurred predominantly as overinclusions
in the pharynx region.

Evaluation results on the SVE placed pincram on rank 3 of the archive (submission number
#287). For the early development version of pincram that we used for the SVE evaluation, the
Jaccard coefficient was 0.9631± 0.0067, corresponding to a Dice coefficient of 0.9812± 0.0035.
The sensitivity was 0.9883 ± 0.0038 and the specificity 0.9953± 0.0019. At the time of manu-
script preparation, the SVE site was closed for new submissions; we could therefore not test the
current version. One of the higher-ranking entries is “groundTruth”, an apparent test

Fig 5. Subject 30 of O. Left: with overlay of reference segmentation. Centre: with overlay of failed generated
segmentation (HXO:O) (one of four outliers in Fig 3; JC 0.592, success index 0.884). Right: with overlay of
successful segmentation using customized atlas (HXOO:O, JC 0.937, success index 0.977)

doi:10.1371/journal.pone.0129211.g005
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Fig 6. Number of atlases used versus accuracy achieved. X axis: n0 (ordinal scale), y axis: JC. Boxplot features as in Fig 3.

doi:10.1371/journal.pone.0129211.g006

Table 3. Correlation of the success index with JC.

Pairing r p

LL:L 0.35 2.7 � 10−2
HXOO:O 0.62 2.5 � 10−4
OXHH:H 0.81 4.6 � 10−08
HX+O:O 0.93 4.7 � 10−14
OX+H:H 0.73 4.8 � 10−06
HH:H 0.83 1.2 � 10−08
OO:O 0.79 1.6 � 10−07
HXO:O 0.99 *

OXH:H 0.90 2.0 � 10−11
HL:L 0.37 1.7 � 10−2
HL30L:L 0.42 7.0 � 10−3

Pearson’s r and p-value.

*: p-value below smallest representable number

doi:10.1371/journal.pone.0129211.t003
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submission that does not pertain to a competing method (#229). The other higher-ranking
entry (#292) was produced with NICE (nonlocal intracranial cavity extraction [9]) and records
a Jaccard coefficient of 0.9645 ± 0.0046, a small (within one standard deviation) but significant
(p = 0.01) improvement on the pincram prototype.

Discussion
This study describes a new atlas-based brain masking method, pincram, and provides strong
evidence of its accuracy and robustness in a series of experiments mimicking real-world brain
extraction tasks. The method combines a set of tried and tested approaches in a new fashion
(label propagation [20] using nonrigid registration [15], atlas selection [21, 22], and margin-
mask based data reduction [8]). It includes a novel self-monitoring feature that produces a suc-
cess index as a metadatum. The method is implemented as open-source software, available for
download from http://soundray.org/pincram under the MIT (“Expat”) licence.

While other library-based methods are similarly [7, 8, 23] or more accurate [9], they tend to
have considerable restrictions in practice. Pincram is unique among library-based methods in
that it processes any given T1-weighted target head image on the basis of data sets of labelled
T1-weighted images acquired on other scanners. Users of pincram will thus have a broad

Fig 7. Scatterplot showing success index versus true accuracy. X axes show the success index (JC betweenC0
2 andC2), and y axes show JC between

the final generated maskC0
2 and the gold-standard reference label. Left: full range. Right: zoomed on non-outlier data (five outliers are off-scale).

Experiments (corresponding to rows in Table 3) are grouped by colour.

doi:10.1371/journal.pone.0129211.g007
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choice of atlas sets, as several are freely available with moderate licence restrictions. Other
methods will only work on images acquired with the same sequence on the same type of scan-
ner as the atlas data set. The image registration programs that pincram employs (rreg2, areg2,
and nreg2 [15, 24, 25]) are comparatively robust towards differences in image intensity distri-
butions—even those resulting from differences in field strength—thanks to the use of normal-
ized mutual information as the optimization target. The resulting advantage is that pincram
does not require laborious generation of a target-specific atlas set to achieve segmentations of
reasonable accuracy.

Nevertheless, a custom atlas set can yield benefits of accuracy, even if automatically gener-
ated, as exemplified in our experiments HXOO:O and OXHH:H. Another experiment, HL30L:
L, shows similar benefits when a subset of the target set is turned into the custom atlas set via a
selection step. While the advantage over the HL:L setup was statistically significant, it was
small. A possible explanation for this observation is that the pincram procedure itself detects
and applies the most suitable atlases from a given set, so that a small number of unsuitable
atlases does not influence the end result negatively. We also observed that low outliers resulting
from using the unrelated atlas set were eliminated with the custom atlas, pointing to a further
increase in robustness through the customization approach.

