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Abstract
Explaining the diversity of languages across the world is one of the central aims of typologi-

cal, historical, and evolutionary linguistics. We consider the effect of language contact-the
number of non-native speakers a language has-on the way languages change and evolve.

By analysing hundreds of languages within and across language families, regions, and text

types, we show that languages with greater levels of contact typically employ fewer word

forms to encode the same information content (a property we refer to as lexical diversity).
Based on three types of statistical analyses, we demonstrate that this variance can in part

be explained by the impact of non-native speakers on information encoding strategies. Fi-

nally, we argue that languages are information encoding systems shaped by the varying

needs of their speakers. Language evolution and change should be modeled as the co-evo-

lution of multiple intertwined adaptive systems: On one hand, the structure of human socie-

ties and human learning capabilities, and on the other, the structure of language.

Introduction
All languages are carriers of information. However, they differ greatly in terms of the encoding
strategies they adopt. For example, while in German a single compound can transmit complex
concepts (e.g. Schifffahrtskapitänkabinenschlüssel), English uses whole phrases to transmit the
same information (key to the cabin of the captain of a ship). In the Eskimo-Aleut language
Inuktitut the word qimmiq ‘dog’ can be modified to encode different case relations, e,g. qimmi-
mik ‘with the dog’, qimmi-mut ‘onto the dog’, qimmi-mi ‘in the dog’, qimmi-mit ‘away from
the dog’, etc [1]. Likewise, many languages encode information about number, gender and case
in a multitude of different articles, e.g. German der, die, das, dem, den, des or Italian il, la, lo, i,
le, li, gli, whereas in English there is only one definite article the and in Mandarin Chinese there
is none.
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We refer to this property of languages—the distribution of word forms or word types they
use to encode essentially the same information—as their lexical diversity (LDT). This difference
is a central part of the variation in encoding strategies we find across languages of the world.

This paper centers on the question of where variation in lexical diversity stems from. Why
do some languages employ a wide range of opaque lexical items while others are more econom-
ical? Variation between languages has often be seen as driven by language acquisition of native
speakers (L1) [2–8]. However, some sociolinguistic and historical studies have raised the ques-
tion of whether large numbers of non-native (L2) language speakers in a society can also lead
to systematic changes in the use of the language in generall [9–16].

In this work we investigate with quantitative analyses the association between non-native
language speaker proportions—here referred to as language contact—and variation in lexical
diversity. Adults learning a second language encounter difficulties with the panoply of word
forms that native speakers seem to master with ease, so that non-native language is typically
characterised by lower lexical diversity [17, 18]. We consider whether higher proportions of
non-native speakers in a population should over time reduce the lexical diversity of a language.
A clear prediction of this hypothesis is that, at any point in time, languages with higher L2
speaker proportions are those languages that have lower lexical diversities.

To systematically compare lexical diversities cross-linguistically we use parallel translations
of the same texts into hundreds of languages. Parallel translations provide a natural means of
controlling for constant information content. The LDT of these texts can be quantified by ap-
plying three measures: the parameters of the Zipf-Mandelbrot law [19, 20], Shannon entropy
[21, 22] and type-token ratios [23–26]. Using these measures, we observe a great variety of lexi-
cal diversities across language families and regions of the world despite constant content of the
texts.

To test whether some of this variation can be attributed to language contact, we employ
three types of statistical model: a) simple linear regression, regressing lexical diversities on L2
speaker proportions; b) linear mixed-effects regression controlling for family relationships, re-
gional clustering and text type; and c) phylogenetic generalized least squares regression (PGLS)
that models the potential co-evolution of L2 speaker proportions with lexical diversities. The
results of these models converge to show that the ratio of non-native speakers predicts lexical
diversity beyond language families, regional clustering and text types.

These results can be interpreted as an example of a co-evolution between sociolinguistic
niches (more or less non-native influence) and language structure (lower or higher lexical di-
versity) [12, 27]. From this perspective languages are complex adaptive systems shaped by the
communicative needs and learning constraints of speaker populations [28–33]. We conclude
that lexical diversity is a quantitative linguistic measure which is highly relevant to the enquiry
of language evolution, language typology and language change, and that it can be modeled tak-
ing into account sociolinguistic and genealogical information. This supports the claim that the
evolution of language structure can only be understood as a co-evolution of population struc-
ture, human cognitive constraints and communicative encoding strategies.

Materials and Methods

Parallel texts
The parallel texts used in this study are the Universal Declaration of Human Rights (UDHR) in
unicode (http://www.unicode.org/udhr/), the Parallel Bible Corpus (PBC) [34] and the Euro-
parl Parallel Corpus (EPC) [35].
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The UDHR currently comprises a collection of more than 400 parallel translations. Howev-
er, only 376 of these are fully converted into unicode. The UDHR is a short legal text of 30 arti-
cles and ca. 1700 words in English.

