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Abstract
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied

to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by

a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Al-

though it has been derived over the years for quite a few physical systems that have nothing

to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic

wave equation. This opens the way for exploiting the tools of the Theory of Special Relativi-

ty. Using no more than the relativistic kinematics of tachyonic momentum vectors, from

which the solutions are constructed through the Hirota algorithm, the existence and classifi-

cation of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N�
1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one ve-

locity. The solutions are divided into two subsets: Solutions whose velocities are lower than

a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the

Theory of Special Relativity, c will be called “the speed of light.” In (1+3)-dimensions, multi-

front solutions are characterized by spatial structure and by velocity composition. The spa-

tial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-di-

mensional – branes. Planar solutions, propagate rigidly at one velocity, which is lower than,

equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c =

1. Some branes are “hybrids”: different clusters of fronts propagate at different velocities.

Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the
speed of light cannot be approached from within the subset of slower-than-light solutions in

both (1+2) and (1+3) dimensions.
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Introduction

1.1 Open problems concerning the Sine-Gordon equation
SGn, the Sine-Gordon equation in (1+n)-dimensions,

@m@
muþ sinu � f@t

2 � ð@x1
2 þ . . .þ @xn

2Þguþ sinu ¼ 0; m ¼ 0; 1;..; n; n ¼ 1; 2; 3; ð1Þ

has attracted wide attention over the years in the description of classical and quantum mechan-
ical phenomena [1–9], and within the framework of quantum-field theory [9–17]. In the study
of specific physical systems, the spatial derivatives in Eq (1) are multiplied by c2, where c is the
velocity of wave propagation in the linearized equation. This velocity is determined by the
physical parameters that characterize each system. Eq (1) is written in terms of scaled coordi-
nates, so that c, the limiting speed of propagation of signals is equal to unity.

Hirota provided the algorithm for the construction of the kink solutions (moving fronts) of
the (1+1) dimensional equation [18], which was then shown to be integrable [19]. In contradis-
tinction, it has been known for decades that the (1+2) dimensional equation does not pass inte-
grability tests that are traditionally applied to nonlinear evolution equations. It is not integrable
within the framework of the Inverse-Scattering formalism [20] and it does not have the proper-
ties required for integrability in a Painlevé analysis [21–24]. Furthermore, in (1+2) dimensions,
whereas single- and two-front solutions could be constructed through the Hirota algorithm,
the attempt to construct a three-front solution encountered an obstacle [25]: For a three-front
solution to exist, the parameter sets (three parameters for each front) from which the solution
is constructed had to obey a constraint. A different constraint was found in the construction of
multi-front solutions of the (1+3) dimensional Sine-Gordon equation [26].

Over the years, quite a few works (see, e.g., Refs. [27–32]) have approached the issue of the
construction of travelling-wave solutions in (1+2) or (1+3) dimensions. Still, a complete algo-
rithm is presented only in Refs. [25, 26]. These solutions, often called “soliton solutions”, actu-
ally, represent moving fronts. In (1+1) dimensions they have been also called “kinks”. For
visualization purposes, one often uses the current density, Jμ = @μu, as the latter does display
solitons.

Although the Sine-Gordon equation was derived for quite a few physical systems that have
nothing to do with Special Relativity, the equation itself emerges as a non-linear relativistic
wave equation. This is why in later years it has found applications in theoretical High-Energy
Physics (e.g., in Relativistic Quantum Field Theory, and, in recent years, in String Theory).
This characteristic of the equation calls for the exploitation of the tools of the Theory of Special
Relativity (see, e.g., ref. [33]) in the analysis of its solutions.

The seed for this approach was sawn [5, 8] before the Hirota algorithm for the construction
of multi-front solutions [18] was known. The physical system for which the equation was
applied was that of a nonlinear electrical circuit as a model for the Josephson Junction. The Lo-
rentz invariance of the equation, and its single-front solution were discussed in ref. [8]. Howev-
er, since then, this idea was not pursued in the literature. Specifically, the literature involved in
the construction of traveling-wave solutions of SGn for n = 2 and 3 has not exploited useful
properties of the parameters that multi-front solutions are constructed from in the Hirota algo-
rithm. Each front is associated with a set of (1+n) parameters, which may be viewed as the
components of a tachyonic momentum vector (a space-like vector with (mass)2 = -1) in the
(1+n)-dimensional space. In this paper, the properties under Lorentz transformations of these
vectors are exploited, allowing for a demonstration of a physical nature of the existence, rich-
ness and classification of N-front solutions, for any N� 1, of SGn for n> 1. To ensure that it is
clear that the metric for a scalar product of vectors in the space is (+1,-1,. . . -1) rather than the
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(+1,+1,. . .,+1) metric employed in Euclidean space, the Special-Relativity term “Minkowski
space” will be used for the (1+n)-dimensional space.

