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Abstract
The ankyrin repeat domain 49 (ANKRD49) is an evolutionarily conserved protein highly ex-

pressed in testes. However, the function of ANKRD49 in spermatogenesis is unknown. In

this study, we found that ANKRD49 resides primarily in nucleus of spermatogonia, sper-

matocytes and round spermatids. ANKRD49 overexpression augments starvation-induced

autophagy in male germ GC-1 cells whereas shRNA knockdown of ANKRD49 attenuates

the autophagy. Inhibition of NF-κB pathway by its inhibitors or p65 siRNA prevents the

ANKRD49-dependent autophagy augmentation, demonstrating that ANKRD49 enhances

autophagy via NF-κB pathway. Our findings suggest that ANKRD49 plays an important role

in spermatogenesis via promotion of autophagy-dependent survival.

Introduction
Mammalian spermatogenesis is a highly ordered process that includes mitosis of spermatogo-
nial stem cells, meiosis of spermatocytes and spermiogenesis [1]. This process depends on
balance of germ cell proliferation, differentiation and death in the testes [2]. During spermato-
genic differentiation, over half of the differentiating spermatogenic cells die before they mature
into spermatozoa. Although apoptosis is the main cause of cell death in spermatogenesis [3], it
is not the only way of genetically programmed death. Autophagy is referred as type II pro-
grammed cell death for lacking caspase activation or DNA fragmentation, the two classical
characteristics of apoptosis [4]. However, autophagy may also promote cell survival under oxi-
dative stress, virus infection and nutrient deprivation [5–7]. Previous studies have shown that
multiple genes regulating autophagy are involved in spermatogenesis, including Atg7 and the
gene encoding the GAGA protein [8, 9]. They are found to be cytoprotective and essential for
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germ cell maturation. The ankyrin repeat domain 49 (ANKRD49) contains four ankyrin re-
peats, a motif of 30 to 34 amino acid residues [10] that was first identified in the yeast se-
quences Swi6p, Cdc10p and Notch [11]. Families of ankyrin repeat proteins that mediate
protein-protein interactions have been associated with cancer progression [12]. It has been re-
ported that ANKRD49 is highly expressed in low invasive lung cancer cell lines [13] and is ex-
pressed at low levels in rat lateral habenula in a depression model of escitalopram responders
[14]. However, the function of ANKRD49 is unknown.

In present study, we found that ANKRD49 is highly expressed in mouse testes and located
predominantly in nucleus. Importantly, biological function of ANKRD49 in modulating of
autophagy via NF-κB pathway has been investigated. Our results revealed novel insight into bi-
ological function and molecular mechanisms of ANKRD49 in spermatogenesis.

Materials and Methods

Tissue and cells
BALB/c mice were purchased from Laboratory Animal Center of Shanxi Medical University.
Testes tissue obtained from male BALB/c mice at different ages (from one to eight weeks) were
used to examine the temporal and spatial expression patterns of ANKRD49 in male germ cells.
Mice were anaesthetized with sodium pentobarbital (1.5%,20 ml/body weight) for tissue collec-
tion and euthanasia after tissue collection. Animal carcases were stored on site in a -20°C freez-
er and later processed through a roto-autoclave and then into deep land fill by Laboratory
Animal Center of Shanxi Medical University. All experimental and surgical procedures were
reviewed and approved by the Ethics Committee of Animal Experiments of Shanxi Medical
University.

GC-1 spg and GC-2spd cells were purchased from American Type Culture Collection
(ATCC, USA) and cultured in DMEM (HyClone, USA) with 10% foetal bovine serum (FBS,
HyClone, USA). TM-3 and TM-4 cells were obtained from the Cell Culture Center of the Chi-
nese Academy of Medical Sciences (Beijing, China). TM3 cells were maintained in RPMI 1640
medium (HyClone, USA) with 10% FBS. TM4 cells were grown in a mixture of DMEM and
Ham's F12 medium (HyClone, USA) plus 5% horse serum (Sigma, USA) and 5% FBS in 5%
CO2 at 37°C.

