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Abstract
Molecular dynamics (MD) simulation is an important tool for understanding bio-molecules in

microscopic temporal/spatial scales. Besides the demand in improving simulation tech-

niques to approach experimental scales, it becomes more and more crucial to develop ro-

bust methodology for precisely and objectively interpreting massive MD simulation data. In

our previous work [J Phys Chem B 114, 10266 (2010)], the trajectory mapping (TM) method

was presented to analyze simulation trajectories then to construct a kinetic transition net-

work of metastable states. In this work, we further present a top-down implementation of TM

to systematically detect complicate features of conformational space. We first look at longer

MD trajectory pieces to get a coarse picture of transition network at larger time scale, and

then we gradually cut the trajectory pieces in shorter for more details. A robust clustering al-

gorithm is designed to more effectively identify the metastable states and transition events.

We applied this TMmethod to detect the hierarchical structure in the conformational space

of alanine-dodeca-peptide from microsecond to nanosecond time scales. The results show

a downhill folding process of the peptide through multiple pathways. Even in this simple sys-

tem, we found that single common-used order parameter is not sufficient either in distin-

guishing the metastable states or predicting the transition kinetics among these states.

Introduction
Protein folding problem has been intensively studied for decades. Although in-depth under-
standing of proteins has been established by the pioneer works, see reference [1] for brief re-
view, due to the tremendous complexity of these molecules, there is still a long way to get a
clear and definitive description of conformational motions in proteins.

The current progress of experimental and simulation methods has made the protein struc-
tural ensemble accessible to researchers. In experiment, it is possible to directly observe the
protein conformational dynamics by single molecular fluorescence method (SMF) [2]. Mean-
while, the full details of protein dynamics can be obtained by molecular dynamics (MD)
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simulations. The rapidly increasing computational power has enabled people to thoroughly
study some small proteins with lots of parallel generated MD trajectories [3–7], or with a single
long MD trajectory [8], up to milliseconds.

One intriguing point of proteins is that various folding intermediates generally exist [9, 10].
Besides, the unfolded ensemble of a protein also shows heterogeneity. In unfolded phase, pro-
teins may have specific residue structures [11, 12] while statistically behaving like random coils
[13]. The versatile metastable states of a polypeptide reflect the complexity of this molecule’s
conformational space. A complete picture of protein dynamics can be established by explicitly
identifying the metastable states and transitions between them. Such a picture may facilitate
the study of some important protein molecules like intrinsic disorder proteins [14] and amy-
loid forming proteins [15].

So far, we have not provided a definition of a metastable state. A metastable state corre-
sponds to a region in conformational space which is separated from other regions by high free
energy barriers [16]. Consequently, a dynamics simulation trajectory entering into a metastable
state will be trapped there in a characteristic timescale τlife, (i.e., the lifetime of the state), which
should be longer than the local equilibration timescale τeq in the state, (i.e., the time that system
loses its memory inside the state). Thus the kinetic transition between metastable states can be
approximated as Markovian process [17]. Taking the states as nodes and transitions between
them as edges, we can establish a transition network as a simplified picture about conforma-
tional motions of system [18–20].

To identify the states, the traditional way is to project simulation data to a low-dimensional
space spanned by one or two manually selected order parameters, reconstruct the free energy
contour map and then visually pick out the free energy minima (or basins) as states [21]. Some
advanced techniques are also invented or applied to better select the order parameters [22–26].
However, it has been realized that the low-dimensional projection is usually not sufficient in
complex systems, some metastable states may overlap each other after the projection, leading
to artificial and distorted understanding in kinetics [27, 28]. In view of this, some methods
have been designed to construct the transition network without the low-dimensional projec-
tion. Earlier attempts used clustering algorithms to directly group geometric similar conforma-
tions as metastable states [29–33]. However, metastable states should be defined on similarity
of conformations in kinetics (or dynamics) rather than in geometry. In bio-molecules, structur-
ally (geometrically) similar conformations may not be kinetically close to each other, and the
structural difference of conformations inside a kinetic state may look not smaller than that of
conformations in different states, (i.e., the intra-state conformational fluctuation could be not
smaller than the inter-state fluctuation).

Recently, a popular approach in classifying kinetic metastable states and transitions is the
Markov state model (MSM) [34–42]. In the MSM, the sampled conformations are first classi-
fied into lots of small groups called microstates wherein the conformations are similar in geom-
etry. As long as the partition of simulation samples is fine enough, the kinetics between
microstates would be supposed as a discrete-time-discrete-state Markov process, and a transi-
tion rate matrix between microstates could be established by directly counting transition events
along simulation trajectories. Then these microstates are further grouped into metastable states
based on the standard spectral clustering method, and the transition network is constructed ac-
cordingly [34–42]. In the MSM, to ensure the correctness of the results, the number of micro-
states is often very large [43], but can not too large for getting sufficient number of transition
events between them to estimate the transition rates.

In the previous works [19, 20], we proposed a trajectory mapping (TM) method to identify
metastable states without a complete breakdown of simulation data. In the TM, we cluster sim-
ulation trajectory pieces rather than individual conformations, by mapping each trajectory
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piece as a high-dimensional vector with the average values of a set of (analytical) basis func-
tions in the piece as components. The similar trajectory-mapped vectors are then grouped as
metastable states, transition events in simulation trajectories are further identified. Recently,
the idea describing conformational motions by analytical basis functions is also applied to im-
prove and generalize the original MSM where a sample-based discrete functions are applied to
describe the conformational motions. The benefits about the application of analytical basis
functions are widely discussed [41, 42, 44–47]. For example, Nüske et al. [46] use the variation-
al approach to relate the cross time-correlation matrix of analytical basis functions to a finite-
dimensional approximation of dynamics propagator of systems, then the first eigenvectors of
the correlation matrix provides slow dynamics modes. Another similar approach is called
Time-Structure Based Independent Component Analysis (tICA) [44] which generalizes the
usual principle component analysis (PCA) to relate the eigenvectors of the time correlation
matrix to independent modes.

