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Abstract
We study the interplay between correlations, dynamics, and networks for repeated attacks

on a socio-economic network. As a model system we consider an insurance scheme

against disasters that randomly hit nodes, where a node in need receives support from its

network neighbors. The model is motivated by gift giving among the Maasai called Osotua.

Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and

spatio-temporally correlated) and for different network architectures are studied with agent-

based numerical simulations. We find that the survival rate of a node depends dramatically

on the type of correlation of the disasters: Spatially and spatio-temporally correlated disas-

ters increase the survival rate; purely temporally correlated disasters decrease it. The type

of correlation also leads to strong inequality among the surviving nodes. We introduce the

concept of disaster masking to explain some of the results of our simulations. We also ana-

lyze the subsets of the networks that were activated to provide support after fifty years of

random disasters. They show qualitative differences for the different disaster scenarios

measured by path length, degree, clustering coefficient, and number of cycles.

Introduction
Modern society is highly interconnected and depends in myriad ways on the existence and sta-
bility of its supporting networks. Be they infrastructure networks like power networks, tele-
communication networks, water and transportation systems or social, financial, business and
personal support networks—all of them are essential for a functioning society. At the same
time all these networks exist in dynamic environments that are subject to smaller and larger
disruptions created by natural forces (earthquakes, winter storms, draughts) or man made di-
sasters as in wars, financial meltdowns or terrorist attacks.

In recent years the stability of such networks under cascading failure has been an important
research topic. Dorogovtsev and Goltsev [1] discuss various different failure models in their
2008 review of critical phenomena in networks, focussing on sandpile and avalanche models in
a variation of the Bak-Tang-Wiesenfeld [2] model. A different approach has been taken by
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Motter and Lai [3] who developed a basic scenario for a cascading failure: For a given network,
limiting load thresholds are assigned to the nodes. Then a randomly selected node is attacked
and deleted from the network and its load is distributed over neighboring nodes leading some
of them to overload and collapse. In that way, a cascade of failures is generated that runs
through the network. The failure is measured by the extend that the giant component in the
network survives the attack. Motter and Lai discuss the susceptibility of different network to-
pologies under random and targeted attacks. Other models for cascading failures try to stay
closer to power systems networks and study different spreading mechanisms [4]. More recent-
ly, the interdependence of failures in different networks (e.g. a failure in the power system lead-
ing to a failure in the internet network) has been shown to be even more fragile than single
networks by themselves [5].

In all these cases, the fundamental issue is the vulnerability of a heterogeneous self-orga-
nized network against single, often relatively small events. In contrast, the current paper aims
to understand the impact of multiple attacks on a self-organized network. Specifically we are
interested in the influence of spatially, temporally and spatio-temporally correlated attacks on
a network. As a model system we consider the insurance scheme against disasters, based on
networks offering mutual help in need, developed by the Maasai tribe in East Africa [6].

Osotua
The Maasai are a pastoralist society that have developed a need based risk pooling system to
deal with the impacts of natural (predominantly draught) or man made (warfare, cattle rus-
tlers) disasters impacting their herds [7]. The system is called Osotua and involves a network of
mutual relationships. An individual whose herd has been decimated below a sustainable level
will ask his Osotua neighbors for help in the form of a gift of cattle to replenish his own herd
up to a sustainable level. There is a social obligation to provide help, if possible, and help will
only be requested up to the verifiable level of need. Aktipis et al. [6] developed an agent-based
model formalizing the Osotua rules and simulated a society build upon pairs of Osotua part-
ners. They simulated the impact of disasters which occur randomly in time upon randomly
chosen individuals and their herd. They show that support based on Osotua principles leads to
higher herd survival than simulations without transfer gifts or with probabilistic transfers.

Hao et al [8] extended the agent based simulation analysis to study the impact of the size
and topology of Osotua networks on the herd survival rates of a group of participants in the
Osotua scheme. They specifically studied the influence of the total number of participants in
the network, of the mean degree of the network and of the asking-for-help-rules on the survival
rate of a herd for randomly occurring disasters.