Expression plasmids, transfection and construction of GC-1 stable cells
GFP-LC3 plasmid DNA was purchased from Shanghai GenePharma Co., Ltd (Shanhai,
China). NF-kB–driven luciferase reporter and Renilla luciferase construct were purchased
from Beyotime Institute of Biotechnology, China. Mouse NF-κB p65 siRNA (sc-44213, sc-
29411) and control siRNA (sc-37007) were purchased from Santa Cruz (USA). For construc-
tion of mouse ANKRD49 expression plasmids using pMSCVpuro (Clontech, USA), the coding
region of mouse ANKRD49 (accession number: NM_019683.3, http://www.ncbi.nlm.nih.gov/
nuccore/ NM_019683.3) was amplified by PCR from a mouse testes cDNA library. The for-
ward primer is 5’-ggaAGATCTGCCACCatggaaaaagaaaaaggaaat gatg-3’. The reverse primer is
5’-ccgctcgagTTACTTGTCATCGTCGTCCT TGTAGTCAGACTGAGGTGAAGAATTTG
TAC-3’, including a Flag-tag sequence (underlined). PCR products were cloned into the
pMSCVpuro vector at the Bgl II / Xho I (Takara, Japan) sites.

The pRNAT-H1.1/Hygro plasmid (GenScript, USA) was used to express ANKRD49 small-
hairpin RNA (shRNA) and control shRNA in GC-1 cells. Briefly, chemically synthesized
oligonucleotides were annealed and inserted into the pRNATH1.1/Hygro vector between the
BamH I and Hind III (Takara, Japan) sites. All constructs were confirmed by sequencing.
Two targeted mouse ANKRD49 sequences are, 5’-GATCCAAGCAAATTGCTTC-3’ (1#) and
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5’-ATTGCGGAA GGCTGTACAA-3’ (2#). The negative control sequence is 5’-TAAGGC
TATGAA GAGATAC-3’.

Lipofectamine 2000 (Invitrogen, USA) was used for plasmid transfections. To generate sta-
ble GC-1/Con and GC-1/ANKRD49-Flag cell lines, the pMSCVpuro-ANKRD9-Flag plasmid
was transfected into GC-1 cells and selected by puromycin (2 μg/ml) (Sigma, USA) [15]. GC-1
cell lines were generated that stably express pRNAT-H1.1/Hygro-negative, pRNAT-H1.1/
Hygro-1# and pRNAT-H1.1/Hygro-2# [16].

Antibodies
The ANKRD49 rabbit polyclonal antibody was purchased from Abcam (U.K). The Flag mouse
monoclonal, Beclin 1, LC3A/B, p65, p62 and GAPDH antibodies were purchased from Cell
Signaling Technology (USA); the β-actin and cIAP2 antibodies were purchased from Santa
Cruz Biotechnology (USA). HRP-conjugated secondary antibodies were obtained from Zhong-
shanjinqiao Company (China). Alexa Fluor 488-conjugated goat anti-rabbit antibody, Alexa
Fluor 488 goat anti-mouse antibody and Alexa Fluor 546-conjugated goat anti-rabbit antibody
were purchased from Life Technologies (USA).

Cell treatment andWestern blot
GC-1 cells stably expressing either ANKRD49 or ANKRD49 shRNA at 80% confluence were
treated with serum-free media for 24 h as starvation treatment; the NF-κB pathway inhibitors,
pyrrolidine dithiocarbamate (PDTC) (50 μM) (Sigma, USA) or BAY 11–7082 (10 μM) (Santa
Cruz, USA) was added to complete media for 2 h prior to the serum-free media treatment. Nu-
clear proteins were obtained using NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Pierce, USA), total proteins were extracted with RIPA buffer and quantified using the BCA
protein assay reagent (Thermo Scientific, USA). Protein samples were separated by 12%
SDS-PAGE and transferred to a 0.2 μm PVDF membrane (Millipore, USA). Membranes were
blocked in 5% skim milk for 1 h at room temperature, followed by an overnight incubation at
4°C with primary antibody followed by incubation with their corresponding HRP-IgGs, then
visualized using an ECL blot detection system (Transgene, Beijing, China). Band intensities
were quantified using a Tanon 1600 Gel Image Analysis System.