The PBC is a collection of parallel translations of the Bible. It currently comprises 918 texts
that have been assigned 810 unique ISO 639-3 codes (i.e. unique languages). Texts are aligned
by verses, which allows us to fully parallelize them by including only the verses that occur in all
the texts of the respective language sample we are looking at. Note, that there is a trade-off be-
tween number of texts and number of verses. Not a single verse is represented in all texts. We
chose a sample of 800 texts which yields overlapping verses that amount to ca. 20000 words in
the English translation. This sample represents 632 languages (unique ISO 639-3 codes).

The EPC is a collection of transcripts of discussions in the European Parliament in 21 Euro-
pean languages. The English transcripts amount to ca. 7 million words.

Combining the UDHR, PBC and EPC yields a sample of 867 texts with 647 unique ISO 639-
3 codes representing languages (see S1 Table). These languages stem from 83 families and 182
genera according to theWorld Atlas of Language Structures (WALS) classification [36].

Defining word types
Any measure of lexical diversity relates to the frequency of occurrence of word types in a given
text. A word type is here defined as a recurring sequence of letters delimited by white spaces,
punctuation marks, and other non-word characters.

Note, that this definition of a word type rules out pictographic and logographic writing sys-
tems (see S1 File). Also, this simplified definition of “word” is contested by linguistically more
informed approaches [37, 38]. However, to our knowledge it is currently the only computation-
ally feasible approach for automatically generating lists of word types across hundreds of
languages.

Lexical diversity measures
To scrutinize the distribution of word types in a given text they are ordered according to their
frequency of occurrence. For example, Fig 1 displays the first 7 ranks of word types with their
frequencies for the UDHR in German and English. Despite the constant information content
of these parallel translations, English’s repetitive usage of the same word types results in high
frequencies in the upper ranks. For example, the letter sequence representing the definite arti-
cle in English (the) occurs roughly 120 times in the English UDHR, whereas German distrib-
utes occurrences of articles over different word types, i.e. der (ca. 60), die (ca. 50) and das (ca.
30).

To facilitate an investigation of varying lexical diversities across languages we introduce
three quantitative measures of LDT: The parameters of Zipf-Mandelbrot’s law, Shannon entro-
py, and type-token ratios.

Zipf-Mandelbrot’s law. The shape of word frequency distributions can be approximated
by the Zipf-Mandelbrot curve [19].

f ðrÞ ¼ C
ðbþ rÞa C > 0; a > 0; b > �1; r 2 R

þ; ð1Þ

where f(r) is the frequency of a word in rank r, α and β are parameters and C is a normalizing
constant. The parameters specify the shape of the approximated distribution. They can be esti-
mated for individual languages by using a maximum likelihood estimation procedure (see S2
File). The lines in Fig 2 represent such approximations for Fijian, English, German and Hun-
garian. Notably, the Fijian approximation has the highest values (C = 0.39, β = 2.07, α = 1.2)
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Fig 1. Word frequency distributions for English and German UDHR. Bars indicate frequencies of
occurrence in German (blue) and English (red) for the highest ranking words in the UDHR text.

doi:10.1371/journal.pone.0128254.g001

Fig 2. Word frequency distributions with ZM parameter approximations for selected languages. Dots
represent frequencies and ranks for the 50 highest frequency words in English (red), Fijian (green), German
(blue) and Hungarian (purple). Lines reflect Zipf-Mandelbrot approximations. Lower frequencies towards the
first ranks are associated with more word types in the tails of distributions. More diverse languages have
more hapax legomena (i.e. words with frequency = 1), i.e. Hungarian has more hapax legomena than
German, English, and Fijian, in this order.

doi:10.1371/journal.pone.0128254.g002
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and Hungarian the lowest values (C = 0.06, β = -0.33, α = 0.76), with German and English in
between (see Fig 2).

There is an inverse relationship between lexical diversity and the ZM-parameters: lower di-
versity is associated with higher values for C, α and β.

Shannon entropy. Another measure for LDT is the entropy Hw over a distribution of
words calculated as [21][p. 19]:

Hw ¼ �K
Xk

i¼1

pi � log2ðpiÞ; ð2Þ

where K is a positive constant determining the unit of measurement (which is bits for K = 1
and log to the base 2), k is the number of ranks (or different word types) in a word frequency
distribution, and pi is the probability of occurrence of a word of i

th rank (wi).
The Shannon entropy in Eq 2 is a measure of the overall uncertainty when we draw words

randomly from a text. A lexically diverse language such as Hungarian has more word types
with lower frequencies. To put it differently, if we select a word at random from a Hungarian
text and have to guess which word this is, the overall uncertainty is higher compared to a lan-
guage with fewer word types and higher frequencies, such as English. Shannon entropy can
therefore be used as an index for LDT, in parallel to the entropy index for biodiversity [39]. In
particular, higher entropies of word frequency distributions are associated with higher LDT.

Type-token ratios. Finally, the most basic measure of lexical diversity is the so-called
type-token ratio (TTR). TTR simply represents the number of different word types divided by
the overall number of word tokens. Higher TTRs reflect higher lexical diversity. Note, that
TTRs have been criticized as a measure of lexical diversity, since they are strongly dependent
on text size [23, 25, 40]. However, in the case of parallel texts, information content is constant.
Therefore, in the present analyses variation in text size is not a confound, but rather a crucial
part of the differences in lexical encoding strategies that we aim to measure.