Goals
The present paper studies the influence of repeated correlated disasters on a stylized dynamical
model on a network. The specific dynamics that we are studying builds on the agent based sim-
ulations for an Osotua risk pooling system and keeps the Osotua interactions as coded in [6]
and [8]. However, we are not interested in possible anthropological results but we are funda-
mentally interested in the impact of correlated disasters on a network based system. There may
be some useful lessons to learn from our study on the resilience of Osotua systems in an envi-
ronment characterized by global warming and the related increase in length and frequency of
draught periods. Similarly, there are contact points to research related to catastrophic risk
management and insurance risk theory. However, we do not know enough about the socio-
economic situation of the Maasai to be able to make sound predictions or suggestions for their
risk-pooling scheme, nor do we want to develop a full insurance risk theory for correlated
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disaster events. Our aim is to present a study of the interplay between correlations, dynamics
and networks.

Results
The influence of correlated disasters on the survival rates of herds depends dramatically on the
type of correlation. Even without the Osotua network, increasing spatial correlation will mono-
tonically (strongly) increase the survival rates whereas strong temporal correlations leads to a
(smaller) decrease of survival. We consider four cases: A baseline case with weak spatial and
weak temporal correlations, a case with strong temporal and weak spatial correlations, a case
with strong spatial and weak temporal correlations and a case with strong temporal and strong
spatial correlations. We refer to them as the no correlation case, the temporal correlation case,
the spatial correlation case and the spatio-temporal correlation case, respectively.

Correlation also leads to strong inequality among the surviving herds: For disasters with
strong temporal correlations and weak spatial correlations the herd size stays marginal whereas
spatial correlations increases the herd sizes. Interestingly, the surviving herds for spatio-tempo-
ral correllations are as big as the ones for only spatial correlations. These results are presented
and discussed in detail in Section 4.3.

Section 2 discusses the setup for the correlated disaster events, section 3 presents the details
of the agent simulations and section 4 shows how the survival rates are modified by the net-
work and especially by the inhomogeneity of the network. Section 4.3 presents heuristic expla-
nations for some of the simulation results. Section 4.4 shows how the disaster activated support
flows present a dual view of the social support networks that reflects the correlation of the di-
sasters. Section 5 concludes with some general lessons learned and an outlook on further work.

Correlations
Proverbially, disasters rarely strike once, they come in bursts with spatial or temporal correla-
tion, or both. One important natural disaster of that type is a drought: A drought event has a
spatial extend and a temporal duration. It has enduring effects on an area for a number of con-
secutive years. Consequently, if an individual’s livelihood is hit by a drought this year, it is high-
ly likely that this person will suffer and need help for several years in a row. Additionally
people living nearby in similar circumstances will also, with high probability, be affected by the
draught. Hence the random events of being affected by droughts are spatially and
temporally correlated.

Earthquakes are examples of recurring disasters that are predominantly spatially correlated.
They occur randomly in time but are associated with certain locations determined by geologic
fault lines. In the context of an Osotua network, an individual living in a marginal ecological
domain will be the one always in trouble when an ecological disaster hits. Hence, a spatially
heterogeneous support network should be a good insurance scheme against spatially
correlated disasters.

The typical example for the other extreme case of a predominantly temporal correlation of
disasters is related to a general economic downturn. A strong recession or depression of eco-
nomic activities tends to affect all parts of a country more or less uniformly but has a lingering
effect in time. If a large percentage of the population needed assistance this year, the probability
that next year will also be a bad year is very high. Here spatial heterogeneity should have a mar-
ginal influence on the effectiveness of an insurance scheme.

Fig 1 gives four visual samples of correlated disasters in a 2-dimensional space-time rectan-
gle. Fig 1(a) shows disaster events randomly and independently distributed in space and time.
Specifically the disasters are uniformly distributed in space and and follow a Poisson
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distribution in time. Fig 1(b), 1(c) and 1(d) demonstrate disaster events that are spatially corre-
lated, temporally correlated and correlated both ways, respectively. Notice that the number of
disasters in all the panels is the same but that the correlations lead to inhomogeneous visual
patterns. When disasters are spatio-temporally correlated, they occur in clusters, or ellipses in
Fig 1, spatially correlated disasters occur in horizontal line segments, temporally correlated di-
sasters show up as vertical line segments.