In this paper, we further improve our previous TM by presenting a hierarchical analysis
strategy and a robust clustering algorithm to identify metastable states and transition network
from the trajectory-mapped vectors in general. The state-searching process is now fully auto-
mated, and the complex transition network can be easily constructed accordingly in polypep-
tide. We also briefly discuss the relation between TM and the MSM-like methods.

Materials and Methods

Overview of trajectory mapping
Trajectory mapping (TM) is an analysis framework to identify metastable states from simula-
tion data and to construct the transition network between the states. The TMmaps molecular
dynamics (MD) trajectories or trajectory pieces with approximately equal length τ to high-di-
mensional vectors,

~vi ¼ ð1; hÂ1ðqÞii; hÂ2ðqÞii; . . . ; hÂnðqÞiiÞT; ð1Þ

where the components of the mapped vectors are the average values of conformational func-

tions fÂmðqÞg (named as basis functions) in the trajectory pieces. hÂmðqÞii ¼ 1
t

R t

0
Âm qi tð Þdtð . q

denotes the conformational coordinates of the simulated system, such as the spatial positions
of all atoms. qi(t) means the ith trajectory piece within the time interval t 2 [0, τ]. Here the first

basis function Â0ðqÞ � 1 was explicitly written, all the other basis functions fÂmðqÞg; m ¼
1; � � � ; n are applied to describe (interested) conformational motions.

In the TM, the basis functions are orthonormalized each other under a reference distribu-
tion Pref(q),

hÂmðqÞÂnðqÞiref ¼ dmn; ð2Þ

Here h� � �iref represents the average over Pref(q), which is estimated in the corresponding finite-
size sample. We could choose all of the sampled conformations in these trajectory pieces, or a
relevant part of these conformations as the reference sample. It is easy to linearly combine the
preselected basis functions to form a set of orthonormalized basis functions satisfied Eq (2) by
standard methods such as the Gram-Schmidt process, or PCA.

Aggregations of the trajectory-mapped vectors are found to correspond to metastable states
in the previous work [20]. In simpler cases where only a few (ns) metastable states exist, we re-
duce the mapped vectors into a low (nd = ns−1) dimensional space by PCA, then directly iden-
tify the aggregated clusters as metastable states. However, in peptide or protein systems, there
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are usually lots of metastable states in various (and not well separated) time scales, more sys-
tematical implementation of the TM and robust clustering algorithms are needed.

Mathematical and physical meaning of TM
Before introducing details of the improved TM, we discuss the mathematical and physical
meanings behind the TM, on such as basis functions, reference distribution, the PCA reduc-
tion, clustering of mapped vectors, and the identification of transition events.

Basis functions. Basis functions should be chosen to identify typical conformational mo-
tions of systems. Some physical quantities, such as, in protein, the torsion angles of backbone,
distances of residue pairs, number of native contacts, root mean square deviation from some
particular conformations, hydrogen bonded energy, solvated energy, etc., are good candidates
of basis functions. In addition, since we usually focus on large-scale conformational motions,
some fast degrees of freedom, such as hydrogen atoms, bond oscillation, etc., are usually ex-
cluded as basis functions. It is more efficient to select functions in coarse-grained conforma-
tional space as basis functions. More discussions about basis functions can be found in our
previous works [19, 20, 48], or in some current approaches of MSM, such as tICA and the vari-
ational approach [44–47] where basis functions are similarly selected to expand the
dynamics propagator.

Similarity of trajectory pieces. We define the overlapping integral of two probability den-
sity functions Pi(q) and Pj(q),

hijji ¼
Z

PiðqÞPjðqÞ
Pref ðqÞ

dq; ð3Þ

where Pref(q) is a reference probability density function. Although the overlapping integral may
be sensitive to Pref(q), some qualitative results, such as the zero value of the overlapping integral
means no overlapping, is not dependent on the selection of Pref(q). We usually choose Pref(q)
including both Pi(q) and Pj(q) to make the definition be reasonable. In practical application,
the integral is usually estimated by finite-size samples of these probability distributions rather
than their analytical formulas. Since

PiðqÞ
Pref ðqÞ

¼
X
m¼0;���

hÂmðqÞiiÂmðqÞ; ð4Þ

the inner product of trajectory-mapped vectors, which defined as

~vi �~vj ¼
X
m¼0;���

hÂmðqÞiihÂmðqÞij; ð5Þ

is a good estimate of the overlapping integral. Here we include the first trivial basis function

Â0ðqÞ � 1 and require fÂmðqÞg satisfies Eq (2).
We further define the scaled inner product (SIP),

SIP ¼ v̂ i � v̂ j ¼ cos yði; jÞ: ð6Þ

Here v̂ is the unit vector of~v . Therefore, while i and j correspond to two trajectory pieces
which visit in the same metastable state and reach local equilibrium inside the state, their SIP is
almost unity. Conversely, if the trajectory pieces i and j visit two complete different conforma-
tional regions without any overlapping, their SIP is almost zero. The value of SIP between zero
and unity corresponds to the fact that the trajectories partially overlap in conformational
space. In practice, although it is possible the SIP is slightly smaller than zero due to the finite
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sizes of samples and finite basis functions, it provides a good measure about similarity of trajec-

tories. In the paper, we use the SIP (or it corresponding distance such as d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� SIPÞp

)
rather than the usual Euclidean distance de ¼ j~vi �~vjj to measure the similarity of trajectory

pieces. It is one of key points in the improvement of the TM.
Reduction of trajectories. There are closely relation between the TM and the variational

approach [46] and the tICA [44]. The variance-covariance matrix element of f~vig is

�Smn ¼ 1

m

X
i

hÂmiihÂnii

¼ 1

t

Z t

0

dt 1� t
t

� �
½CmnðtÞ þ CnmðtÞ�:

ð7Þ

Here CmnðtÞ ¼ 1
t�t

R t�t

0
dt1

1
m

P
iÂ

mðqiðt1ÞÞÂnðqiðt1 þ tÞÞ is nothing else but the time correlation

in the variational approach [46], where the first (left or right) eigenvectors of the cross time-
correlation matrix of basis functions correspond to slow dynamics modes (i.e., the transitions
between metastable states). The eigenvalues are expected to be single-exponential decay func-
tions of time, while the basis functions are orthonormalized under the equilibrium distribution
Peq(q). In the TM, we do not require to apply Peq(q) as the reference, and the variance-covari-
ance matrix of trajectory-mapped vectors is a kind of average of the time correlation matrix.
Although the principle components may not directly give slow modes, they well distinguish
metastable states then provides the slow modes of system.