Quantitative real-time-PCR (qRT-PCR)
Total RNA from mouse tissues and GC-1 cells was extracted with TRIzol Reagent (CWBIO,
Beijing, China), and RT-PCR was performed using Applied Biosystems real-time PCR instru-
ments (USA) and UltraSYBR Two Step RT-qPCR Kit (CWBIO, Beijing, China) according to
the manufacturer’s instructions. The 2−ΔΔCT method was used to calculate the relative levels of
ANKRD49 mRNA normalized against housekeeping gene GAPDH. The primers for
qRT-PCR were as follows: forward primer 5’-ACACCTGATTCCCACTGG-3’ and reverse
primer 5’-GCACTGTAGC AAGCCGAT-3’ were used to amplify ANKRD49, and forward
primer 5’-TGAGTACGTCGTGGAGTCCA-3’ and reverse primer 5’-TAGACTCCACGACA
TACTCA-3’ were used to amplify GAPDH.

Immunohistochemistry (IHC) and immunofluorescence (IF)
Mouse testes tissues were fixed with 4% paraformaldehyde, sliced into transverse sections and
embedded in paraffin. 4 μm sections were used for IHC staining, and analysed as previously de-
scribed [17]. Subconfluent cells grown on glass coverslips with different treatment were fixed
with 4% paraformaldehyde in PBS for 20 min at RT, blocked with 3% bovine serum albumin
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(BSA, Sigma, USA) in PBS, and incubated overnight at 4°C with a rabbit anti-Beclin 1 antibody
(1:100) or a rabbit anti-LC 3 antibody (1:100). Cells were then stained with Alexa Fluor
488-conjugated goat anti-rabbit antibody (1:200), Alexa Fluor 546-conjugated goat anti-rabbit
antibody (1:400) and counterstained with DAPI (Sigma, USA) in PBS for 1 h at RT. Fluores-
cence images were analyzed using a FV1000 Confocal Laser Scanning Microscopy (Olympus,
Japan).

Transmission electron microscopy (TEM) and fluorescence microscopy
GC-1/Con and GC-1/ANKRD49-Flag cells were cultured with serum-free media for 24 h.
Standard TEM was performed as previously described [18]. For fluorescence microscopy, GC-
1/Con and GC-1/ANKRD49-Flag cells were transfected with a plasmid expressing the green
fluorescent protein (GFP)-LC3. The transfected cells were treated with or without PDTC or
BAY 11–7082 in serum-free media for 24 h. GFP-LC3 was detected by the FV1000 Confocal
Laser Scanning Microscopy.

NF-κB luciferase reporter assay
GC-1/Con and GC-1/ANKRD49-Flag cells seeded at 1×105 cells/well in 24 well plates were
cultured overnight and co-transfected with 0.5 μg NF-κB-driven luciferase reporter and
0.02 μg Renilla luciferase constructs using Lipofectamine 2000 according to the manufacturer’s
instructions. 24 h after transfection, the cells were treated with or without PDTC or BAY 11–
7082 in serum-free medium for another 24 h. Reporter activities (Firefly and Renilla lucifer-
ases) were determined using Dual-Luciferase Reporter Assay System (Promega, USA) by a
luminometer (TD-20/20, Turner BioSystems, USA) according to the manufacturer’s instruc-
tions. The NF-κB transcriptional activities were expressed as relative luciferase activity calcu-
lated by the ratio of Firefly luciferase activity against Renilla luciferase activity.

Statistical analysis
Data were analysed using Student’s t-test and presented as the mean ± SD. The results are con-
sidered statistically significant when p<0.05.