Algorithmically, we employ two-dimensional Gaussian distributions to generate random
correlated disaster events. Keeping the total number of disaster events, N, the same, we deter-
mineM event clusters and distribute them randomly in the same manner as the uncorrelated
case in the two dimensional rectangle giving us the set of disaster eventsD = {(t1, x1), (t2, x2),
(tM, xM)}. Using (ti, xi) as the mode, the probability of a close-by point having a disaster is

Fig 1. Samples of random events for four correlation scenarios. The horizontal axis represents time up to 50 years. The vertical axis represents a spatial
grid. The total number of events is 500 for each panel. σt and σx are the variances in the spatial and temporal domain defining the level of correlation (see the
detailed discussion in Section 2).

doi:10.1371/journal.pone.0125467.g001

Node Survival in Networks under Correlated Attacks

PLOS ONE | DOI:10.1371/journal.pone.0125467 May 1, 2015 4 / 16



decided by a two-dimensional discretized Gaussian distribution. The probability landscape is
consequently a M-modal distribution where each mode locally has the shape of a two-dimen-
sional Gaussian. If the events inD get too close, the Gaussians will overlap and increase the
probability of further events in the overlap regions. Notice that the integral over the entire
probability landscape isM, this probability landscape is consequently sampled without replace-
ment for N/M times so that the expected total number of events is N.

The correlation lengths and the correlations strength between random events in(t,x)-space
are therefore measured by the standard deviations of the Gaussian distributions σt, σx visually
representing the length of principal axes of the ellipses in Fig 1. As σ! 0 the Gaussians become
δ-distributions of strength N/M representingM random clusters of N/M highly correlated
events in space and time. As σ increases the correlation length increases but the correlation it-
self decreases. Correlation and correlation length depend on the number of clusters, the size of
the simulation rectangle and the spatial and temporal discretization. Hence, since the variance
of the Gaussian clusters is visually very intuitive and is very close to the algorithm that gener-
ates our disaster events, and since we are only interested in the qualitative response of the sur-
vival dynamics to changing correlations, we present the dependence of the survival rates for
the simulated agents as a function of σt, σx in the subsequent sections.

The agent simulation
The Osotua agent simulations mostly follow the algorithm described in [8]. We recapitulate
the main points here.

The social network
We presume (without ethnological evidence) that Osotua support networks are Watts-Strogatz
random networks [9]. Each random network is generated by randomly rewiring a fraction β of
the edges of a homogeneous network while keeping the average degree of the network k = 4 un-
changed. As β increases, the spatial heterogeneity of the network increases. We keep the size of
the network at 100 nodes and typically choose two values of β: A spatially almost homogeneous
network with β = 0.2 and a spatially strongly heterogeneous network with β = 0.8. In order to
average out a specific network structure, we run all simulations with between 100 and 1000
randomly rewired copies for each experiment. Note that we use the rewiring probability β as a
means of varying the amount of spatial heterogeneity, rather than generating a random net-
work with small-world properties in the sense of [9]. The small world property is not relevant
here, since there is not transport across the whole network.

Correlated disaster events
By default we create on average N = 500 disasters inM = 40 clusters. The number of disasters
in each cluster is a Gaussian random variable with a mean of Nevent ¼ 500

40
¼ 12:5 distinct events

and a variance of one. We will simulate a 50 year timespan in yearly increments on a one di-
mensional ring with 100 locations. We generate the time and location of disasters using the bi-
variate normal generator fromMatlab by initializing a disaster matrix of size 100 × 50 with
zeros. We then createM samples from a uniform distribution on the rectangle (1,100) × (1,50)
representing the uncorrelated disaster centers. For each disaster center we create a bivariate
normal distribution with standard deviation (σt, σx) and sample each distribution multiple
times to obtain Nevent distinct samples at the locations (ti, xi),1� i� Nevent and update the
value of the disaster matrix at (si, ti),1� i� Nevent to one.