Clustering trajectories to states. As we already mentioned, a conformational region is a
metastable state if the local equilibrium time inside the region, τeq, is smaller than the life time
of trajectory inside the region, τlife. We might measure the metastability of a state by the two

times, such as k ¼ tlife
teq
. In the TM, we map trajectory pieces with the length τ then cluster them

as metastable states, thus some states can be found if they satisfied the condition,

teq � t � tlife: ð8Þ

On the one hand, if τ� τlife, the τ−length trajectory pieces have significant possibility stay in-
side this state for identifying. Otherwise, trajectory pieces could only partially stay inside the
state, thus no such a cluster corresponding to the state could be found. For these states, we can
cut trajectories into shorter pieces (smaller τ) to make them be visible. On the other hand, τeq
� τ is a more basic condition in the TM, which ensures that all τ-length trajectories inside the
state are mapped in the same cluster.

In realistic systems, there are usually lots metastable states with wide-distributed τeq and
τlife. It is not easy to find all of them in a single τ. In this work, we first find large-size clusters at
large τ, which obviously correspond to metastable states, then we cut the remaining trajectory
pieces shorter and repeat to find large-size cluster as states, until most of data are identified or
the remained trajectory pieces are too short.

Identify transition events. After finding metastable states, we can further translate simula-
tion trajectories to state-indicator curves. These curves give the states that individual conforma-
tions (or a few successive conformations) located in. Concretely speaking, given ns identified
metastable states whose mapped vectors based on Eq (1) are denoted f~vs

ag; a ¼ 1; . . . ; ns, a simu-
lation trajectory i can be transformed into ns state-indicator curves, {fiα(t)},

fiaðtÞ ¼ v̂ s
a � v̂ ½t�Dt;tþDt�

i : ð9Þ

Here, v̂ s
a is the unit vector of~v

s
a, and v̂

½t�Dt;tþDt�
i denotes the unit vector mapped from the confor-

mations of the ith trajectory within the time interval [t−Δt, t+Δt]. If Δt! 0, only the individual
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conformation qi(t) (the conformation of the ith trajectory at time t) is considered. Using finite
Δt, the statistical noise in the state-indicator curves could be depressed. Ideally, fiα(t) should be
either zero or unity, i.e., fiα(t)� 1, if qi(t) 2 Sα, otherwise fiα(t)� 0. Here Sα represents the state
α. Therefore, the transition events between metastable states can be identified from the state-
indicator curves.

The systematical implementation of TM
The TM algorithm. We summarize algorithm of the TM as,

1. Choose a set of conformational functions and a reference sample, then form the othonorma-

lized basis functions fÂmg; m ¼ 1; � � � ;m.
2. Map trajectory pieces with length τ to vectors f~vig, and reduce the mapped vectors by PCA.
3. Group the mapped and reduced vectors by a clustering algorithm and identify larger cluster

as metastable states.

4. Cut trajectory pieces which are not identified yet to shorter pieces, repeat the step 1 to 3
until the remained trajectory pieces are sufficient short.

Here, it is allowed to reset basis functions and the reference sample while varying time scale τ
to better focus on the remaining simulation data.

The clustering algorithm. We briefly summarize the clustering algorithm as,

1. The trajectory-mapped vectors are grouped into clusters if their SIPs are larger than rl.

2. A cluster is identified as a metastable state if its size (number of vectors inside) is larger than

Nstd
ne .

Here we use the SIP defined in Eq (6) to measure the similarity of trajectory pieces. The SIP is
almost within [0, 1] while sufficient basis functions are applied. It closes to unity if trajectories
visit same conformational region, but zero while visiting completely different regions. Thus it
is easy to set criterions to judge if two trajectories are similar. In this paper, rl is set as 0.95,
Nstd

ne ¼ 5. The threshold of cluster size is used to exclude occasional concentrations of trajecto-
ry-mapped vectors. For example, we might generate two trajectory pieces which visit two meta-
stable states occasionally with similar fractions in the two states, their conformational
distributions are similar then the two pieces are mapped in one cluster. However, the probabili-
ty to generate many trajectories with similar distributions but not in a single metastable state is
small. The application of a larger threshold can depress the misjudgement while it might miss
some metastable states. Since we will cut the non-identified trajectories into short pieces and
repeat the clustering and state-identification process, the missed states will be found in the
shorter time scales. Therefore, although the found states in each special τmay be dependent on
the parameter Nstd

ne , the final results of TM is not sensitive to that. In practical application, some
additive judgements and tricks are also used to refine results. These details are listed in S1 Text
of Supporting Information. We also illustrate the clustering algorithm in an imaginary models
in Supporting Information as S1 Fig.