Results

ANKRD49 is highly expressed in testes and is likely to be involved in
spermatogenesis
Mouse ANKRD49 (gene accession number: NM_019683.3) is located on chromosome 9. It has
one transcript of 1753 bps. This gene encodes a 238 amino acid protein which contains four
ankyrin repeat domains. As shown in Fig 1A, there are evolutionarily conserved variations in
the ANKRD49 protein among different genera, with 93.96% similarity in an amino acid se-
quence. Further phylogenetic tree analysis shows that ANKRD49 has a branch length similar
to other ankyrin repeat domain proteins (Fig 1B). To elucidate the expression patterns of
ANKRD49, we isolated mouse tissues and examined ANKRD49 expression using qRT-PCR
andWestern blot. These experiments show that adult mouse testes exhibit a higher expression
of ANKRD49 compared with other tissues examined (Fig 1C and 1D). We also examined testes
from mouse of different ages to assess the temporal expression of ANKRD49. As shown in Fig
1E and 1F, ANKRD49 expression exhibits dynamic variation throughout the establishment of
spermatogenesis. The lowest level of ANKRD49 mRNA expression appears during the first
week after birth. Its mRNA levels increase with age and plateau at eight weeks. ANKRD49
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protein levels show similar expression patterns. The temporal special patterns of ANKRD49
expression strongly suggest that ANKRD49 is involved in spermatogenesis.

Fig 1. The expression of ANKRD49 in a panel of mouse tissues and its temporal expression in developing mouse testes. (A) Alignment of the amino
acid sequence of mouse ANKRD49 (AAH19777.1) and human (NP_060174.2), Macaca mulatta (AFH27401.1), Pan troglodytes (JAA43031.1), Bos_aurus
(NP_001014965.1), Canis_lupus (XP_005633413.1) and rat (AAI61982.1). The alignment was performed by DNAMAN (Lynnon, Quebec, Canada).
Homology levels are highlighted in different colours. Black: 100%; Pink: 75%; Blue: 50%. (B) Phylogenetic tree analysis of ANKRD49 and ankyrin repeat
family proteins. Numbers indicate branch length. (C) The tissue distribution of ANKRD49 mRNA in adult mice was analysed by quantitative RT-PCR. (D) The
expression pattern of ANKRD49 in a panel of tissues from adult mice was determined byWestern blot. (E and F) The mRNA and protein levels of ANKRD49
in the testes of mice one to eight weeks old were detected by qRT-PCR andWestern blot. GAPDH served as a loading control. Each assay was repeated
three times with similar results. W is the abbreviation for ‘‘week.” Each number represents the age of the mice.

doi:10.1371/journal.pone.0128551.g001
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The localization of ANKRD49 exhibits a prophase of spermatogenesis
We further investigated the distribution of ANKRD49 in adult mouse testes to understand the
role of ANKRD49 in spermatogenesis. Firstly, we detected the expression patterns of
ANKRD49 in GC-1 cells (a mouse-derived spermatogonia cell line), GC-2 cells (a mouse-
derived spermatocyte cell line), TM-3 cells (a mouse Leydig cell line) and TM-4 cells (a mouse
Sertoli cell line) using qRT-PCR and Western blot. The results show that ANKRD49 is express-
ed in GC-1 and GC-2 cells (Fig 2A and 2B). Next, we determined the distribution of
ANKRD49 in mouse testes using immunohistochemistry assay. Fig 2C shows that ANKRD49
localizes primarily in the spermatogonia, spermatocytes and round spermatids. Moreover,
ANKRD49 is found in the nucleus. We then localized ANKRD49 using immunofluorescence
assay by an anti-Flag antibody in GC-1 cells that stably express ANKRD49. The immunofluo-
rescence assay also shows that ANKRD49 staining is distributed in the nucleus (Fig 2D).