Section 1.2 presents a review of the construction of front solutions of SG1 (kinks) through
the Hirota algorithm [18]. Section 1.3 summarizes the results presented in the paper. Section 2
is devoted to a review of the properties under Lorentz transformations of tachyonic momen-
tum vectors. These properties are the basis for the arguments used in the rest of the paper. Sec-
tions 3 and 4 discuss the construction of moving-front solutions in, respectively, (1+2) and (1
+3) dimensions. Section 5 presents an invariance property of the multi-front solutions of SG3,
which propagate at velocities that are lower than c. Section 6 presents some numerical exam-
ples of solutions. Section 7 briefly summarizes the results for Eq (1), with the sign of the sin u-
term changed to a (-) sign.

1.1.1 Motivation. The interest in front solutions of the Sine-Gordon equation in more
than one space dimension goes beyond the mere challenge of finding them. The (1+2) dimen-
sional equation is relevant, for example, in the study of extended Josephson junctions, and has
potential application in the study of stretching and folding of elastic sheets and in the structure
of DNA chains.

1.2 Moving-front (kink) solutions of Sine-Gordon equation in (1+1)
dimensions—A review

1.2.1 Construction of solutions. The first step in the Hirota algorithm [18] for the con-
struction of the moving solutions of SG1 is a transformation, originally proposed in the cases
of one- and two-front solutions [7,8]:

uðx; PÞ ¼ 4 tan�1½gðx; PÞ=f ðx; PÞ� : ð2Þ

In Eq (2),

P � fpð1Þ; pð2Þ; . . . ; pðNÞg : ð3Þ

x and p(i) are coordinate and momentum vectors in (1 + 1) dimensions.
The functions g(x;P) and f(x;P) are given by:

gðx; PÞ ¼
X

1 � n � N

nodd

X
1�i1<���<in�N

(Yn
j¼1

φðx; pðijÞÞ
Y
il<im

VðpðilÞ; pðimÞÞ
)0

@
1
A ; ð4Þ

f ðx; PÞ ¼ 1þ
X

2 � n � N

n even

X
1�i1<���<in�N

(Yn
j¼1

φðx; pðijÞÞ
Y
il<im

VðpðilÞ; pðimÞÞ
)0

@
1
A ; ð5Þ

φðx; pðiÞÞ ¼ ep
ðiÞ

mx
mþdi ; ð6Þ

pðiÞm p
ðiÞ m ¼ �1 ; ð7Þ
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and

Vðp; p0Þ ¼ ðp� p0Þmðp� p0Þm
ðpþ p0Þmðpþ p0Þm ¼

1þ pmp
0m

1� pmp0m
: ð8Þ

Finally, N is the number of fronts (kinks) displayed by the solution. The N solitons show up
in the current density:

Jm ¼ @mu : ð9Þ

In Eq (6), δi is a constant arbitrary phase. Eq (7) states that the set of parameters associated
with each front is a space-like vector with invariant mass2 = -1. i.e., a tachyonic vector.

1.2.2 Properties of (1+1)-dimensional solutions. Most of the properties of front solutions
of SG1 (kinks) are shared by the solutions of SG2 and SG3. (In the latter equations, x and p(I)

are vectors in, respectively, (1 + 2) and (1 + 3) dimensions.) When a difference between SG1
and SG2 or SG3 exists, it is pointed out explicitly.

1. The solution, u(x;P), is a function of Lorentz scalars only. As a result, it is invariant under
Lorentz transformations that are applied simultaneously to the coordinate vector, x, and the
momentum vectors. This was first pointed out in the case of the single-front solution in
Ref. [5].

2. Depending on the free phases in Eq (6), a solution with N� 3 fronts will exhibit in the (1
+n)-dimensional Minkowski space anywhere from one junction, when all phases are suffi-
ciently small, up to N(N-1)/2 junctions, when the phases are sufficiently large. It is more
convenient to see this in the solitons displayed by the current density (see Eq (9)). Sufficient-
ly far from all junctions, Jμ splits up into a sum of single solitons, each associated with one of
the momenta, p(i), used in Eqs (2)–(8). (For an example, see Section 6.)