The hierarchical analysis strategy. Polypeptides are quite heterogeneous systems. There
are many metastable states with various τlife and τeq, and there there could also be some sub-
states inside states. The versatile stability and complex interrelation between metastable states
reflect the hierarchical structure of a protein’s conformational space. In view of this, we de-
signed a hierarchical analysis strategy and illustrate it with an imaginary example in Supporting
Information, see S2 Fig.
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Simulation and analysis details
In the paper, we apply the TM in alanine-dodeca-peptide [Ala12], a polypeptide composed of
12 alanine residues. The simulation is performed with TINKER4.2 package using OPLSUA
force field and GB/SA implicit solvent model [49]. Charged termini in Ala12 are used, which
leads to versatile metastable structures [35]. The conformations are recorded every 0.5 ps. In
the previous work [20], we studied this molecule with 1000 20-ns length simulation trajecto-
ries. We found that most of the identified metastable states correspond to β-hairpin/coil con-
formations, and α-helix conformation is less stable then β-hairpin/coil conformations using
current force field, which is consistent with previous experimental and theoretical results [50,
51]. Owing to the limited simulation length of each trajectory and the tentative clustering algo-
rithm, previously we did not globally analyze the system, but only focused on some local struc-
tures instead. In this work, five 4μs-length simulation trajectories were generated, one of the
five trajectories is spawned from α-helix conformation, and all the others were initiated from
β-hairpin/coil conformations to reflect the relative importance of these conformations.

We select the functions of backbone ϕ and ψ angles as basis functions. Here ϕ is defined as
the backbone dihedral angle around the bond connecting Cα and N atoms, ψ is defined as the
backbone dihedral angle around the bond connecting Cα and carbonyl carbon atoms. There
are 22 ϕ or ψ angles in Ala12. These angles fully account for the backbone flexibility of this mol-
ecule. They are transformed into basis functions using the following two-dimensional trigono-
metrical functions.

sin ½ðmþ nÞx�; cos ½ðmþ nÞx�;
sin ½ðmþ nÞy�; cos ½ðmþ nÞy�;

mþ n > 0

sin ðmxÞsin ðnyÞ; sin ðmxÞcos ðnyÞ;
cos ðmxÞsin ðnyÞ; cos ðmxÞcos ðnyÞ;

m � 1; n � 1 :

ð10Þ

Here x and y are two angles measured in radius.m and n are non-negative integers. We define
the summation ofm and n in Eq (10) as the order of these functions, and use the one-to-two
order functions in analysis. Only the correlation between sequentially neighboring dihedral an-
gles are modeled by the basis functions. Therefore, 172 basis functions are finally included in
analysis. 88 of them are functions of single dihedral angles and the remaining 84 ones are func-
tions of neighboring dihedral angles. For peptide system, this set of basis functions is already
enough for a reasonable estimation in the TM [19, 20]. It should be noted that it is possible to
select functions of other degrees of freedom (such as inter-atomic distances) or of carefully
chosen collective variables in analysis, similar results could be obtained. The backbone dihedral
angle is a simple and natural choice for describing the global conformational motions of pep-
tides [52].

We performed the hierarchical analysis at three timescales. The trajectories are first truncat-
ed to 100 200ns-length trajectory pieces. After clustering, the trajectory pieces that are not allo-
cated to any metastable state are truncated to 20ns-length, the shorter pieces that are not
overlapping to existing metastable states are picked out for next round of clustering. The non-
allocated ones in this round of clustering are truncated to 2ns-length. Then, the 2ns-length tra-
jectory pieces that are not overlapping to existing metastable states are kept for the final round
of clustering.
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Results

The metastable states of Ala12
We first examined the convergence of the five 4μs-length simulation trajectories. We calculated
the similarity between the conformational distributions of these long trajectories, i. e. the scaled
inner product (SIP) defined in Eq (6). The results are shown in Supporting Information as S3
Fig. Although every simulation trajectory partially overlaps with some others, there do not
exist two simulation trajectories very similar to each other such that their SIP is close to one.
Therefore, the SIP measure clearly shows that none of the long simulation trajectories has
reached the global equilibrium. We need to combine the information in these trajectories to get
a synthesized picture of the system by the TM.

Metastable states. Through hierarchical analysis at three levels, 28 states were automati-
cally found by the TM. We first found 2 states at 200ns timescale, then 11 states at 20ns time-
scale from the remained parts of trajectories, finally, 15 states at 2ns timescale. These states are
further refined to ensure that the SIP values between different states are almost zero (smaller
than 0.01 in the current analyses). The identified metastable states are orthogonal to each
other, i.e. different states are not overlapping in conformational space, indicates our basis func-
tions is sufficient to completely distinguish these states. The SIPs among states are shown in
Supporting Information as S4 Fig.

Transitions between states. We can get the state-indicator curves by projecting the simu-
lation trajectories to the 28 states. A set of representative state-indicator curves are plotted in
Fig 1. The others are shown in Supporting Information as S5, S6, S7 and S8 Figs. There are to-
tally 28 curves, each addresses the occupation timing and fraction of the third 4μs trajectory in
a metastable state. As we mentioned, if the simulation trajectory stays in certain state around
certain time, the state-indicator curve of this state should take a value close to 1.0 at this mo-
ment. Thus, it could be deciphered from Fig 1 that the 4μs trajectory started off from state S8,
after traveling around other 10 states, it finally entered state S2 and stayed there for the last 2μs,
which indicates the lifetime of state S2 is at least in μs-scale. We also provide the enlarged view
of the parts of trajectory from 0ns to 350ns and from 750ns to 950ns in Fig 2. During the first
period, the trajectory quickly traveled among state S8, S21 and S23. During the second period,
the trajectory jumped between state S9 and S15. It can be seen that the state indicator curves
usually show step-like behavior, jumping between value 0 and 1, which shows that the transi-
tions between states are quite fast compared to τeq and τlife. There also exist some regions in
which the state-indicator curve takes value between zero and one, for example, see the curve of
S9 in Fig 2(b). In that case, the trajectory may enter a conformational region which does not
have a good metastability then is called as a diffusive-like region. Sometimes all the state-indi-
cator curves take almost zero value shortly, which indicates that there are local unidentified re-
gions which could either be metastable or diffusive. The above-mentioned abnormality of
state-indicator curves is understandable considering the complexity of bio-molecules’
conformational space.