Node Survival in Networks under Correlated Attacks

PLOS ONE | DOI:10.1371/journal.pone.0125467 May 1, 2015 5 / 16



Osotua agents
Each node of the social network is occupied by an Osotua agent and his herd of cattle. Links in
the network are bi-directional and represent a node’s Osotua neighborhood, i.e. the individuals
that have mutual obligations to help each other. We are treating the index of a node in the ho-
mogeneous ring network, prior to rewiring, as a physical spatial variable. Hence disasters cen-
tered on a node xi will affect the neighboring nodes xi−1, xi−2, xi+1, xi+2 etc, whether they are
linked in an Osotua neighborhood with the node xi or not. Highly spatially heterogeneous net-
works tend to have links that may reach outside the correlation length of a disaster center.

We formalize the Osotua gift giving schemes in the following ways:

1. The minimum sustainable cattle herd size is 64.

2. Asking rule: Individuals make a request for cattle once a year only if their current holdings
are below the minimum herd size.

3. Giving rule: Individuals give what is asked, but not so much as to put the giver’s cattle hold-
ings below the minimum herd size. An individual who cannot honor the full request with-
out falling below the minimum herd size will give nothing. If asked, an individual may give
multiple gifts.

4. Individuals make a request to a specific one of their Osotua partners chosen randomly with
equal probability.

Simulation
For each random social network the following simulation is repeated 1000 times by default:
The simulation is initialized with an initial herd size for all agents of 70. Each year, each node
experiences a random increase in their herd size with mean 3%. For a given disaster matrix,
every year, the disasters are allocated to nodes. If year n is a disaster year for individual i, a ran-

dom number lðnÞi � N ð30%; ð10%Þ2Þ is drawn to decide the percentage of the herd that is lost
in this year. If, after eliminating the loss, the herd is below threshold, an Osotua request is
made and if possible the herd is restored to the minimum sustainable size of 64 by a gift from
an Osotua partner. A node will be eliminated, if its herd falls below the threshold for two conse-
cutive years. The simulation is continued for 50 years and the node survival rate, the herd size
per survivor node, and the location of the surviving nodes is registered. Averages over the 1000
simulations and the 100–1000 random networks are reported.

Survival rates

Survival rates for isolated nodes
As a benchmark we study a ring of nodes that are unconnected, i.e. without a gift giving
scheme. Fig 2 shows the survival rates of herds at nodes after 50 years of disasters. The x-coor-
dinate in Fig 2 is a measure of the standard deviation of the Gaussians centered at theM-
modes of the probability distribution. Specifically x = p indicates σx = 2−(p−1)64 or σt = 2−(p
−1)32, i.e. x = 1 describes a distribution with a standard deviation of 64 in space and 32 in time,
i.e. the distribution approaches uniformity over the simulation rectangle of 100 spatial points
and 50 years. Hence, correlation increases as the x-coordinate increases.

We see that correlations in these disasters have a huge effect on the survival rates: For strong
spatial correlations the survival rate is almost twice as high as for strong temporal correlations,
with spatio-temporal correlations staying between the two extremes.
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Survival rates for nodes in networks
Fig 3 shows that the network does not affect the relative impact of correlations on the survival
rates compared to Fig 2: Increasing the spatial correlations leads to significantly higher survival,
increasing temporal correlations leads to weakly lower survival and increasing both leads to a
weak increase in survival. However, we can discern three major impacts related to the existence
of a support network and their spatial heterogeneity: i) Support networks lead to more than
50% higher survival rates. ii) Spatially inhomogeneous networks lead to higher survival rates
for all disaster correlations. iii) Spatially inhomogeneous networks show the highest gain in
survival relative to homogeneous networks for spatio-temporal correlations.

Disaster masking
In the case without a network, since nodes will not get any help from their neighbors, the dif-
ferences in the survival rates are entirely due to the effect of the correlation of the disasters. In
particular, the high survival rate for the spatially correlated disasters can be explained by an

Fig 2. Average survival rates after 50 years for isolated nodes as a function of changing disaster variances and different disaster correlations. Red
curves describe spatial correlations among disasters, black curves represent spatial-temporal correlations and blue curves represent temporal correlations.
The correlation strength is defined in detail in the main text in Section 4.

doi:10.1371/journal.pone.0125467.g002
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effect we callmasking. Spatially correlated disaster events are highly likely to strike the same
(small) group of nodes while the majority of the nodes keep growing their herds. Hence these
disasters kill a small, unfortunate group but leaves the rest to grow. In addition, since disasters
strike the same spatial locations, it his highly likely that disasters that happen late in the 50 year
time period, hit locations where the herds were eliminated at an early stage of the simulation.
Hence many programmed disasters are not effective since they hit the spots that have no live
herds at all.