3. In an N-front solution, all pairs of momentum vectors obey p(i) 6¼ ±p(j) for i 6¼ j. If equality
holds, then the N-front solution degenerates into a solution with a smaller number
of fronts.

4. Owing to Eq (7), the velocity of each individual front (be it a single-front solution, or one
front in a multi-front solution, away from front junctions) is lower than the speed of light
(c = 1). This is a consequence of the fact that a single-front solution depends on one expo-
nential:

uðx; pÞ¼4 tan�1½ep0t�p1xþd� : ð10Þ

Consequently, the velocity, v, of propagation of a single front is bounded by:

jvj ¼ jp0=p1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p12 � 1

p
=jp1j � c ¼ 1 : ð11Þ

Clearly, the fact that c = 1 is a consequence of the use of scaled coordinates. For example, in
the derivation of the Sine-Gordon equation as the continuum limit of the description of the
motion of a dislocation in a periodic one-dimensional lattice [1], c, the velocity of waves in
the linearized equation, is determined by the strength of the periodic potential in the lattice
and the period of the potential. In the description of the structure of DNA molecules, it may
be viewed as the limiting velocity of acoustic waves. As in different applications the limiting
velocity, c, has a different interpretation, and in order to connect with tools of Special Rela-
tivity, c = 1, the limiting velocity that characterizes the solutions in the scaled coordinates
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used in Eq (1), will be called “the speed of light”.
The fact that v, the speed of propagation of an individual front, is lower than cmeans that a
Lorentz boost with a velocity equal to v transforms the front to a rest frame. The solution
and the associated momentum vector are transformed as follows [5]:

fp0; p1g ! f0;�1g ) uðx; pÞ ! 4 tan�1½e�x1þd� : ð12Þ

Thus, in its rest fame, an individual front is static (stationary and time-independent). How-
ever, a transformation of any multi-front solution of SG1 to a rest frame does not exist, be-
cause each front propagates along the x-axis at a different velocity.
The situation is different in the case of the slower-than-light multi-front solutions of SG2
and SG3. Each of these solutions has a planar structure and propagates rigidly in the plane it
defines at a constant velocity. Hence, it can be Lorentz transformed to a rest frame, in which
it is static.

5. A Hirota-type single-kink solution of SG1 propagates at a velocity that is lower than c, and is
stable. A single-wave solution, not a Hirota front, which propagates at velocities that exceed
c also exists and is unstable. These statements were demonstrated through a Sturm-Liouville
analysis [8]. The stability of Hirota-type solutions in higher space dimensions is still an open
problem, as there is no extension of the Sturm-Liouville theory beyond one dimension.

1.3 Extension of Eq (1) to higher space dimensions
Sections 3 and 4 present the construction of N-front solutions of Eq (1) through the Hirota al-
gorithm in (1+n) dimensions for respectively, n = 2 and 3, for all N� 1. It will be shown that:

1. In solutions of SG2 with N� 3 fronts, (N − 2) of the momentum vectors in Eqs (2)–(8) are
linear combinations of just two of them [34]. Each multi-front solution of SG2 propagates
rigidly at a constant velocity, v, in the plane defined by the two “basis” vectors. The solutions
are divided into two unconnected subsets, with v< c = 1, and v� c. Slower-than-light solu-
tions can be Lorentz-transformed to a rest frame, in which they are static (stationary and
time-independent).

2. The multi-front solutions of SG3 are divided into four subsets. Two subsets have a planar
structure. They are the space-rotated (1+2)-dimensional solutions. The solutions in the third
and fourth subsets are genuinely three-dimensional structures—branes. Solutions in the third
subset propagate rigidly at the speed of light. The fourth subset contains “hybrid” solutions, in
which some clusters of fronts may propagate rigidly at velocities that are lower than c, but
there are clusters that propagate at velocities that are greater than, or equal to c. Different clus-
ters may have different velocities. One front may participate in more than one cluster.

3. It is impossible to reach the speed of light as a limit of slower-than-light solutions.

1.4 Methods
The construction of solutions of Eq (1) in (1+2) and (1+3) dimensions follows the steps pre-
sented in Eqs (2)–(8). The only change is that now, the position vector, x, and the momentum
vectors, p(i), used in the construction are vectors in, correspondingly, the (1+2) and (1+3)-di-
mensional Minkowski space.