We list the number of trajectory pieces used for defining the metastable states in Supporting
Information, see S1 Table. For each state, we also list the average SIP value between the defin-
ing trajectory pieces and the representative vector of the state. An average SIP value close to 1.0
indicates that the trajectory pieces in a state resemble each other quite well. To calculate the av-
erage SIPs, Pref(q) is selected as the equal weight linear combination of the identified metastable
states. In S2 Table of Supporting Information, we show the proportion of conformations which
are identified as metastable states in the five 4μs simulation trajectories. More than 90 percent
of the simulation data is found to stay in the identified metastable states, which suggests the re-
markable metastability of Ala12. Among the five simulation trajectories, the fifth trajectory is
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Fig 1. The 28 state-indicator curves of the 3rd 4μs-length trajectory. The curves are divided into three groups according to the identified timescale of
corresponding states. The states are numbered according to the sequence of finding.

doi:10.1371/journal.pone.0125932.g001
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least accounted by metastable states, this is because the final part of this trajectory entered into
a large region with a few metastable states and some other small regions with prominent diffu-
sive behavior inside (i.e., κ = τlife/τeq is not obviously larger than unity).

Metastability of states. We also tested whether the 28 metastable states satisfy the as-
sumption τeq < τlife. To estimate the τlife of a metastable state, we picked out all the trajectory
pieces that continuously stay in this state, and took their average length as an estimation. To es-
timate the τeq of a metastable state, we calculated the relaxation behavior of the τ-length trajec-
tory pieces defining the state. Concretely speaking, for each trajectory piece i defining the state
Sα, the SIP between the conformations in Sα and the conformations of the beginning u-length
part of trajectory i, are calculated for u 2 [0, τ]. The SIP should be small when u is close to zero.
Meanwhile, as increasing u to approach to τeq, it approaches to 1 within statistical error. Such

Fig 2. The detailed view for some of the state-indicator curves in the trajectory.

doi:10.1371/journal.pone.0125932.g002
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this kind of SIP curve illustrates the relaxation of a trajectory to the local equilibrium inside a
state. We plot some SIP curves for the states S1, S2, S3 and S14 in Fig 3. The SIP curves are fitted
with the stretched exponential model [53].

v̂ s
a � v̂ ½0;u�

i ¼ cf1� exp ½�ðauÞb�g: ð11Þ

For each trajectory piece, an estimation of τeq can be obtained by

testeq ¼ 1

ab
G

1

b

� �
; ð12Þ

where Γ(x) is the Gamma function. Averaging the testeq values of the trajectory pieces defining a

state leads to the estimation of τeq of that state. The final results of τeq and τlife are shown in Fig
4. The relation τeq < τlife is indeed satisfied within statistical error.

Test of the inner product estimate. We further demonstrate the validity of Eq (5). The
evolution of probability distribution are often thought to follow the multiple-dimensional Fok-

ker-Planck Equation, @Pðq;tÞ
@t

¼ LPðq; tÞ, where L is the Fokker-Planck operator. We have

Pðq; tÞ ¼ �0ðqÞ
X

n¼0;1;...

Cn�nðqÞexp ð�lntÞ; ð13Þ

where {ϕn(q)} is orthonormalized, i.e.,
R
ϕn(q)ϕm(q)dq = δn, m, and jϕ0(q)j2 = Peq(q), the equilib-

rium distribution. The non-negative {λn} is sorted from small to large, λ0 = 0. The expansion
coefficient {Cn} is determined by the initial distribution P(q, t = 0). We define the average dis-
tribution

Pavrðq; tÞ ¼
1

t

Z t

0

Pðq; t0Þdt0: ð14Þ

If choosing Pref(q) = Peq(q), it is straight forward to show the overlapping integral defined in
Eq (3)

hPavrðtÞjPavrðtÞi ¼ 1þ 1

t2
X
n>0

Cn

ln

� �2

½e�lnt � 1�2: ð15Þ

As t increases, the exponential terms in Eq (15) decay to zero quickly, and hPavr(q, t)jPavr(q, t)i
−1 will be proportional to 1/t2.

Due to the lack of global equilibrium sample, we focus on the local equilibrium inside the
state S1, and use the local equilibrium sample as the reference. Since Eq (15) is related to the
time relaxation of Pavr(q, t), we truncate the trajectory pieces defining S1 to even shorter pieces
and estimate the relaxation of the ensemble of the short trajectories. Short trajectories of
lengths 100ns, 50ns, 30ns, 20ns, 10ns and 5ns are analyzed. In these cases, we have 52, 104,
156, 260, 520 and 1040 pieces in the trajectory ensemble respectively. The shorter the truncated
trajectories, the initial distribution P(q,0) of the ensemble of trajectories is more similar to the
local equilibrium distribution of S1. The relaxation behavior of hPavr(q, t)jPavr(q, t)i−1 estimat-
ed by Eq (5) is plotted in Fig 5. Apparently, all the curves shown in Fig 5 become proportional
to 1/t2, consistent with the theoretical result. Besides, the timescale at which the crossover to 1/
t2 behavior happens is also consistent with the estimated τeq of S1, see Fig 4. Therefore, the sam-
ple estimation of the inner product between two conformational functions, see Eq (5),
is promising.
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Fig 3. The equilibration process in metastable states. In each panel, different color represents different
trajectory pieces used to estimate the equilibration process. The solid lines are calculated with simulation
data, the dotted lines are the fitted stretched exponential curves.

doi:10.1371/journal.pone.0125932.g003
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The transition network and polypeptide folding
Based on the identified metastable states and the state-indicator curves, we derived out a transi-
tion network and plotted it in Fig 6. The metastable states are shown with circles of various size
and color, they are connected to each other according to their transition relation. It should be
noted that the transition relation illustrated here is inferred from the simulation data. If the
transition between two states only happens in one direction in our finite-time simulation, the
two states will only be connected by single-directional arrow. Thus the transition network may
lack detailed-balance property due to finite sampling. Still, to get a qualitative picture, we esti-
mated the rates of the observed transitions as follows. For each state Si, we estimated its lifetime
tilife. Suppose the jump from Si to another state Sj happened for Nij times, the kinetic transition

rate in this direction could be estimated by

kij ¼
Nij

tilife
P

jNij

: ð16Þ

The different line styles for the transition arrows in Fig 6 illustrate the magnitude of non-zero
transition rates.