Thismasking effect is much smaller in temporal correlations: Disasters are widely distribut-
ed in space and hence are much less likely to hit an area where most of the herds have been
eliminated by previous disasters. Since spatio-temporally correlated disasters have the same
spatial extensions as the spatial disasters, masking is highly likely also.

These qualitative arguments are supported by Fig 4 which shows the number of effective di-
sasters, i.e. disasters that hit a live node as a function of σ and the various correlation cases. We
see that homogeneous networks and spatially correlated disasters lead to a steady and dramatic
reduction in effective disasters as the correlation strength increases. This is also true for inho-
mogeneous networks if the spatial correlation strength is high enough. In contrast, no masking
effect can be discerned for inhomogeneous networks and temporal or spatio-temporal correla-
tions whereas the impact of spatio-temporal correlation on homogeneous networks is much
like the impact of spatial correlations.

Masking and its interaction with the homogeneity of the network has a profound influence
on the wealth distribution of the surviving nodes, i.e. the average size of the herd after 50 years.
Simulation using random and independent disaster events lead to 122 and 130 cattle per node

Fig 3. Average survival rates after 50 years for networked nodes as a function of the correlation
strength among disasters. Solid lines describe networks that are very inhomogeneous (β = 0.8), dashed
lines describe networks that are more homogeneous (β = 0.2). Red curves describe spatial correlations
among disasters, black curves represent spatial-temporal correlations and blue curves represent
temporal correlations.

doi:10.1371/journal.pone.0125467.g003
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for the highly inhomogeneous and the less inhomogeneous networks respectively. Those values
stay the same for increasing temporal correlations. In contrast, increasing spatial and spatio-
temporal correlations lead to a more than 50% increase of the average herd size to about 195
(165) cattle for inhomogeneous (homogeneous) networks (Fig 5). Notice that for a specific di-
saster correlation type, fewer survivors lead to larger surviving herds. However, this does not
apply across correlations—temporally correlated disasters lead to the smallest number of survi-
vors and to the smallest surviving herd sizes.

Activated social structures
We consider the Osotua network at the beginning of the simulation as the potential network,
reflecting all the possible ways that support (cattle) may flow over the network. Registering all
support events of a simulation gives us a cattle-flow network that represent the activated social
network, i.e. the parts of the social structure represented by the potential network that was acti-
vated through the disasters. Fig 6 shows typical examples of these cattle flow networks for the
four disaster correlation scenarios. Visual inspection shows that networks generated by disas-
ters with spatio-temporal correlations typically lead to sparse networks where the few

Fig 4. Number of disasters over a 50 year period that hit live nodes. Solid lines describe networks that are very inhomogeneous (β = 0.8), dashed lines
describe networks that are more homogeneous (β = 0.2). Red curves describe spatial correlations among disasters, black curves represent spatial-temporal
correlations and blue curves represent temporal correlations.

doi:10.1371/journal.pone.0125467.g004
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connected nodes form long open chain-like structures. Networks for the other cases are not
easily distinguished visually from each other but clearly have higher connectivity. Another way
of characterizing these flow networks is that the flow networks in the spatio-temporal correla-
tion case are a disintegrated fraction of the potential network, whereas in the other cases, the
flow network often represents the giant component of the potential network.