Differences between the measures. While Zipf-Mandelbrot parameters, Shannon entropy
and type-token ratios are all measures that reflect LDT, there are important differences. ZM-
parameters are negatively correlated with LDT (higher parameter values mean lower lexical di-
versity), whereas both entropy and TTRs exhibit a positive relationship with LDT. Less evi-
dently, the “responsiveness” of these measures to changes in word frequency distributions
varies somewhat. As we show in the supporting information (S3 File), TTR is the most respon-
sive and hence fast changing measure, whereas Zipf-Mandelbrot’s α and Shannon entropyHw

are more conservative, in this order. However, to our knowledge there is no a priori reason to
prefer one measure over the others. Hence, we calculate values for each of them and include
them in our analyses.

Scaling of LDT measures. Since ZM’s α is negatively correlated with LDT, whereas Hw

and TTR are positively correlated with LDT, we inverse ZM’s α by substracting the values from
1. Additionally, we scale the LDT values using the scale() function in R [41]. By default, this
centeres and scales a vector of LDT values dividing it by the standard deviations per measurem
and text t:

LDTscaled ¼
LDT
smt

¼ LDTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðLDT � mmtÞ2
ðnmt � 1Þ

s :
ð3Þ

This way, we combine the values for α, Hw and TTR into a single, scaled LDT measure.
Note that different parallel corpora vary in text sizes, which in turn influences LDT values.
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Scaling these values makes them commensurable across text sizes. The scaled LDT is then used
as dependent variable for statistical modeling.

Non-native speaker data
Our dataset of speaker information contains languages for which we could obtain the numbers
of native (L1) and non-native (L2) speakers in the linguistic community. We were able to col-
lect this speaker information for 226 languages using the SIL Ethnologue [42], the Rosetta proj-
ect website (www.rosettaproject.org), the UCLA Language Materials Project (www.lmp.ucla.
edu), and the Encarta (http://en.wikipedia.org/wiki/Encarta).

We define L2 speakers as adult non-native speakers as opposed to early bilinguals. General-
ly, the sources follow our L2 definition, although in some cases the exact “degree” of bilingual-
ism might vary (see, e.g., “bilingualism remarks” in Ethnologue).

Whenever native and non-native speaker numbers differed in the sources, we calculated the
average. Note, that this averages out some of the incommensurable values that are certainly to
be found in sources like Ethnologue. For example, English has 505 million L2 users world wide
according to Ethnologue, whereas for German only L2 users within Germany are counted,
which amounts to 8 million. Though English arguably has more L2 speakers than German, the
difference is probably too big here. However, averaging across different sources in our data
sample we arrive at 365 million L2 speakers for English and 50 million L2 users for German,
which seems much more realistic (see S2 Table).

Note that we excluded Sanskrit and Esperanto from the sample. Sanskrit is an extreme outli-
er in the Indo-European family. In our database it is listed with a very high ratio of L2 to L1
speakers. This is due to the fact that it is learned and used almost exclusively as liturgical lan-
guage in Hinduism. In this sense, there are very few native speakers of Sanskrit but many that
learn it in schools as L2 for liturgical purposes. Clearly, this is not the kind of L2 learning and
usage scenario that is supposed to reduce lexical diversity. Esperanto, on the other hand, is an
artificial language with a high ratio of L2 speakers. However, since it is a constructed language
there is no point to be made about potential shaping of its linguistic structure due to natural
processes of language change (though there might be such processes at play in its very recent
history).

Based on the remaining averaged speaker numbers we then calculated the ratio of L2/L1
speakers for each of the 226 languages. This serves as our main predictor variable in the statisti-
cal models.

Statistical models
Linear regression. To explore a potential association between lexical diversity and L2

speaker proportions we first merge the data on scaled LDTs (647 languages) with the data on
L2 ratios (226) languages. This yields a sample of 91 languages (26 different families) (see S2
Table for the full data set). We then construct a simple linear model with the scaled LDT mea-
sure as response variable and the ratio of non-native (L2) to native (L1) speakers as predictor
variable. L2 speaker ratios are logarithmically transformed to reduce extreme outliers. The
model is outlined in Eq 4:

LDT ¼ b0 þ b1 � logðL2Þ þ �;

� � Nð0; s2Þ: ð4Þ

The lexical diversity LDT is predicted by the intercept β0 plus the slope β1 multiplied by the
logarithm of the ratio of L2 to L1 speakers (here represented by L2), and the error �. One of the
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underlying assumptions of a linear regression model is that the errors are normally distributed
between 0 and the variance σ2. Likewise, the assumption of linearity and homoscedasticity have
to be met for the model to be valid. Post hoc checking of these assumptions can be found in the
supporting information (S4 File).

We use the function lm() in R [41] for building this linear model.
Linear mixed-effects regression. Language typologists have suggested that simple linear

models are undermined by the non-independence of data points. Namely, languages naturally
group into families and regions [43, 44]. Moreover, we draw texts from three different sources,
use three different measures of LDT and hence have multiple LDT values per ISO 639-3 code.
These groupings can introduce systematic variation. Such grouped data require modeling by
means of mixed-effects models [45, 46].