Fig 2. ANKRD49 is detected primarily in spermatogonia, spermatocytes and round spermatids and
localizes in the nucleus. (A and B) The cell distribution of ANKRD49 mRNA and protein in four mouse
testes-related cell lines were analysed by quantitative RT-PCR (A) and western blot (B). β-actin served as a
loading control. (C) IHC analysis was performed with an anti-ANKRD49 polyclonal antibody (bottom panel) to
detect the localization of ANKRD49 in adult mouse testes. A negative control was performed using rabbit IgG
(upper panel). Blue arrow: spermatogonia; red arrow: spermatocytes; black arrow: round spermatids. Scale
bars represent 50 μm. (D) ANKRD49 localizes to the nucleus. GC-1 cells which stably express ANKRD49
were subjected to IF analysis with an anti-Flag antibody followed by incubation with Alexa Fluor 488 goat anti-
mouse antibody. Fluorescence signals were analysed using Confocal Laser Scanning Microscopy. Nuclei
were stained with DAPI. Scale bars represent 10 μm. (E) The cytoplasm and nuclear proteins were extracted
andWestern blot assay was performed to detect the distribution of ANKRD49 in adult mouse testes, GC-1
and GC-2 cells. β-actin and histone H1 served as loading controls of cytoplasm and nuclear proteins,
respectively. Each assay was repeated three times with similar results.

doi:10.1371/journal.pone.0128551.g002
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Moreover, we prepared the cytoplasm and nuclear proteins from mouse testis tissue, GC-1
cells and GC-2 cells. Western blot shows that ANKRD49 is detecteded in nucleus fraction (Fig
2E).

ANKRD49 augments autophagy induced by serum starvation of GC-1
cells derived from the male germ line
To evaluate the putative roles of ANKRD49 in spermatogenesis, we used the GC-1 cell line as a
cell model. We have constructed a pMSCVpuro-ANKRD49-Flag eukaryotic expression plas-
mid and transfected it into GC-1 cells. Stable GC-1/Con and GC-1/ANKRD49-Flag expression
cell lines were selected by puromycin, confirmed by qRT-PCR and Western blot (Fig 3A).
Given that autophagy has both cytoprotective and apoptotic (or cell death) roles, and that apo-
ptosis is important in spermatogenesis [8, 9],we then examined the occurrence of autophagy in
GC-1/Con and GC-1/ANKRD49-Flag cells after serum starvation for 24 h. Beclin 1, LC-3 and
p62, the commonly used autophagy markers [19–21], were determined by Western blot and
immunofluorescence staining. As illustrated in Fig 3B and Fig 4A, the levels of Beclin 1 and
LC3-II in serum-starved GC-1/ANKRD49-Flag cells are greater than those in GC-1/Con cells
while the p62 has a counter trend. In addition, the expression of Beclin 1 and LC3-II detected
by immunofluorescence, are in accordance with the Western blot assay (Fig 4A). Furthermore,
we detected GFP-LC3 dots which are regarded as autophagosomes [22]. GC-1/ANKRD49-Flag
and parental cells transfected with GFP-LC3 were treated by serum starvation. As shown in Fig
4B, marked punctate accumulation of GFP-LC3 is observed in GC-1/ANKRD49-Flag cells,
demonstrating a high level of autophagy. In addition, TEM-based ultrastructural analysis con-
firmed the formation of double-membrane vesicles (autophagosomes) (Fig 4C).

To further explore the pro-autophagy function of ANKRD49 in GC-1 cells, stable
ANKRD49 knockdown shRNA and negative control shRNA transfected GC-1 cells were gen-
erated (Fig 5A). The occurrence of autophagy in ANKRD49 knockdown GC-1 cells were deter-
mined after serum starvation. As shown in Fig 5B, the autophagy markers (Beclin 1 and LC3-
Ⅱ) are significantly lower in the GC-1 cells with the ANKRD49 knockdown compared with
those of negative control while the p62 has a reverse expression pattern. These results demon-
strated that ANKRD49 promotes autophagosome formation in GC-1 cells. Moreover, the levels
of Beclin 1 and LC3-II were detected by immunofluorescence, and the results are in line with
the Western blot assay (Fig 5C).