The main tool exploited in the demonstration of the existence of solutions, their con-
struction and classification is the properties of the momentum vectors under Lorentz
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transformations in Minkowski space in (1+2), or (1+3) dimensions. These properties are dis-
cussed in Section 2, and exploited in Sections 3–7. The fact that the momentum vectors are
tachyonic (having (invariant mass)2 = -1) plays a crucial role in the characteristics of the solu-
tions. For example, this property ensures that each individual front, be it a single-front solu-
tion, or one front in a multi-front solution, but far away from the region in space, in which
fronts collide, propagates at a constant velocity v, that is lower than the speed of light (c = 1).
Still, clusters of fronts may propagate rigidly at velocities that are lower than c, or exceed c. The
existence of three-front solutions is discussed explicitly. The steps in the demonstration of the
existence of four-front solutions are reviewed, and the existence of solutions with N> 4 fronts
follows by induction.

Requiring that u(t,x), constructed via Eqs (2)–(8), be a solution of Eq (1) in (1+2) or (1+3)
dimensions yields constraints that the momentum vectors have to obey. These constraints are
discusses in Sections 2, 3 and 4. They affect the physical characteristics of the multi-front solu-
tions, namely, their spatial structure and velocity profiles. For example, the constraint on the
momenta in (1+2) dimensions forces a multi-front solution to propagate rigidly in the x-y
plane at a constant velocity, which may be either lower than, or exceed c.

Relativistic Analysis of Space-Like Momentum-Vectors
Owing to the space-like nature of the momentum vectors, from which Hirota-type moving-
front solutions are constructed (see Eq (7)), each individual front propagates at a velocity that
is lower than c. However, in more than one space dimension, the velocity of a cluster of fronts
may be lower than, equal to, or exceed c = 1. This counter-intuitive phenomenon is a direct
consequence of the tachyonic nature of the momentum vectors. It does not exist in the case of
time-like vectors, reviewed in Section 7.

To classify N-front solutions, one needs to find the conditions under which clusters of two
or more fronts propagate rigidly at one velocity, and what that velocity is. In particular, one
needs to know if it is possible to transform a cluster of fronts, or a whole multi-front solution,
to a rest frame, in which it is static: stationary and time independent. Such a cluster must be
moving rigidly as a whole at a velocity that is lower than c, so that it can be Lorentz-trans-
formed to its rest frame. Concurrently, to ensure that the static solution is time-independent,
the momentum vectors associated with all fronts in the cluster ought to be transformed to a
purely space-like form in the Lorentz frame, in which the solution is static:

p ið Þ ¼ p ið Þ
0 ; ~p

ið Þ
n o

! 0; ~q ið Þ
n o

;
�
~q ið Þ :~q ið Þ ¼ 1

�
ð13Þ

In Eq (13),~q ið Þ is a unit vector in the n-dimensional Euclidean space.
A Lorentz transformation in (1+3) dimensions with a boost velocity! v is represented by:

L ¼

g �g bx �g by �g bz

�gbx 1þ ðg� 1Þbx
2

b2 ðg� 1Þ bxby

b2 ðg� 1Þbxbz

b2

�g by ðg� 1Þbxby

b2 1þ ðg� 1Þby
2

b2 ðg� 1Þ bybz

b2

�g bz ðg� 1Þ bxbz

b2 ðg� 1Þbybz

b2 1þ ðg� 1Þbz
2

b2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

: ð14Þ

Solutions of Sine-Gordon Equation in More than One Space Dimension

PLOS ONE | DOI:10.1371/journal.pone.0124306 May 28, 2015 6 / 21



In Eq (14),

~b ¼ fbx; by; bzg ¼ fvx; vy; vzg=c ; g ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�~b2

q
: ð15Þ

In (1+2) dimensions, the matrix is reduced to its top leftmost 3×3 minor, and in (1+1) di-
mensions—to the 2×2 minor.

A single vector that obeys Eq (7) can be always Lorentz-transformed to the form given in Eq
(13). In (1+3) dimensions, there will be a two-parameter family of transformations that will
achieve this, as only one of the components of! b can be determined. In (1+2) dimensions,
this will be a one parameter family, and in (1+1) dimensions-a unique transformation.