Hence, we expand the simple linear model by introducing (non-correlated) intercepts and
slopes by family, region, LDT measure, text type and ISO 639-3 code. Information on language
families and language regions is taken from Bickel and Nichol’s AUTOTYP database (www.
spw.uzh.ch/autotyp/).

The mixed-effects model specification can be found in Eq 5:

LDTfrmti ¼ b0 þ F0f þ R0r þM0m þ Tt0 þ Ii0þ
ðb1 þ F1f þ R1r þM1m þ T1t þ I1iÞ � logðL2frmtiÞ þ �frmti;

�frmti � Nð0; s2Þ:
ð5Þ

Here, LDTfrmti is the predicted lexical diversity for languages of the f
th family, rth region,mth

measure and tth text type and ith ISO 639-3 code. The coefficients β0 and β1 represent the fixed
effects intercept and slope respectively. F0f, R0r,M0m, T0t, Ii0 are the random intercepts by fami-
ly, region, measure, text type and ISO code. F1f, R1r,M1m, T1t, I1i denote random slopes by fam-
ily, region, measure, text type and ISO code. The linear predictor is the log-transformed L2
ratio (L2frmti). Model residuals are represented by �frmti. Again, residuals are supposed to be
normally distributed between 0 and their variance σ2.

Again, the models are run in R [41] using the package lme4 [47]. As for the simple linear
model, we check for linearity, normality and homoscedasticity in the supporting information
(S4 File).

Phylogenetic analyses. The Mixed-effects model tests whether the statistical association
between L2 ratio and lexical diversity holds even if systematic differences between language
families are accounted for. However, we could also ask if the patterns we find hold within lan-
guage families, namely at the level of genera and sub-genera (e.g. Romance and Germanic lan-
guages within the Indo-European family). The dataset of L2 speakers and lexical diversities is
currently too small to run a mixed-effects model with genera as random effects, since there are
very few genera with more than 5 representatives. Instead, phylogenetic regressions [48–50]
can be used to assess whether lexical diversities of extant languages are driven by differences in
the ratios of L2 speakers while taking into account their genealogical relationships.

We first use published linguistic family trees [51–53] based on cognate lists as a measure of
genealogical relationships. The tips of these phylogenetic trees represent extant languages. The
nodes within the trees reflect ancestral languages, and their branches reflect the evolutionary
pathways that individual languages have taken.

We can assess the likelihood of whether the lexical diversities of extant languages followed
closely the evolutionary pathways given in the tree (high “phylogenetic signal”) or whether this
tree has to be strongly reduced to fit the lexical diversity data (low “phylogenetic signal”) [48].
On the basis of the phylogenetic signal analysis, we can then use phylogenetic generalized least

Adaptive Communication

PLOS ONE | DOI:10.1371/journal.pone.0128254 June 17, 2015 7 / 23

http://www.spw.uzh.ch/autotyp/
http://www.spw.uzh.ch/autotyp/


squares (PGLS) regression to test whether L2 ratio is still a significant predictor of LDT if we
correct for the co-variance within the family.

Phylogenetic signal. To establish whether lexical diversities evolve along the phylogenetic
branches of family trees, a test for phylogenetic signal called λ (lambda) is employed. The esti-
mation of λ is a phylogenetic comparative method that transforms a phylogenetic tree to best
fit the comparative data [48, 49]. Namely, λ is a factor that modifies the branch lengths of phy-
logenetic trees so that they fit the comparative data of interest. The λ-values can range from 0
to 1, with 1 meaning that the similarities in LDT can be explained by their relationship on the
phylogeny; while 0 means that there is no evidence for similar behaviour due to shared decent.

Note, that for the phylogenetic analyses we need to link a single ISO code to both the phylo-
genetic tree information, and to the respective LDT information. A dataset with doubled ISO
codes is not workable. Hence, analyses have to be run by LDT measures and text types sepa-
rately. Moreover, since we do within family analyses, there need to be LDT data available for at
least 20 languages in the family tree [48]. Given these restrictions, the phylogenetic signal λ is
estimated for data from three different language families: Austronesian, Bantu and Indo-Euro-
pean (see Table 1 for the datasets used).

Phylogenetic generalized least squares regression. To illustrate the association between
lexical diversity and the ratio of non-native (L2) speakers within families while controlling for
phylogenetic signal, Phylogenetic Generalized Least Squares (PGLS) regressions [50] are carried
out for Indo-European languages of the UDHR. This is currently the only family represented
by enough languages with information on L2 speakers to run such a PGLS.

The phylogenetic tree used for the PGLS regression is a 1000 tree subsample of an earlier
study [53]. Matching the dataset on LDT values and ratio of non-native speakers with the lan-
guages featured in the tree sample yields a sample of 26 Indo-European languages for PGLS re-
gression analysis (see Table 2).