Fig 3. ANKRD49 induces autophagy in serum-starved GC-1 cells. (A) The expression level of ANKRD49
in GC-1 stable cells. Left: mRNA levels, right: protein levels. (B) ANKRD49-induced autophagy, detected by
the presence of Beclin 1, LC3-I to LC3-II conversion and p62 were analysed byWestern blot; Rapamycin
served as an autophagy-positive control andWortmannin served as an autophagy-negative control, β-actin
served as a loading control. One representative of three independent experiments is shown. The quantitative
results are presented as the ratio of LC3-II to LC3-I (n = 3). **p < 0.01 indicates significant difference
between groups as shown.

doi:10.1371/journal.pone.0128551.g003
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ANKRD49-regulated autophagy of GC-1 cells is dependent on the NF-
κB pathway
It has been reported that NF-κB is involved in the process of autophagy [23, 24]. To investigate
whether NF-κB participates in the process of ANKRD49-induced autophagy in GC-1 cells, we
examined the ANKRD49-induced autophagy in the presence of NF-κB pathway inhibitors,

Fig 4. ANKRD49 induces autophagy in serum-starved GC-1 cells. (A) GC-1/ANKRD49-Flag cells and control cells were cultured on glass coverslips and
serum-starved for 24 h, labelled with rabbit anti-Beclin 1 (red) and rabbit anti-LC3-II antibody (green) and exposed to DAPI for nuclei visualization (blue).
Fluorescence signals were analyzed by using a Confocal Laser Scanning Microscopy Scale bar represents 10 μm. (B) GC-1/ANKRD49-Flag cells and
control cells were transfected with GFP-LC3, followed by serum starvation. Punctated GFP-LC3-Ⅱ was observed by a Confocal Laser Scanning Microscopy
(left) and a punctuated pattern was shown (right), indicating appearance of autophagy. Scale bar represents 100 μm. **p < 0.01 indicates significant
difference between groups as shown. (C) Transmission electron microscopy analysis of serum-starved GC-1/ANKRD49-Flag cells and control cells. GC-1/
ANKRD49-Flag cells display more autophagosomes (indicated by black arrows) than those displayed by controls (left). The relative numbers of
autophagosomes in different groups are shown (right). Data are presented as the mean ± SD (n = 3) of three independent experiments. **p < 0.01 indicates
significant difference between groups as shown. Scale bars represent 2 μm.

doi:10.1371/journal.pone.0128551.g004
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PDTC and BAY 11–7082 [25, 26]. Fig 6A and 6B shows that in the presence of PDTC or BAY
11–7082, the levels of Beclin 1 and LC3-Ⅱ are decreased in GC-1/ANKRD49-Flag cells while
the levels of p62 are increased. We also introduced two siRNAs that target different regions of
the NF-κB/p65 transcript in GC-1/ANKRD49-Flag cells to attenuate the expression of endoge-
nous NF-κB/p65. Western blot analysis shows that p65 expression is effectively down-regulat-
ed (Fig 6C). Similarly, Western blot analysis reveals reduction of Beclin 1, LC3-Ⅱ and increase
of p62, along with a decrease in the levels of p65 (Fig 6C). Furthermore, GC-1/ANKRD49-Flag
and parental cells transfected with GFP-LC3 were also treated by serum starvation with or

Fig 5. ANKRD49 knockdown decreases autophagy in serum-starved GC-1 cells. (A) GC-1 cells were transfected with RNAi plasmids 1# and 2# against
ANKRD49 and a scramble sequence as a negative control. Stable ANKRD49 knockdown GC-1 cell clones were screened by puromycin and identified by
qRT-PCR. (B) Western blot analysis of Beclin 1, LC3-Ⅱ, p62 and ANKRD49 in 1#, 2# and negative control GC-1 cells which were serum-starved for 24 h.
Control cells were subcultured from a stable GC-1 cell clone expressing a negative control shRNA. β-actin served as a loading control. One representative of
three independent experiments is shown. The quantitative results are presented as the ratio of LC3-II to LC3-I (n = 3). **p < 0.01 indicates significant
difference between groups as shown. (C) GC-1/ANKRD49-shRNA cells and control cells were cultured on glass coverslips and serum-starved for 24 h,
labelled with rabbit anti-Beclin 1 (red) and rabbit anti-LC3-II antibody (green) and exposed to DAPI for nuclei visualization (blue). Fluorescence signals were
analyzed by using a Confocal Laser Scanning Microscopy Scale bar represents 10 μm.