Simplified picture in μs scale. According to the transition relation, we roughly partition
the 28 states into 4 groups, G1, G2, G3 and G4. The composition of the groups can also be found
in Fig 6. In simulation, all the transitions between the states in different groups are found to be
single-directional. Concretely speaking, we can only find the transitions from the states in G1

to the states in G3, from the states in G2 to the states in G3 and from the states in G3 to the states
in G4, while all the reverse transitions didn’t show up. However, the states in the same group

Fig 4. Comparison between τlife, τ and τeq. The blue symbols (squares for the ones with error bar, stars for the ones without error bar) denote the estimated
τlife of the metastable states. The green crosses denote the identified timescale of the states. The red diamonds denote the estimated τeq. The error bars are
estimated where possible. The dotted lines are just for aiding the inspection.

doi:10.1371/journal.pone.0125932.g004
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are kinetically closely related to each other. Except for S12 in G3 and S28 in G4, we can find tran-
sition routes of reverse directions between any two states in the same group. Meanwhile, S12
and S28 are actually small intermediate states for the transitions from G1 to G3 and from G3 to
G4, respectively. Thus, the whole picture of the 28 states looks quite like the downhill folding of
protein. The states in G1 and G2 represent two different kinds of denatured states, with a few μs
occupying time. The states in G3 represent the intermediate states of folding. G4 seems the end
of simulation dynamics. System enters the region and stays there more than 2.8μs without leav-
ing. Although it is not clear if G4 is still only an intermediate region in much longer simulation,
in the paper, we name the states in G4 might constitute the folded-state-like ensemble, partially
because the conformational structure looks like the folded one.

The inner structure of two long lifetime states. The sub-states of the 200ns-order meta-
stable states S1 and S2 in Ala12 can be found at nanosecond or sub-nanosecond scales. With τ =
2ns, we found four sub-states for both S1 and S2. The sample state-indicator curves of the sub-
states of S1 and S2 are shown in Supporting Information, S9 and S10 Figs, respectively. (In the
pictures, we use Sa(b) to denote the bth sub-state of state Sa.) Compared with S6 Fig, the state-
indicator curves of the sub-states indeed reflect the detailed inner-state dynamics of S1 and S2.

Fig 5. The scaling behavior of hPavrð~q~; tÞjPavrð~q~; tÞi � 1 versus t.

doi:10.1371/journal.pone.0125932.g005
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Meanwhile, the state-indicator curves of the sub-states of S1 show much more prominent
roughness than the ones of S2, which reflects the more diffusive nature of S1. The fast and
sharp transition between the sub-states of S2 is consistent with our previous results [20]. The
representative structures of the sub-states and their inner-relation are shown in S11 and S12
Figs of Supporting Information.

The persuit of reaction coordinate. Since we have made an analogy of the 28-state transi-
tion network to the downhill folding process, it is natural to ask whether there exists certain
collective variable that can be used as the reaction coordinate of the system. In Fig 7, we plotted
the probability distributions of the 28 metastable states along six collective variables. It can be
seen that, while all the states have similar total energy distributions [see Fig 7(a)], their solva-
tion energy distributions show conspicuous heterogeneity [see Fig 7(b)]. The folded-like states
(states in G4) have relatively low solvation energy. On the contrary, the intermediate states
(states in G3) have relatively high solvation energy. The unfolded states (states in G1 and G2, or
might be denoted as partially folded states more exactly) have their solvation energy distributed
in between. Therefore, in the “folding” process, the unfolded states are first transformed into
more compact form such that the contact between the backbone polar residues and water is re-
duced. After that, the polar residues are released to solvent again, and the folded-like ensemble
is stabilized by solvation energy. Although the solvation energy provides a qualitative standard
to differentiate the states of different identities, it is not qualified to be a reaction coordinate.
For one thing, the states in different groups have overlapping distributions of solvation energy.
For another, the transition from unfolded states to folded states is not monotone along the sol-
vation energy axis.

Fig 6. The transition network. Each node represents a metastable state. The states are colored according to their identified timescales, and their sizes
are determined by the estimated τlife. The transitions between states are plotted with different line styles according to the estimated transition rates. The
classification of the 28 states is also shown.

doi:10.1371/journal.pone.0125932.g006
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Fig 7. The distributions of the 28 states along various collective variables. The selected collective variable include total energy of the system (a), the
solvation energy (b), the distance between the two ends of the peptide (c), the RMSD relative to a representative conformation in S4 (d), the first (e) and the
second (f) principle component of dihedral angle principle component analysis [22].

doi:10.1371/journal.pone.0125932.g007
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We also tested two commonly used reaction coordinates, the end-end distance between the
two ends of Ala12 and the root mean square deviation (RMSD) to S4, where S4 is one of the
states in the folded-like ensemble G4. As can be seen from Fig 7(c), the folded states have prom-
inently larger end-end distance than most of the intermediate and unfolded states. Their distri-
butions along the end-end distance axis also show much more variety than the others. On the
contrary, the overlapping end-end distance distributions for most of the intermediate and un-
folded states suggest that the two terminals of the molecule are closely restrained together in
these states. The charged terminal adopted in current simulation help to stabilize such a close
end-end contact. Although the end-end distance provides a clear separation of the folded state
ensemble and the other states, it still can not provide the correct picture of the reaction process.
Besides, the separation is probably owing to the nature of this system and can not be general-
ized. As shown in Fig 7(d), the RMSD to S4 seems more promising. The states in different
groups are partially separated along the RMSD axis. Besides, the folding process happens with
decreasing RMSD value. However, there still exist overlapping states from different groups.
Thus, projecting the simulation samples to the RMSD axis may also lead to mis-
interpreted kinetics.