To validate the visual impressions and to quantify the differences between the cases, we de-
termine a set of graph properties for these cattle flow networks. Fig 7(a) and 7(b) show the av-
erage path length and the average degree for the four correlation schemes, both for almost
homogeneous networks (β = 0.2) and for strong spatial network heterogeneity (β = 0.8). For
both network types, the spatio-temporal scheme clearly stands out as particularly sparse, with a
short path length and a low average degree. In contrast, the largest path length and the highest
degree is shown by the networks generated from purely temporal correlations. Note that in cal-
culating the average path length we ignored isolated nodes. Network clustering coefficients and
the number of cycles in a network are presented in Table 1. Again, the spatio-temporal correla-
tion case is very special: The number of cycles is much lower than in the other cases and for β =
0.2 the clustering coefficient is also much lower. For β = 0.8 the clustering coefficient for all
three cases are the same. However, the number of cycles is markedly different for purely tem-
poral correlations (57) vs. spatio-temporal correlations (9).

Comparing clustering coefficient and the number of cycles in the network for these flow
networks with randomized networks with the same number of nodes and links and the same
degree distribution we find in particular that the number of cycles in the network has dropped
dramatically for the cattle flow network relative to the randomized network for purely temporal
correlation whereas the same number has increased (albeit at very small numbers) for the spa-
tio-temporal case.

Fig 5. Average herd size per surviving node after 50 years as a function of the correlation strength
among disasters. Solid lines describe networks that are very inhomogeneous (β = 0.8), dashed lines
describe networks that are more homogeneous (β = 0.2). Red curves describe spatial correlations among
disasters, black curves represent spatial-temporal correlations and blue curves represent
temporal correlations.

doi:10.1371/journal.pone.0125467.g005
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Fig 8 illustrates the temporal sequence of gift giving events that lead to the flow networks in
Fig 6 and to the results presented in Fig 7. We observe that in the spatio-temporal case for net-
works with low spatial heterogeneity (β = 0.2) very few gift giving events occur. For networks
with higher spatial heterogeneity, however, the event numbers become comparable to those in
the other scenarios, while the average degree increases only slightly which indicates a highly
economical use of the gift giving network. In the temporal correlation case gift giving is con-
centrated at the beginning of the time interval whereas for the spatial case gift giving is concen-
trated at much later time.

Fig 6. Four typical gift giving networks for β = 0.2 for a single simulation of 50 years.Red nodes are nodes that have survived, black nodes are dead.
Directed links indicate one or more gift giving event in the course of a 50 year simulation.

doi:10.1371/journal.pone.0125467.g006
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Conclusion
We have studied a highly stylized dynamical model of the impact of the strength and type of
correlations of repeated disasters hitting a networked population. The defining features of the
dynamical model are a small growth rate in the absence of disasters, limited network based re-
source transfers to mitigate disasters and thresholds to determine the viability of a population.

We find that for the same number of disasters, temporally correlated disasters are far more
destructive than spatially correlated or spatio-temporally correlated disasters. In addition, tem-
poral disasters effectively equalize the surviving populations at relatively low levels whereas
spatial and spatio-temporal correlations lead to much larger surviving populations. We discuss
the destructive capacity of disasters, ie. the number of disasters actually hitting a live node and

Fig 7. a) Average path length and b) average degree of the cattle flow networks for the four different disaster correlation cases.

doi:10.1371/journal.pone.0125467.g007

Table 1. Correlation, clustering and cycles.

correlation type β clustering coefficient number of cycles

none 0.2 0.098 (0.018) 25 (59)

none 0.8 0.016 (0.023) 28 (584)

spatial 0.2 0.115 (0.018) 21 (31)

spatial 0.8 0.014 (0.021) 20 (25)

temporal 0.2 0.110 (0.019) 28 (146)

temporal 0.8 0.015 (0.246) 57 (6499)

spatio-temporal 0.2 0.044 (0.007) 4 (1.7)

spatio-temporal 0.8 0.012 (0.014) 9 (3.1)

Average clustering coefficient and average number or cycles for the different disaster scenarios and more

(β = 0.2) or less (β = 0.8) homogeneous networks. The values in parentheses reflect the clustering

coefficient and the number of cycles for randomized networks with the same number of nodes and links

and the same degree distribution.

doi:10.1371/journal.pone.0125467.t001

Node Survival in Networks under Correlated Attacks

PLOS ONE | DOI:10.1371/journal.pone.0125467 May 1, 2015 12 / 16



show that a masking effect arising from an increasing number of disasters hitting empty sites is
at least partially responsible for the higher survival rates in these cases. Spatial correlations en-
hance such a masking substantially whereas spatio-temporal correlations further contribute to
this by providing rapid multiple hits at certain spatial sites (thus impeding the recovery of the
site between subsequent disasters). It should be noted that the effect of masking strongly de-
pends on interaction between the disaster dynamics, the viability threshold and the raw popu-
lation growth rates (in particular the average number of disasters required to eliminate a site).