doi:10.1371/journal.pone.0128551.g005
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without PDTC and BAY 11–7082. As shown in Fig 6D, marked punctate accumulation of
GFP-LC3 is observed in GC-1/ANKRD49-Flag cells, while the punctated GFP-LC3 is obviously
decreased by PDTC or BAY 11–7082 treatment, showing inhibition of NF-κB pathway in the
ANKRD49-induced GC-1 cells directly reduced autophagy.

In addition, we performed dual luciferase reporter assays to assess whether ANKRD49 can
enhance the transcriptional activation of NF-κB under serum starvation and whether PDTC or
BAY 11–7082 can reverse it. As shown in Fig 7A, ANKRD49 caused an approximate 8-fold in-
crease in relative luciferase activity of NF-κB reporter, and PDTC or BAY 11–7082 greatly in-
hibited ANKRD49-induced NF-κB transcriptional activity. To further verify the effect of

Fig 6. ANKRD49-regulated autophagy induced by serum-starved GC-1 cells is dependent on the NF-κB pathway. (A, B) GC-1/ANKRD49-Flag stable
cells were pre-treated with 50 μmPDTC or 10 μmBAY 11–7082 for 2 h prior to treatment with serum-free media for another 24 h, and the cell lysates were
prepared and blotted with the indicated antibodies. (C) GC-1/ANKRD49-Flag stable cells were transfected with mouse NF-κB/p65 siRNA and a negative
control for 24 h and incubated in serum-free media for another 24 h. Cell lysates were prepared and blotted with the indicated antibodies. β-actin served as a
loading control. One representative of three independent experiments is shown. The quantitative results are presented as the ratio of LC3-II to LC3-I (n = 3).
**p < 0.01 indicates significant difference between groups as shown. (D) GC-1/ANKRD49-Flag cells and control cells were transfected with GFP-LC3 for
24 h, followed by serum starvation culture with or without PDTC and BAY 11–7082 for another 24 h. Punctated GFP-LC3-Ⅱ was observed by a Confocal
Laser Scanning Microscopy (left) and a punctuated pattern was shown (right), indicating appearance of autophagy. Scale bar represents 100 μm. **p < 0.01
indicates significant difference between groups as shown.

doi:10.1371/journal.pone.0128551.g006

Fig 7. ANKRD49 enhanced the transcriptional activity of NF-κB in serum-starved GC-1 cells. (A) GC-1/
Con and GC-1/ANKRD49-Flag stable cells were transfected with an NF-κB–driven luciferase reporter and
then cultured in serum-free medium with or without PDTC and BAY 11–7082 for 24 h. NF-κB activation was
detected by luciferase reporter assay. Data are compared between indicated groups. n = 3; **p < 0.01. (B)
GC-1/Con and GC-1/ANKRD49-Flag stable cells were cultured in serum-free medium with or without PDTC
and BAY 11–7082 for 24 h. The levels of cIAP2 were determined byWestern blot. β-actin served as a loading
control. One representative of three independent experiments is shown. The quantitative results are
presented as the ratio of cIAP2 to β-actin (n = 3). **p < 0.01 indicates significant difference between groups
as shown.

doi:10.1371/journal.pone.0128551.g007
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ANKRD49 on NF-κB activity, we measured the levels of cIAP2 which is a NF-κB target gene
in response to cellular starvation [27, 28]. As shown in Fig 7B, ANKRD49 increased the levels
of cIAP2 in GC-1 cells under serum starvation, and PDTC or BAY 11–7082 attenuated the role
of ANKRD49. Taken together, these results show that autophagy regulated by ANKRD49 and
induced by serum starvation in GC-1 cells is dependent on the NF-κB pathway.