Finally, we tested the principle components from dihedral angle PCA [22]. The distributions
of the 28 states along the first and the second principle components are shown in Fig 7(e) and
7(f) respectively. Due to the strong overlap between states, the principle components can not
help to clearly dissect the system into folded, intermediate and unfolded
conformational ensembles.

In summary, we found that even for the simple system of Ala12, the state structure in con-
formational space is very complicated. It is very hard to select a single reaction coordinate to
precisely reflect the complexity of the system. Multiple reaction coordinates are usually neces-
sary. In the simple system, we may use two or three well-chosen reaction coordinates to distin-
guish all the metastable states, or one reaction coordinate may be sufficient in describing the
transitions among a part of the metastable states, but generally, the network model shows its
superiority for describing the complexity of bio-molecular systems.

The folded-like ensemble. Now we focus on the folded-state ensemble, i.e. the states in G4

group. All the seven states in G4 lie in the end portion of the fifth 4μs trajectory. The trajectory
first entered S28. After a short stay, it moved to a free energy basin containing S4, S7, S16, S17, S20
and S25, and jumped fast between these six states until the end of the simulation. The inter-
state transitions between the six states are shown in Fig 8(a). This period lasts for 2.8 μ s. We
found there is about 20 percent conformations of the 2.8 μ s trajectory unaccountable by the
six metastable states, where none of the state-indicator curves of S4, S7, S16, S17, S20 and S25 is
considerably larger than zero [see Fig 8(b)]. Of course, it is possible that we failed to find all the
metastable states in this region. However we have tried to use different length τ of trajectory
pieces to look for more detailed state structures, and there is no qualitatively change of the re-
sults. So it seems that the conformational region shows obvious diffusive behavior out of the
six well-defined states. The representative structures of the six states also support the diffusive
behavior inferred from the state-indicator curves. As shown in Fig 9, the six representative
structures from these states have similar C-terminal structures and versatile N-terminal struc-
tures. In all the states, the C-terminal of Ala12 form stable hydrogen bonds with the amine
bases in the middle of the chain. Meanwhile, the N-terminal chain is not confined by strong
intra-molecular interactions. Such a flexible N-terminal leads to the diffusive-like property.
Considering the fast inter-state transition between S4, S7, S16, S17, S20 and S25, it seems that
these states as well as the outside diffusive regions connecting them constitute a large metasta-
ble state. Actually, the SIP between the first half and the second half of the 2.8 μ s-length trajec-
tory has reached 0.88, which suggests the similarity between the two halves and consequently
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Fig 8. The state-indicator curves of S4, S7, S16, S17, S20 and S25 along the 5th trajectory. (a) shows the
last 2.8 μ s. (b) provides an enlarged view from 3.1 μ s to 3.4 μ s.

doi:10.1371/journal.pone.0125932.g008
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Fig 9. The representative structures of S4, S7, S16, S17, S20 and S25.

doi:10.1371/journal.pone.0125932.g009
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the local equilibration in this part of simulation trajectory. If the above guess is true, the τeq of
the large metastable state should be several micron-second long, which is three orders of mag-
nitude larger than the τeq of its sub-states. The separation of the equilibration timescales be-
tween a state and its sub-states generally exists. We also tried to find the sub-states of S1 and S2
with the TMmethod. The sub-states can only be found at nano-second or sub-nano-second
scales (see the supplementary material). Actually, only when there is timescale separation, the
τlifes of the sub-states could be prominently smaller than the τeq of the host state, which ensures
the consistency of the identified metastable states, see Eq (8).

The characterization of conformational dynamics. For the transition network estab-
lished by the TM, the local equilibrium sample of the states are obtained. Therefore, we can cal-
culate the average value of any physical quantity within the states. This information could help
to characterize the conformational dynamics of inter-state transitions. We considered the 22
flexible backbone dihedral angles used to define the basis functions in the TM. For each state,
we calculated the averaged sine and cosine functions of these dihedral angles, and aligned the
44 values sequentially to form a vector. This vector characterizes the conformations of corre-
sponding state. When comparing the difference between vectors in different states, some clues
of transition dynamics could be obtained.

For example, we analyze the three states S3, S9 and S15 as a transition cycle in the transition
network (see Fig 6). As shown in Fig 10, upper left panel, the transition between S3 and S9 is
mainly induced by the twisting of the N-terminal backbone dihedral angles 1N−1Cα−1C0−2N,
1C0−2N−2Cα−2C0 and 2N−2Cα−2C0−3N, as well as the minor adjustment in the middle of the
chain. (Here the name of an atom is composed of two parts, the integer number indicates the
residue number, and the letters concretely provide the identity of the atom in a residue. Here N
corresponds to the backbone nitrogen atom, Cα corresponds to the α carbon atom, C0 corre-
sponds to the carboxyl carbon atom.) When comparing S3 and S15 (see Fig 10, lower left
panel), we found that the difference between S3 and S9 is still preserved, and there is additional
major difference at dihedral angles 5N−5Cα−5C0−6N and 5C0−6N−6Cα−6C0. This result sug-
gests that the transition between S9 and S15 is only induced by the local adjustment of these two
dihedral angles, which explains the fast transition between the two states shown in Fig 2(b).
Meanwhile, the transition between S3 and S9 as well as that between S3 and S15 are more likely
to be induced by the collective motion of the whole system. Usually it is hard to figure out the
dynamic modes of a complex system by direct visual inspection. The difference graph shown
in Fig 10 makes the dynamic modes directly observable, no matter these modes are localized
or collective.