As dependent variables the LDT measures ZM’s α, Shannon entropyHw, and TTR are used
separately. The predictor variable is ratio of L2 speakers as before. PGLS regression was con-
ducted using Continuous implemented in the software BayesTraits [49, 54], which uses a
Bayesian reversible-jump Markov chain Monte Carlo framework to model and test hypotheses
regarding the evolution of biological and linguistic traits (see S5 File). The MCMC chains were
run for 2 × 109 iterations for all three analyses. The PGLS estimates were sampled every 106 it-
erations. A posterior of 1500 samples was taken from the stationary part of the chain.

Table 1. Data sets for phylogenetic signal analyses.

Family Text No. languages Phylogenetic tree set Size of tree set

Austronesian UDHR 28 Gray et al.(2009) 1000

Austronesian PBC 44 Gray et al.(2009) 1000

Bantu UDHR 26 Grollemund et al. (to appear) 100

Indo-European UDHR 53 Bouckaert et al. (2012) 1000 (random sample from original 12500)

doi:10.1371/journal.pone.0128254.t001

Table 2. Data set for PGLS regression.

Family Text No. languages Phylogenetic tree set Size of tree set

Indo-European UDHR 26 Bouckaert et al. (2012) 1000 (random sample from original 12500)

doi:10.1371/journal.pone.0128254.t002
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Multiple testing: The Holm-Bonferroni correction. For the phylogenetic generalized
least squares regressions we use three LDT measures and hence conduct multiple tests. To cor-
rect for multiple testing we use the Holm-Bonferroni correction [55]. According to that meth-
od, p-values are first ordered from lowest to highest. Then the α-level of significance (i.e. 0.05)
is divided by the numberm of tests (3 in our case). The lowest p-value has to be below this
modified level (i.e. 0.05/3 = 0.017), the next lowest p-value has to be below the level of (0.05/m-
1 = 0.025), the last p-value has to be below the original α-level of 0.05. All p-values that are sig-
nificant according to the Holm-Bonferroni method will be marked by a star.

Results

Lexical diversities across 647 languages
Recall that our text sample comprises 846 parallel translations representing 647 unique lan-
guages of 83 different language families. The scaled LDT measures for all of these languages
range from -5.11 to 4.26 and roughly follow a normal distribution (Fig 3).

Among the outliers with highest LDT values are Cherokee (chr), Finnish (fin), Inuktitut
(ike), varieties of Quechua (quh, quy, quc), and Zulu (zul). Among the languages with lowest
LDT values are Hmong (hea), Pidgin Nigerian (pcm) and Vietnamese (vie).

To visually illustrate the range of values for all languages and all three LDT measures, we
plot each language as a point in a three dimensional “lexical diversity space” along the dimen-
sions of ZM’s α, Hw and TTR (see Fig 4).

It is apparent that there is systematic LDT variation between families. For example, Altaic
languages (Turkish, Azerbaijani, Kazakh, Uzbek, etc.) have high α,Hw and TTR values, cluster
together in the upper-right corner (yellow squares), and hence display high lexical diversity.
On the contrary, Creole languages have low α, Hw and TTR values, cluster in the lower-left

Fig 3. Lexical diversity distribution. Scaled LDT measures for 647 languages (histogram with grey bars),
with smoothing function overlaid (red). The corresponding normal distribution is plotted in blue (dashed line).

doi:10.1371/journal.pone.0128254.g003
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corner, and display low lexical diversity (red squares). Indo-European languages range some-
where in between (green squares).

On top of between-family variation, there is also within-family variation in our data sample.
This is illustrated for Indo-European languages of the UDHR in Fig 5. Even within the same
familiy (Indo-European) there is a considerable spectrum of LDT values, ranging from Low
Saxon (nds), on the extreme low end, to Marathi (mar), at the high end.

Our working hypothesis is that this between and within family variation can partly be ex-
plained by individual histories of language contact, i.e. the ratio of non-native to native speak-
ers per language.

Linear regression
For our sample of 91 languages, a linear regression with the logarithm of L2 ratios as predictor
and the scaled LDT measure as dependent variable suggests that languages with higher L2 ra-
tios have lower LDTs (Fig 6 and Table 3).

Namely, there is a negative coefficient (i.e. slope) of -0.19 between the linear predictor of
L2/L1 ratio and the LDT of languages. This means that an increase of L2/L1 ratio by one unit is
corresponding to a decrease of LDT by 0.19. This is a moderate, but strongly significant effect
considering that the absolute range of scaled LDT values is ca. 8. Accordingly, the variance in
LDT explained by the model (R2) amounts to ca. 11%.