The architecture of the support network plays no role for temporally correlated disasters
but has a strong impact on the destructive capacity of disasters otherwise. Having a very inho-
mogeneous support network enhances the ability to survive spatially and spatio-temporally
correlated disasters by having a higher probability of unaffected nodes that can
provide support.

In addition, the actual flow of support through the network creates its own network that can
be considered a dual to the potential insurance network. We show that spatio-temporally cor-
related disasters lead to much more fractured support networks than all the other cases. To
quantify this effect better and to understand its underlying mechanisms is the focus of
future research.

Our study is related to the analysis of robustness of networks against errors and attacks e.g.
[10]. However, in those studies, there is a functioning network, typically a communication net-
work, which then may lose functionality (usually measured by a change in network diameter or
by the fragmentation of the network) under a random failure of a node or through the targeted
attack of a (e.g., hub) node. The important feature of the gift giving network, however, is its in-
visibility without disasters/attacks. Links are only evoked under the action of a disaster.

Fig 8. Gift giving events as a function of time. Solid lines describe networks that are very inhomogeneous
(β = 0.8), dashed lines describe networks that are more homogeneous (β = 0.2). Red curves describe spatial
correlations among disasters, black curves represent spatial-temporal correlations and blue curves represent
temporal correlations.

doi:10.1371/journal.pone.0125467.g008
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Therefore, our study addresses the recovery of networks under attack, rather than their robust-
ness. In addition, in contrast to a communication or a power system network, there is no cen-
tral purpose to the network: Survival of a high percentage of the entire population may be a
result of the gift giving insurance scheme but the measure of success of the insurance scheme is
the probability of survival of the individual node.

Our results substantially agree with the theory of metapopulations [11] which studies the
population dynamics of spatially separated populations in different ecological niches. In our
case, spatial correlation of the disasters creates the ecological niches and the support network
create immigration and emigration into different niches. We extend the metapopulation para-
digm by extending the concept of ecological niches into the temporal domain and by replacing
stochastic biological migration by a type of insurance scheme practiced by human groups. Our
main conclusion translated into the ecological domain is that for the same number disasters,
temporally correlated ones are more damaging to the survival of a species than just randomly
and uncorrelated disasters and even much more damaging than spatially correlated ones and
that both effects are reduced for highly mobile populations.

It is also instructive to speculate on the possible relationships of our results with the impact
of global warming on human societies or ecological systems. As many natural disasters are
highly correlated (tornado alley, draughts, landscapes vulnerable to flooding and mudslides,
etc) there is an expectation of more and more correlated disasters as a result of global warming.
Our results might suggest that disasters that are characterized predominantly by spatial struc-
tures like a rising sea-level are less destructive, due to either support transfers or due to aban-
doning of highly vulnerable regions, than temporally clustered events that are spatially more
homogeneous like the global shift of climate zones. Disasters of the latter type may exhaust the
possible resource transfers quickly and the affected communities do not have the option of es-
caping the disasters via relocation leading to a much higher overall impact than the
former type.

Future work
We have tried to study the impact of correlations on a dynamical system on a network in a ge-
neric and bare-bones model. However, we have just scratched the surface of this research
theme. We present the fundamental modeling issues and discuss possible alternate choices to
the ones we made that lead to future research:

• How is the network embedded into physical space? We chose to use a 1-d regular grid prior
to rewiring to determine physical distance. Extensions to a 2-d regular grid with rewiring or
to existing 2-d networks like the airline transportation network or the interstate highway net-
work are clearly relevant for many social networks. A related question then is the choice of
rewiring rules: should they be completely random as in our model or should the probability
of a link between two distant nodes decay with the distance?