Discussion
Mammalian spermatogenesis is a paradigm for the process of development. Genetic informa-
tion from male germ stem cells is edited, organized and distributed into spermatozoa in a
strictly regulated system of sophisticated and well-coordinated gene expressions [29, 30]. The
most important functions in spermatogenesis are performed by numerous genes that are locat-
ed in the testes or germ cells [31]. Thus, identifying and characterising specific genes in the tes-
tes will help elucidate the mechanism of spermatogenesis.

In present study, we have identified ANKRD49 as a protein that is highly expressed in
mouse testes by showing the expression pattern of ANKRD49. Our finding demonstrates that
ANKRD49 is more abundant in adult mouse testes compared to other tissues. It appears at the
beginning of testes development. Furthermore, we have examined the distribution of
ANKRD49 in the reproductive system and have found that ANKRD49 is predominantly locat-
ed in the nuclei of spermatogonia, spermatocytes and round spermatids. These results indicate
that ANKRD49 may function as a modulator in processes required for spermatogenesis, in-
cluding cell proliferation, differentiation, apoptosis and autophagy.

It is well established that programmed cell death (PCD) plays a principal role in processes
of mammalian spermatogenesis [32]. Apoptosis, a type of PCD, plays a primary role during the
different stages of spermatogenesis and has been widely studied [16, 33, 34]. However, the role
of autophagy, another type of PCD which is equally important in spermatogenesis [35], still re-
mains to be explored [36, 37]. Basal autophagy plays a critical role in cellular homeostasis by
eliminating excessive proteins and organelles [38]. However, the roles of autophagy in cellular
death and survival are complex and context-dependent. Autophagy can serve as a survival
mechanism during nutrient deprivation or metabolic stress, whereas it can also lead to cellular
death (termed autophagic cell death) [39].

Given that autophagy has an important function in spermatogenesis [8], we have investigat-
ed the involvement of ANKRD49 in germ cell autophagy. It is difficult to obtain a sufficient
amount of highly purified primary spermatogonia cells for experimental purposes. Therefore,
we have examined autophagy in a mouse-derived spermatogonia cell line, GC-1 spg. The GC-1
spg cell is a widely used in vitro cell model [40] that has the ability to differentiate into mature
spermatids [16]. Our findings demonstrate that ANKRD49 participates in serum starvation-in-
duced autophagy of GC-1 cells. It appears that ANKRD49 enhances autophagy that is induced
by nutrient deprivation, for GC-1 cells expressing ANKRD49 are more sensitive to nutrient
deprivation-induced autophagy while GC-1 cells expressing ANKRD49 shRNA are more
resistant.

The NF-κB pathway is involved in control of inflammation, stress response and other physi-
ological processes in cellular signalling. It has a dual role in regulating autophagy. It can serve
as both positive [41, 42] and negative regulator of autophagy [24, 43]. We have further exam-
ined the association of NF-κB and autophagy in GC-1 cells. Decreased expression of Beclin 1
and LC3-Ⅱ is observed in GC-1/ANKRD49-Flag cells where NF-κB signalling is inhibited by
PDTC, BAY11-7082 or siRNA-mediated knockdown of RELA/p65. Moreover, luciferase re-
porter assay also shows that the transcriptional activity of NF-κB is activated by serum starva-
tion and overexpression of ANKRD49, while PDTC and BAY 11–7082 can inhibit NF-κB’s
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activity and its target gene cIAP2 expression. These findings indicate that ANKRD49-regulated
autophagy of GC-1 cells is dependent on the NF-κB pathway.

The role for autophagy in cell survival or death remains contraversial. In our study, we
found that ANKRD49 has a cytoprotective role in nutrient-deprived GC-1 cells by inducing
autophagy through the NF-κB pathway. Further investigations are still needed to define the
relationship between ANKRD49 and other known signalling pathways involved in
spermatogenesis.
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