Fig 4. Lexical diversity space. Locations of 647 languages along ZM’s α, Hw and TTR (centered and
scaled). Highly diverse languages cluster towards the upper-right corner in the back (highest values),
whereas lexically redundant languages cluster towards the lower-left corner in the front (lowest values). To
illustrate between-family variation, Altaic (yellow squares), Indo-European (green squares) and Creole
languages (red squares) are pointed out among languages of other families (grey dots).

doi:10.1371/journal.pone.0128254.g004
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Fig 5. Lexical diversity space for Indo-European languages. Locations of Indo-European languages
along ZM’s α, Hw and TTR (UDHR only). High LDT languages are to be found in the upper-right corner (e.g.
Lithuanian, Marathi), low LDT languages are to be found in the lower-right corner (e.g. Low Saxon, English,
Afrikaans).

doi:10.1371/journal.pone.0128254.g005

Fig 6. Linear regression. Linear model for the relationship between the ratio of L2 speakers versus L1
speakers (logarithmically transformed) and scaled lexical diversities. Model parameters (β-coefficients, R2-
values and t-values are displayed in Table 3). The blue line indicates a linear model with the respective
intercept and slope (coefficient) and 95% confidence intervals.

doi:10.1371/journal.pone.0128254.g006
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Linear mixed-effects regression
For the same 91 languages the linear mixed-effects regression controlling for families, regions,
measures, text types and ISO codes yields a similar result, as can be seen in Table 4. Again, the
coefficient is negative (ca. -0.28) and significantly different from zero.

A visual way of establishing the significant result is to plot the relationship between log
(RatioL2) and LDT for different families (Fig 7), different regions (Fig 8), different LDT mea-
sures (Fig 9) and different text types (Fig 10). These plots illustrate that the negative relation-
ship holds for most families and regions, and for all three LDT measures as well as text types.

Phylogenetic signal analyses
In Fig 4 we had Altaic and Indo-European languages as examples of clustering according to
family membership. If this clustering holds for other families as well, we expect lexical diversi-
ties to generally have a strong phylogenetic signal. This is corroborated by the results for the λ
analyses (Table 5).

For all three families for which enough phylogenetic tree information is available (Austrone-
sian, Bantu, Indo-European) the LDT measures display λ-values above 0.5 and hence closer to
1 than to 0 (with the only exception being α for Bantu languages). There is a “deep” phyloge-
netic signal across the board. This is evidence that LDTs develop in parallel to the phylogenetic
pathways reconstructed with cognate trees.

Phylogenetic generalized least squares regressions
The PGLS regressions for 26 Indo-European languages again report relatively high λ-values,
implying that a big part of the co-variance of lexical diversities can be explained by the phyloge-
netic relationships of the languages. However, despite the high λ-values, the ratio of non-native
to native speakers is still a significant predictor for all three LDT measures (Table 6) after ap-
plying the Holm-Bonferroni correction.

Discussion
The results of simple linear regression, mixed-effects regression and phylogenetic regression re-
veal that languages with higher non-native to native speaker ratios are (by trend) those lan-
guages with lower lexical diversities.

The simple linear regression yields a negative coefficient (-0.19) between L2/L1 ratio and
scaled LDT, i.e. a plus of non-native speakers is associated with with a reduction of lexical di-
versity. The variation explained in the simple linear model amounts to 11% across 91 languages

Table 3. Results for linear regression model.

Dep. var. Indep. var. R2 coefficient SE t-value p-value

LDT (scaled) log(L2/L1) 0.1109 -0.19051 0.02592 -7.349 1.04e-12

doi:10.1371/journal.pone.0128254.t003

Table 4. Results for linear mixed-effects regression.

Dep. var. Fixed eff. Random eff. coefficient SE t-value p-value

LDT (scaled) log(L2/L1) family, region, measure, text, ISO code -0.2772 0.1329 -2.087 0.0375

doi:10.1371/journal.pone.0128254.t004
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of 26 families. For the same sample of languages, the coefficient of a linear mixed-effects regres-
sion with families, regions, LDT measures, text types and ISO codes as random effects is signifi-
cant (-0.28), indicating that the negative association between non-native speaker proportions
and lexical diversities is not limited to a specific family, region, LDT measure or text type. In
parallel to the mixed-effects regression, the PGLS regression for 26 Indo-European languages
reveals that L2 ratio is still a significant predictor even after controlling for phylogenetic relat-
edness within that family.

Note, however, that there can still be families, regions, LDT measures or text types for
which this relationship does not hold. For example, in Fig 7 languages are grouped by families.
While for 5 of these overall 9 groups (Austronesian, Indo-European, Turkic, Creole and Other)
the negative association holds, 2 display the inverse correlation (Atlantic, Uralic), and 2 do not
display much of a relationship at all (Benue-Congo, Semitic). Likewise, 6 out of 9 regions (Fig
8) display the negative association (Europe, Greater Mesopotamia, Indic, Inner Asia, Oceania
and Other), whereas for Southeast Asia the association seems inverted, and for South Africa

Fig 7. Regression plots by families. Scatterplots of log-transformed ratios of L2 speakers versus LDTs facetted by language families. Colored lines
represent linear models by families with 95% confidence intervals. Languages of families with less than 10 data points are subsumed under “Other”. Note that
this is just done for plotting, for statistical modeling language families are not collapsed.

doi:10.1371/journal.pone.0128254.g007
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and the African Savannah there is not much of a pattern at all. Hence, a conservative interpre-
tation of the mixed-effects regression is that the negative association holds acrossmost families
and regions and across all LDT measures and text types (in our sample).