The slight variation in the results of the three cross-validation experiments (HH:H, OO:O,
and LL:L) can most likely be attributed to differences in the production of these atlases, specifi-
cally between segmentation protocols and the consistency with which they have been applied.
Set L uses a generous definition with smooth mask boundaries. InH the boundary follows the
gyri more closely, resulting in a larger surface and more opportunities for the automated proce-
dure to label voxels inaccurately. The accuracy is still very high. Both inH and L, the definitions
have been applied consistently between subjects. Variation is higher and accuracy slightly
reduced for O.

Our results lend tempered support to the practice of flipping or mirroring atlases to double
the size of an atlas resource. Both relevant experiments show near-equivalent numeric results
for doubled versus same-size native atlas sets. Still, the fact that using the native atlas set
resulted in one fewer low outlier means that the mirroring manoeuvre does incur a cost that
practitioners should assess on a case-by-case basis.

Our findings suggest that using all available atlases in a data set yields optimal segmentation
results. However, the overall impact of reducing the number of input atlases is so small as to be
negligible for many practical purposes. Thus, pincram can, within reason, be used with fewer
atlases if computation time is a concern. Fig 6 gives an indication of likely effects.

We restricted our investigation to adult brains, leaving an evaluation on children and infants
to future work. However, we showed previously that label propagation with our image registra-
tion procedure works for subjects down to 2 years of age, even when the atlas set consisted of
images of adults [26]. Brains of 1-year olds can be segmented automatically with atlases of
2-year olds [27]. Brains of neonates cannot be segmented automatically with adult atlases, sec-
ondary atlases of 2-year olds, or tertiary atlases of 1-year olds. Neonatal brain image segmenta-
tion using label propagation works if a manually generated atlas of term-born and preterm
infants is available [28, 29].

The development of pincram followed a top-down, rapid-prototyping model to suit the
authors’ needs in preparing image repositories of varying size and provenance for morphomet-
ric analysis. Parameters were found through trial and error. One of the consequences is the
slight bias that the method shows towards overestimating the brain volume, as for many mor-
phometric analyses, the penalty for overinclusions (false positives) is much smaller than for
underinclusions. In particular, we took pains to minimize the risk of excluding grey matter at
the gyral crowns and tolerated the side effect that small portions of the exterior cerebrospinal
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fluid spaces or meninges can occasionally be included in the generated brain masks. For brain
extraction tasks that predetermine other priorities, users may need to modify configuration set-
tings, in particular those that influence the extent of the margin masks.

We restricted our investigation to the task of producing a brain mask that includes the ven-
tricular and sulcal fluid spaces. With suitable atlas sets, pincram could in principle be used to
produce full intracranial masks. The difference between the two is small for young or middle-
aged healthy adults, but in ageing and dementia, brain atrophy leads to a reduced volume of
the former type of mask, while masks of the intracranial space should remain unaffected. Simi-
larly, we could have addressed the problem of generating soft-tissue brain masks (grey and
white matter, excluding ventricles). We chose to leave these challenges to future work. We
focussed instead on the most common type of brain mask, which enabled us to use several atlas
sets from diverse sources and to thoroughly investigate the accuracy and robustness of our
method in realistic scenarios.

Independent evaluation of a prototype pincram version on the SVE shows a level of accu-
racy that to date remains superior to all competing methods, with the exception of NICE by
Manjon et al. [9]. We note, however, that the differences between the top-ranked methods are
very small (in the third decimal place of the overlap measures) and thus not likely to be relevant
in practice. Improvements on pincram since this early version have focussed on robustness
and practicality, rather than accuracy. We would thus expect the current version to yield a sim-
ilar SVE result, if and when SVE becomes available again. Among the five top-rated brain
extraction methods on SVE, pincram is the only one that enables users to segment their own
images with a publicly available atlas set.