Discussion
The trajectory mapping (TM) method and its systematical implementation developed here has
wide applicability to data mining of all varieties. The metastable states of bio-molecules as well
as their hierarchical organization can be systematically extracted from simulation data. Apply-
ing the TM in the long simulation data of alanine-dodeca-peptide, 28 metastable states with
various life time and equilibration time were identified. These heterogeneous states could ac-
count for more than 90 percent of simulation data, which illustrates the impressive metastabili-
ty of the model system.

A transition network was established and compared to the downhill folding process of pro-
tein. We found that even for this simple model system, there is considerable overlap between
metastable states along the commonly used reaction coordinates. Therefore, simply projecting
the simulation data to low-dimensional space might unavoidably introduce some artifact in ki-
netics. Such a finding testifies again the superiority of the transition network representation of
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Fig 10. The difference graph for characterizing transition dynamics. The left panel shows the representative structures of states S3, S9 and S15 and the
transition relation between these states. The difference graphs in the right panel illustrate the conformational transition between S3 and S9 (upper), as well as
between S3 and S15 (lower). As introduced in the main text, the conformations in a metastable state can be characterized by a vector. The elements of the
vector are the sine and cosine values of backbone dihedral angles averaged among the conformations in that state. In each difference graph, the horizontal
axis marks the 22 backbone dihedral angles of Ala12. The S3−S9 graph shows the vector of S3 minus the vector of S9. The S3−S15 graph shows the vector of
S3 minus the vector of S15.

doi:10.1371/journal.pone.0125932.g010
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bio-molecules. Since the TM also provides the local equilibrium sample of states, it is also pos-
sible to figure out the dynamic modes of inter-state transitions.

Benefiting from the rapidly increasing computational power, people are collecting massive
detailed simulation data of bio-molecules. Careful analysis of these data can provide a lot of in-
sightful information about the organization style of bio-molecules, which may greatly facilitate
the rational engineering of life materials. The transition network representation has been de-
signed to coarse-grain the dynamics of complex bio-molecules, and some methods have been
subsequently invented to establish the network from high-dimensional simulation data. Since
the temporal information of analytical basis functions is incorporated in the TM, we can direct-
ly find the local equilibrium sample of metastable states, which on the one hand facilitates fur-
ther usage, and on the other hand ensures that the identified states are physically meaningful.
The implementation of TM is flexible. It allows researchers to focus on part of the system by
only selecting basis functions related to the interesting region.

Applying the TM to existing massive simulation data of proteins is currently ongoing. We
would like to mention that although we only focus on the simulation data in this paper, theo-
retically the SMF data can also be analyzed by the TM. Recently, there have been attempts to si-
multaneously measure multiple intra-molecular distances in SMF experiment. TM is especially
appropriate for handling such kind of multiple-dimensional data.

Supporting Information
S1 Fig. The illustration of the current clustering algorithm in TM. The trajectory-mapped
vectors of an imaginary three-state system are projected to a two-dimensional space. In cluster-
ing process, the points in white region will be considered for further clustering, and the ones in
shaded region have already been analyzed and will not be considered further.
(TIF)

S2 Fig. The illustration of the hierarchical analysis scheme. The left panel of (a), (b) and (c)
show the state structure in conformational space at three different levels. The size of a state is
determined by its τlife. The transition relation between states is plotted with dotted arrows. The
right panel of (a), (b) and (c) show the inter-state transition curve at three different levels. ‘O’
denotes the non-identified regions in simulation trajectory. (d) shows the final picture of the
conformational space after identifying the sub-states of S1 and S2.
(TIF)

S3 Fig. A representative conformation of Ala12 (a) and the orthogonality (SIP) between 4 μ
s-length simulation trajectories (b). Shown are the SIP values without absolute-
value manipulation.
(TIF)

S4 Fig. The orthogonality (SIP) between identified metastable states in Ala12. The states are
found respectively at three levels, 200ns, 20ns and 2ns. (a), (c) and (e) show the SIP values be-
tween states found in the same level. (b), (d), (f) show the SIP values between states found in
different levels. Shown are the SIP values without absolute-value manipulation.
(TIF)

S5 Fig. The 28 state-indicator curves along the 1st 4 μ s-length trajectory.
(TIF)

S6 Fig. The 28 state-indicator curves along the 2nd 4 μ s-length trajectory.
(TIF)
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S7 Fig. The 28 state-indicator curves along the 4th 4 μ s-length trajectory.
(TIF)

S8 Fig. The 28 state-indicator curves along the 5th 4 μ s-length trajectory.
(TIF)

S9 Fig. The state-indicator curves of the sub-states of S1 in Ala12 along the 2nd 4 μ s-length
trajectory. The upper panel shows the full curves. The lower panel shows the enlarged view of
the region from 3.1 μ s to 3.3 μ s.
(TIF)

S10 Fig. The state-indicator curves of the sub-states of S2 in Ala12 along the 2nd 4 μ s-length
trajectory. The upper panel shows the full curves. The lower panel shows the enlarged view of
the region from 0.0 μ s to 0.2 μ s.
(TIF)

S11 Fig. The representative structures of the sub-states of S1 and their inter-relation. The
left panel shows the representative structures, the right panel shows the difference graphs be-
tween sub-states. The shown graphs are selected to reflect the most localized differences be-
tween the sub-states.
(TIF)

S12 Fig. The representative structures of the sub-states of S2 and their inter-relation. The
left panel shows the representative structures, the right panel shows the difference graphs be-
tween sub-states. The shown graphs are selected to reflect the most localized differences be-
tween the sub-states.
(TIF)

S1 Table. The number of trajectory pieces defining the metastable states and the average
SIP values.
(PDF)

S2 Table. The proportion of data accountable by the identified metastable states. At certain
time point, the simulation trajectory is considered as accountable by the identified metastable
state only if the summation of state-indicator curves at this time point is larger than 0.9.
(PDF)

S1 Text. Details of clustering algorithm.
(PDF)
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