It is also important to point out that having L2/L1 ratios as fixed effect and adding families,
regions, LDT measure, text types and ISO codes as random effects in a mixed-effects model
means that they are considered to be different kinds of predictors. L2 ratios are seen here as a
learning effect that (argueably) impacts the encoding strategy of a linguistic community causal-
ly. Families, regions, LDT measure, text type and ISO code, on the other hand, are just descrip-
tive categories, i.e. means of binning or grouping. As such they are not supposed to causally
explain lower or higher lexical diversities, they just categorize them and are taken into account
as confounding factors.

Overall, the outcomes of all three models converge to show that L2 ratios can predict lexical
diversities a) cross-linguistically, e.g. across different families, and b) within them same family.

Fig 8. Regression plots by regions. Scatterplots of log-transformed ratios of L2 speakers versus LDTs facetted by language regions. Colored lines
represent linear models by families with 95% confidence intervals. Languages of regions with less than 10 texts are subsumed under “Other”. Note that this is
just done for plotting, for statistical modeling language regions are not collapsed.

doi:10.1371/journal.pone.0128254.g008
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Fig 9. Regression plots by LDTmeasures. Scatterplots of log-transformed ratios of L2 speakers versus LDTs facetted by LDT measures. Lines represent
linear models by families with 95% confidence intervals.

doi:10.1371/journal.pone.0128254.g009

Fig 10. Regression plots by text types. Scatterplots of log-transformed ratios of L2 speakers versus LDTs facetted by text type. Lines represent linear
models by families with 95% confidence intervals.

doi:10.1371/journal.pone.0128254.g010
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Conclusion a) is backed by the linear mixed-effects regression across different families, regions,
text types and LDT measures. Conclusion b) is based on Indo-European languages only. In the
following, we discuss the merits and limitations of our approach in more detail.

What are we actually measuring as lexical diversity?
Given our definition of a word type, differences in lexical diversity can stem from a) inflectional
marking (e.g. sing, sang, sung), b) derivation (e.g. sing-er), c) prefixes (e.g. re-consider), d) com-
pounding (e.g. snowwhite), e) differences in the base vocabulary (loanwords, neologisms) and
f) variation in orthography (e.g. neighbor and neighbour). This begs the question which factor
is most important, and hence, what difference we are actually measuring using LDT.

A recent study [56] has shown that in the history of English LDT has systematically de-
creased. Namely, the LDT for the Old English (OE) version of the Book of Genesis was 23%
higher than the LDT of the Modern English (MnE) parallel translation, whereas the deviation
between different texts of the same period (either OE or MnE) was only 1–2%. Further analyses
suggested that the bigger difference in LDTs between OE and MnE derive from the loss of in-
flectional marking.

These observations align with earlier studies arguing that the parameter α of Zipf’s law de-
creases in children’s speech when they learn to use a wider range of vocabulary and apply inflec-
tions more productively [57], that parameter α is lower for languages with more grammatical
marking [58–60], that it is lower for texts un-lemmatized compared to lemmatized texts [24],
and that LDT can be increased by merging words in a simplified grammaticalization model [61].

Overall, though all the factors a)-f) are involved in the variation of LDT values, based on
earlier studies it is reasonable to assume that especially the factors under a)-d) play a predomi-
nant role for variation in numbers of word forms.

Non-native speakers and lexical diversity
According to theories relating to language contact [10–12, 14–16, 62] non-native speakers in a
population can bias the shared language towards exhibiting less morphological elaboration.

Table 5. Results for the phylogenetic signal analysis (mean λ).

Family Text α Hw TTR

Austronesian UDHR 0.98 1 1

Austronesian PBC 0.94 0.82 1

Bantu UDHR 0.46 0.85 0.58

Indo-European UDHR 1 0.64 1

doi:10.1371/journal.pone.0128254.t005

Table 6. Results for PGLS.

Dep. var. Indep. var. R2 coefficient Standard error λ p-value

ZM’s α log(L2/L1) 0.15 0.07 0.03 0.67 0.03*

Hw log(L2/L1) 0.26 -0.28 0.1 0.57 0.003*

TTR log(L2/L1) 0.17 -0.05 0.02 0.72 0.021*

* still significant after Holm-Bonferroni correction

doi:10.1371/journal.pone.0128254.t006
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Several historic and sociolinguistic studies have pioneered this hypothesis on qualitative
grounds [10, 11, 14, 62]. For example, it is argued that the degree of inflection loss and levelling
is considerably lower for low-contact Germanic languages such as Faroese and Icelandic than
for high-contact varieties such as English and Dutch [14, p. 72]. Especially in the history of En-
glish the assimiliation of non-native speakers of Scandinavian populations [11, p. 91], Late
British speakers [14, p. 55], and French-speaking Normans were named as potentially driving a
reduction in morphological elaboration (see [16] for a more detailed discussion with reference
to case marking).

These qualitative studies of the histories and properties of specific languages are backed by
quantitative studies that use statistical models to link population size [12] and non-native
speaker ratios [15, 16] with less morphological marking across many languages. Given that less
morphological marking is tightly linked with lower lexical diversities, the qualitative and quan-
titative explanations elaborated by the aformentioned studies also constitute the most promiss-
ing explanation for the results reported in the current study. This is not to say, of course, that
there cannot be any other “lurking variables” and potential alternative explanations for vari-
ance found in LDTs.