When carried out in sequence, the calculations involved in applying pincram to a given tar-
get are fairly time-consuming. This can be mitigated by parallelization. The current version
makes a provision for shell-level parallelization of the registration subtasks via the ‘-par’ option.
The most computationally intensive parts of the calculation can thus be distributed to multiple
CPU cores. In practice, we found that this reduces calculation times from 195 to circa 15 min-
utes. Further optimization of the code will lead to quicker turnaround times for single subjects.
However, optimal throughput for larger target ensembles is achieved using the sequential task
configuration (option ‘-par 1’) and processing as many targets in parallel as the given architec-
ture allows.

Pincram logs information that enables users to predict runtime behaviour and, more impor-
tantly, segmentation quality. In homogeneous data sets processed with a suitable atlas set, we
expect to see strongly clustered values of the success index above 0.98 (e.g. LL:L). Low values
can highlight suspicious cases where the result mask may be inaccurate, for example because of
motion artifact. Our results suggest that 0.96 is a suitable cutoff. The success index is particu-
larly valuable when target cohorts are large and individual visual review of the brain masking
results would be prohibitively time-consuming. A suitable strategy for a large set of target
images might be to review those with the worst success index values, plus a random subset of
the remainder.

Pincram is an accurate method for brain labelling on T1-weighted MR images of the adult
human head that is distinguished by its robustness, versatility, and self-monitoring capability.

Supporting Information
S1 File. Raw mask quality assessment data from all experiments. Reference brain volume in
mm3 (A.csv), overlap values for all pairings (B.csv), surface distance for all pairings (C.csv),
success index for all relevant pairings (D.csv).
(ZIP)

Brain Extraction Using Label Propagation and Group Agreement: Pincram

PLOSONE | DOI:10.1371/journal.pone.0129211 July 10, 2015 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129211.s001


Acknowledgments
The following National Institutes of Health grants enabled the creation of the OASIS resource:
P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01
MH56584.

Author Contributions
Conceived and designed the experiments: RAH JVH DR AH PA. Performed the experiments:
RAH CL KRG. Analyzed the data: RAH AH CL KRG. Contributed reagents/materials/analysis
tools: RAH PA DR. Wrote the paper: RAH CL KRG PA DR JVH AH.

References
1. Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, et al. (2000) An optimized method for

estimating intracranial volume frommagnetic resonance images. Magnetic resonance in medicine 44:
973–977. doi: 10.1002/1522-2594(200012)44:6%3C973::AID-MRM21%3E3.0.CO;2-H PMID:
11108637

2. Freeborough PA, Fox NC, Kitney RI (1997) Interactive algorithms for the segmentation and quantitation
of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine 53: 15–25. doi: 10.1016/
S0169-2607(97)01803-8 PMID: 9113464

3. Lemieux L, Hammers A, Mackinnon T, Liu RS (2003) Automatic segmentation of the brain and intracra-
nial cerebrospinal uid in T1-weighted volumeMRI scans of the head, and its application to serial cere-
bral and intracranial volumetry. Magn Reson Med 49: 872–884. doi: 10.1002/mrm.10436 PMID:
12704770

4. Smith SM (2002) Fast robust automated brain extraction. Human brain mapping 17: 143–155. doi: 10.
1002/hbm.10062 PMID: 12391568

5. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26: 839–851. doi: 10.1016/j.
neuroimage.2005.02.018 PMID: 15955494

6. Keihaninejad S, Heckemann RA, Fagiolo G, SymmsMR, Hajnal JV, Hammers A. (2010) A robust
method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). NeuroImage 50:
1427–1437. doi: 10.1016/j.neuroimage.2010.01.064 PMID: 20114082

7. Leung KK, Barnes J, Modat M, Ridgway GR, Bartlett JW, Fox NC, et al. (2011) Brain MAPS: an auto-
mated, accurate and robust brain extraction technique using a template library. NeuroImage 55: 1091–
1108. doi: 10.1016/j.neuroimage.2010.12.067 PMID: 21195780

8. Eskildsen SF, Coupé P, Fonov V, Manjón JV, Leung KK, Guizard N, et al. (2012) BEaST: brain extrac-
tion based on nonlocal segmentation technique. NeuroImage 59: 2362–2373. doi: 10.1016/j.
neuroimage.2011.09.012 PMID: 21945694

9. Manjón JV, Eskildsen SF, Coupé P, Romero JE, Collins DL, Robles M. (2014) Nonlocal intracranial
cavity extraction. International journal of biomedical imaging 2014.

10. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. (2003) Three-dimensional maxi-
mum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain
Mapp 19: 224–247. doi: 10.1002/hbm.10123 PMID: 12874777

11. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity
nonuniformity in MRI data. IEEE transactions on medical imaging 17: 87–97. doi: 10.1109/42.668698
PMID: 9617910

12. Landman BA, Warfield SK (2012) MICCAI 2012Workshop on Multi-Atlas Labeling. In: Medical Image
Computing and Computer Assisted Intervention Conference 2012: MICCAI 2012 Grand Challenge and
Workshop on Multi-Atlas Labeling Challenge Results.

13. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. (2010) N4ITK: improved N3
bias correction. IEEE Transactions on Medical Imaging 29: 1310–1320. doi: 10.1109/TMI.2010.
2046908 PMID: 20378467

14. Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, et al. (2008) Construction of
a 3D probabilistic atlas of human cortical structures. NeuroImage 39: 1064–1080. doi: 10.1016/j.
neuroimage.2007.09.031 PMID: 18037310

15. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. (1999) Nonrigid registration using
free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18:
712–721. doi: 10.1109/42.796284 PMID: 10534053

Brain Extraction Using Label Propagation and Group Agreement: Pincram

PLOSONE | DOI:10.1371/journal.pone.0129211 July 10, 2015 17 / 18

http://dx.doi.org/10.1002/1522-2594(200012)44:6%3C973::AID-MRM21%3E3.0.CO;2-H
http://www.ncbi.nlm.nih.gov/pubmed/11108637
http://dx.doi.org/10.1016/S0169-2607(97)01803-8
http://dx.doi.org/10.1016/S0169-2607(97)01803-8
http://www.ncbi.nlm.nih.gov/pubmed/9113464
http://dx.doi.org/10.1002/mrm.10436
http://www.ncbi.nlm.nih.gov/pubmed/12704770
http://dx.doi.org/10.1002/hbm.10062
http://dx.doi.org/10.1002/hbm.10062
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://www.ncbi.nlm.nih.gov/pubmed/15955494
http://dx.doi.org/10.1016/j.neuroimage.2010.01.064
http://www.ncbi.nlm.nih.gov/pubmed/20114082
http://dx.doi.org/10.1016/j.neuroimage.2010.12.067
http://www.ncbi.nlm.nih.gov/pubmed/21195780
http://dx.doi.org/10.1016/j.neuroimage.2011.09.012
http://dx.doi.org/10.1016/j.neuroimage.2011.09.012
http://www.ncbi.nlm.nih.gov/pubmed/21945694
http://dx.doi.org/10.1002/hbm.10123
http://www.ncbi.nlm.nih.gov/pubmed/12874777
http://dx.doi.org/10.1109/42.668698
http://www.ncbi.nlm.nih.gov/pubmed/9617910
http://dx.doi.org/10.1109/TMI.2010.2046908
http://dx.doi.org/10.1109/TMI.2010.2046908
http://www.ncbi.nlm.nih.gov/pubmed/20378467
http://dx.doi.org/10.1016/j.neuroimage.2007.09.031
http://dx.doi.org/10.1016/j.neuroimage.2007.09.031
http://www.ncbi.nlm.nih.gov/pubmed/18037310
http://dx.doi.org/10.1109/42.796284
http://www.ncbi.nlm.nih.gov/pubmed/10534053


16. Heckemann RA, Keihaninejad S, Aljabar P, Rueckert D, Hajnal JV, Hammers A. (2010) Improving inter-
subject image registration using tissue-class information benefits robustness and accuracy of multi-
atlas based anatomical segmentation. NeuroImage 51: 221–227. doi: 10.1016/j.neuroimage.2010.01.
072 PMID: 20114079

17. Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image
alignment. Pattern Recognition 32: 71–86. doi: 10.1016/S0031-3203(98)00091-0

18. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI
segmentation combining label propagation and decision fusion. NeuroImage 33: 115–126. doi: 10.
1016/j.neuroimage.2006.05.061 PMID: 16860573

19. Shattuck DW, Prasad G, Mirza M, Narr KL, Toga AW (2009) Online resource for validation of brain seg-
mentation methods. NeuroImage 45: 431–439. doi: 10.1016/j.neuroimage.2008.10.066 PMID:
19073267

20. Bajcsy R, Lieberson R, Reivich M (1983) A computerized system for the elastic matching of deformed
radiographic images to idealized atlas images. Journal of Computer Assisted Tomography 7: 618–625.
doi: 10.1097/00004728-198308000-00008 PMID: 6602820

21. Aljabar P, Heckemann R, Hammers A, Hajnal JV, Rueckert D (2007) Classifier selection strategies for
label fusion using large atlas databases. Medical image computing and computer-assisted intervention:
MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention
10: 523–531.