• What is the impact of a disaster? In our model disasters hit a node in a network and reduce a
state variable associated with that node. For human infrastructure networks, it may be more
appropriate to have disasters strike an edge or degrade the weight (e.g. the capacity for trans-
port) of an edge.

• What is the size of the network? Increasing the number of the participants can be done in
many ways: Since the number of participants is related to a spatial dimension via the initial
grid size, we can choose to maintain the density in space and simultaneously increase space
and node numbers. Assuming correlated disasters on such large scales also implies a choice
for the type of disaster we are considering. Droughts or floods typically do not affect a whole
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continent. Alternatively, we could reduce the spatial distance with the increased number of
nodes such that the spatial domain stays the same and the density increases. This would
allow us to study the different impact of correlated disasters on low and high
population densities.

• How do we compare the impact of spatial and temporal correlations? We have chosen to
have the same number of disasters distributed in a spatially correlated and a temporally cor-
related way. When we increase the size of a network, the natural way from a temporally cor-
related perspective is to increase the number of disasters proportional to the increase of the
number of nodes. Since we are dealing with transient dynamics, the perspective from a spa-
tially correlated perspective is less clear: The transient dynamics introduces a time scale in
which the disasters are relevant. Similarly to the interaction between network size and spatial
scales, we can choose to keep the density of disasters constant by increasing their number
and increasing the transient time scale, or we can choose to increase the temporal density of
the disasters and study the interplay between the different time scales.

• What is the dynamics that is evolving on the network? Our dynamics is an exponentially
growing population focussing on the initial growth phase. Other dynamical scenarios are a
system in equilibrium or exponentially decaying populations. For instance, limiting the
growth of the herds via a logistic growth model one could study the stability of the equilibri-
um population against different disaster scenarios.

• What is the functionality of the network? One unusual feature of our network is that it is an
insurance scheme and that without disasters the network is invisible. Studying flow networks
(like power systems, information exchanges, infections on social networks etc) that have very
different functionalities will lead to very different ways of measuring the impact of disasters
and hence may likely produce some very different results. Those networks are also very likely
to be much larger than the networks we studied and hence the issues of scale free vs. random
networks may become important as in [10].

Supporting Information
S1 Text. Supplement.We discuss how strongly our findings depend on network sizes (Supple-
ment 1.1) and other topological properties like the degree distribution (Supplement 1.2), and
the average degree spread and degree-degree correlations (Supplement 1.3).
(PDF)

S1 Fig. Simulations 1000 nodes, small world networks. a) Average survival rates after 50
years b) number of disasters that hit live nodes over a 50 year period, c) average herd size per
surviving node after 50 years as a function of the correlation strength of disasters. Simulations
are performed with 1000 nodes. Solid lines describe networks that are very inhomogeneous (β
= 0.8), dashed lines describe networks that are more homogeneous (β = 0.2). Red curves de-
scribe spatial correlations among disasters, black curves represent spatial-temporal correlations
and blue curves represent temporal correlations.
(TIF)

S2 Fig. Simulations 100 nodes, mean degree 4, power law networks. a) Average survival
rates after 50 years b) number of disasters that hit live nodes over a 50 year period, c) average
herd size per surviving node after 50 years as a function of the correlation strength of disasters.
Simulations are performed with 100 nodes and a power law degree distribution with a mean
degree of four. Red curves describe spatial correlations among disasters, black curves represent
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spatial-temporal correlations and blue curves represent temporal correlations.
(TIF)

S3 Fig. Simulations 1000 nodes, mean degree 10, power law networks. a) Average survival
rates after 50 years b) number of disasters that hit live nodes over a 50 year period, c) average
herd size per surviving node after 50 years as a function of the correlation strength of disasters.
Simulations are performed with 1000 nodes and a power law degree distribution with mean de-
gree 10. Red curves describe spatial correlations among disasters, black curves represent spa-
tial-temporal correlations and blue curves represent temporal correlations.
(TIF)

S4 Fig. Scatter plots. Scatter plots for the average survival rate after 50 years for 1000 different
network, (a) as a function of the maximal degree among all the nodes in the network, (b) as a
function of the degree-degree correlation in the network. The former leads to a weak negative
correlation, the latter to a weak positive correlation.
(TIF)
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