Synchronic data and diachronic implications
The study presented here is mainly synchronic, i.e. the associations between a) recent proper-
ties of parallel texts and b) recent numbers of non-native speakers are a cross-section of dia-
chronic processes. It is reasonable to ask whether conclusions about diachronic processes can
be reached based on such an analysis.

However, an independent study on OE and MnE parallel translations of the Book of Genesis
demonstrated that reduced lexical diversity can be the outcome of changes in a language over
historical time, and that these changes can be quantified using frequency distributions [56]. In
addition, there is evidence that the mean population ratios between languages of the same
areas (Africa, Eurasia, Australia and New Guinea, and the Americas) can be extrapolated into
the past [63] by several thousand years (with diminishing acuracy). Of course, for certain lan-
guages, non-native speaker ratios fluctuate over time due to migration and trade routes. How-
ever, across 91 languages we expect fluctuations to average out. Moreover, the phylogenetic
methods used allow us to infer pathways of evolution and how they are related to the relevant
predictor variables (L2 ratio) in a family tree. Hence, we observe synchronic results of dia-
chronic processes that have potentially affected the languages under investigation in the past.

Parallel texts as doculects
The EPC, UDHR and PBC are highly specified texts of a certain genre, register and style, i.e.
so-called doculects. Such doculects represent languages in a rather indirect fashion [64, 65]. An
optimal solution would be to compile balanced corpora of parallel texts for hundreds of lan-
guages, but such a balanced corpus is currently not available.

Having said that, there is evidence that systematic variation in lexical diversity is not con-
fined to our parallel texts, but reflected in frequency distributions of various parallel and non-
parallel texts [56, 58–60, 64, 66].

Moreover, as Fig 10 illustrates, the correlation between LDT and L2 ratios holds across all
three parallel text corpora, independent of text size (UDHR, ca. 2000 words per language, PBC
ca. 20000 words per language, EPC ca. 7mio words per language) as well as genre (legal text, re-
ligious texts, written speeches). This suggests that the effect is robust and extrapolates beyond
the doculects used here.
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Which languages have the best information encoding strategy?
Neither previous studies on language “simplification” [12–16] nor the present work makes any
claims as to whether lexically rich or poor languages are more efficient or less efficient overall,
or “better” or “worse” communicative systems in an absolute sense. It has been argued else-
where [67–70] that the assignment of complex meanings to constructions (e.g. fixed word or-
ders) can compensate for a lack of lexical diversity (e.g. less inflectional variants). These claims
are independent of the findings reported in this study, that languages that recruited significant
numbers of adult non-native speakers in their histories are more likely to exhibit low lexical di-
versity. However, the results do indicate that languages as communication systems adapt to the
learning constraints of speaker populations.

Are all languages directly comparable?
Our analyses include Creole languages. Because of their abrupt creation by L2 speakers, it
might be argued that Creole languages are not a coherent group comparable to a language fam-
ily like Indo-European. However, it is equally plausible that the same L2 learning pressures
that most strongly shape Creole languages are at play in historical language change of other
languages as well, albeit to a lesser extent (see also [11, 14]). From this perspective, the differ-
ence between Creole languages and other language groupings is a matter of degree, rather than
categorical. Including them as a sub-group instead of excluding them categorically can there-
fore only help to better understand the pressures that shape languages over time.

Correlation is not causation
Spurious correlations are a recurring problem in studies of sociolinguistic variation [71, 72],
where independent evidence can help to support claims of a causal relationship. In the present
case, a causal link between non-native learning and reduction of lexical diversity is supported
by two areas of research:

1. Qualitative sociolinguistic studies are replete with examples of non-native speakers reducing
morphological marking and hence lexical diversity over time [11, 13, 14, 62] and these are
backed by quantitative evidence [12, 15, 16].

2. In the context of measuring lexical diversity for teaching purposes it has been shown that L2
learners of French [18] and English with various L1 backgrounds [17] produce output of
lower lexical diversity compared to native speakers.

We therefore emphasise the converging evidence from qualitative and quantitative, dia-
chronic and synchronic studies showing that the presence of significant numbers of non-native
speakers systematically lowers the likelihood of preserving lexically rich encoding systems.

Conclusion
Languages with more non-native speakers tend to have lower lexical diversities, i.e. fewer word
forms and higher word form frequencies. This trend holds across different language families,
regions, measures, and text types. In other words, non-native language learning and usage
emerges as important factor driving language change and evolution besides native language
transmission.

Since non-native language learners are prone to reduce manifold word forms to a smaller
set of base forms, it is natural that they shape the lexical encoding strategies of the next genera-
tion of learners. It is not clear, and not particularly relevant for our approach, whether the re-
sulting lower lexical diversity results in a “better” or “worse” encoding strategy. The picture
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that emerges, however, suggests that in the long run, languages as encoding systems can adapt
to sociolinguistic pressures, including those determined by learning abilities and constraints of
their speakers. This finding can help to disentangle the complex relationship between language
learning, language typology and language change. As a result, theories of language evolution
should take into account the co-evolution of population structure, human learning abilities
and language structure.
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