22. Langerak TR, van der Heide UA, Kotte AN, Viergever MA, van Vulpen M, Pluim JP. (2010) Label fusion
in atlas-based segmentation using a selective and iterative method for performance level estimation
(SIMPLE). IEEE Transactions on Medical Imaging 29: 2000–2008. doi: 10.1109/TMI.2010.2057442
PMID: 20667809

23. HuangM, YangW, Jiang J, Wu Y, Zhang Y, ChenW, eet al. (2014) Brain extraction based on locally lin-
ear representation-based classification. NeuroImage 92: 322–339. doi: 10.1016/j.neuroimage.2014.
01.059 PMID: 24525169

24. Modat M, Ridgway GR, Taylor ZA, LehmannM, Barnes J, Hawkes DJ, et al. (2010) Fast free-form
deformation using graphics processing units. Computer Methods and Programs in Biomedicine 98:
278–284. doi: 10.1016/j.cmpb.2009.09.002 PMID: 19818524

25. Shi W, Jantsch M, Aljabar P, Pizarro L, Bai W, Wang H, et al. (2013) Temporal sparse free-form defor-
mations. Medical image analysis 17: 779–789. doi: 10.1016/j.media.2013.04.010 PMID: 23743085

26. Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, et al. (2008) Automatic
segmentation of brain MRIs of 2-year-olds into 83 regions of interest. NeuroImage 40: 672–684. doi:
10.1016/j.neuroimage.2007.11.034 PMID: 18234511

27. Gousias IS, Hammers A, Heckemann RA, Counsell SJ, Dyet LE, Boardman JP, et al. (2010) Atlas
selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs. In: Imaging Systems
and Techniques (IST), 2010 IEEE International Conference on. IEEE, pp. 290–293.

28. Gousias IS, Hammers A, Counsell SJ, Edwards A, Rueckert D (2012) Automatic segmentation of pedi-
atric brain MRIs using a maximum probability pediatric atlas. In: Imaging Systems and Techniques
(IST), 2012 IEEE International Conference on. IEEE, pp. 95–100.

29. Gousias IS, Hammers A, Counsell SJ, Srinivasan L, Rutherford MA, Heckemann RA, et al. (2013) Mag-
netic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatom-
ical regions. PLOS ONE 8.

Brain Extraction Using Label Propagation and Group Agreement: Pincram

PLOSONE | DOI:10.1371/journal.pone.0129211 July 10, 2015 18 / 18

http://dx.doi.org/10.1016/j.neuroimage.2010.01.072
http://dx.doi.org/10.1016/j.neuroimage.2010.01.072
http://www.ncbi.nlm.nih.gov/pubmed/20114079
http://dx.doi.org/10.1016/S0031-3203(98)00091-0
http://dx.doi.org/10.1016/j.neuroimage.2006.05.061
http://dx.doi.org/10.1016/j.neuroimage.2006.05.061
http://www.ncbi.nlm.nih.gov/pubmed/16860573
http://dx.doi.org/10.1016/j.neuroimage.2008.10.066
http://www.ncbi.nlm.nih.gov/pubmed/19073267
http://dx.doi.org/10.1097/00004728-198308000-00008
http://www.ncbi.nlm.nih.gov/pubmed/6602820
http://dx.doi.org/10.1109/TMI.2010.2057442
http://www.ncbi.nlm.nih.gov/pubmed/20667809
http://dx.doi.org/10.1016/j.neuroimage.2014.01.059
http://dx.doi.org/10.1016/j.neuroimage.2014.01.059
http://www.ncbi.nlm.nih.gov/pubmed/24525169
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19818524
http://dx.doi.org/10.1016/j.media.2013.04.010
http://www.ncbi.nlm.nih.gov/pubmed/23743085
http://dx.doi.org/10.1016/j.neuroimage.2007.11.034
http://www.ncbi.nlm.nih.gov/pubmed/18234511