Next, consider a pair of two vectors, p(1) 6¼ ±p(2). In (1+1) dimensions, no transformation
can transform both vectors to the form given in Eq (13). There is only one free parameter, βx,

and there are two quantities, pðiÞ0 , i = 1,2 that have to be transformed to zero.
There is no need to discuss the (1+3)-dimensional case, because the space components of

the two vectors define a plane. Hence, one can first rotate the two vectors so that their z-com-
ponents vanish, and reduce the system to (1+2)-dimensions:

pðiÞ ¼ fpðiÞ0 ; pðiÞx ; pðiÞy g ði ¼ 1; 2Þ : ð16Þ

The boost parameters, βx and βy of Eqs (14) and (15), required for the transformed vectors
to have vanishing time components, as in Eq (13) are:

bx ¼ � pð1Þ0 pð2Þy � pð2Þ0 pð1Þy

pð1Þx pð2Þy � pð2Þx pð1Þy

; by ¼
pð1Þ0 pð2Þx � pð2Þ0 pð1Þx

pð1Þx pð2Þy � pð2Þx pð1Þy

: ð17Þ

For the transformation to be feasible, its velocity must be lower than c. Hence, the magni-

tude of the vector~b must be smaller than 1. Using Eqs (17) and (7), this requirement yields:

1� bx
2 � by

2 ¼ 1� ðpð1Þ � pð2ÞÞ2
ðpð1Þx pð2Þy � pð2Þx pð1Þy Þ2 > 0 : ð18Þ

Thus, for a pair of vectors that obey Eq (7) to be Lorentz-transformable to the form given in
Eq (13), its scalar product in Minkowski space must obey

jpð1Þ � pð2Þj < 1 : ð19Þ

If the inequality is inverted,

jpð1Þ � pð2Þj � 1 ; ð20Þ

then there is no velocity lower than c that can yield the desired Lorentz transformation.
In the case of vectors that obey Eq (19) (corresponding to a pair of fronts that move rigidly

at a velocity that is lower than c = 1), the limit of equality,

pð1Þ � pð2Þ ! �1 ; ð21Þ

is reached with

pð2Þ ! 	pð1Þ : ð22Þ
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This can be shown by first transforming p(1) and p(2) to the form given in Eq (13). Eq (21) is
then expressed in terms of the two-dimensional unit vectors as:

pð1Þ � pð2Þ ¼ �~q 1ð Þ �~q 2ð Þ ¼ �cosð~q 1ð Þ ;~q 2ð Þ Þ ! �1 : ð23Þ

cosð~q 1ð Þ ;~q 2ð Þ Þ is the cosine of the angle between the two unit vectors. The limit is obtained
by:

~q 2ð Þ ! 	~q 1ð Þ ; ð24Þ

from which Eq (22) follows in any moving frame through a Lorentz transformation.
In contrast, when Eq (20) holds, the previous argument does not apply; one cannot trans-

form the two vectors to the form of Eq (13) simultaneously. The limit of Eq (21) then consists
of a continuum of vectors in (1+2) or (1+3) dimensions. A simple way to see this, is to Lorentz
transform one of the vectors, say p(1), as in Eq (13) (this is possible), with p(2) transformed as
follows:

p 1ð Þ ! 0; ~q 1ð Þ
n o

~q 1ð Þ �~q 1ð Þ ¼ 1
�
; p 2ð Þ ! ~q 2ð Þ; ~q 1ð Þ

n o
ð25Þ

�

(Note that, in Eq (25),! qð2Þ is not a unit vector!) Eq (21) then becomes:

pð1Þ � pð2Þ ¼ j~q 2ð Þ jcosð~q 1ð Þ ;~q 2ð Þ Þ ¼ �1 : ð26Þ

Eqs (26) and (7) yield:

j~q 2ð Þ j ¼ 1

jcos�~q 1ð Þ~q 2ð Þ
�j ; qð2Þ0 ¼ �tanð~q 1ð Þ ;~q 2ð Þ Þ : ð27Þ

Thus, there is a continuum of pairs of vectors for which the limit of Eq (21) can be achieved.
In (1+3) dimensions, there is another possibility, of simultaneously Lorentz-transforming

three space-like vectors, which obey Eq (7), to the form given by Eq (13). Applying the Lorentz
transformation of Eq (14) to the three vectors:

pðiÞ ¼ fpðiÞ0 ; pðiÞx ; pðiÞy ; pðiÞz g ; ði ¼ 1; 2; 3Þ ; ð28Þ

and requiring that the transformed vectors be of the form given in Eq (13), one finds that the
parameters of the transformation have to be:

bx ¼
Dx

D0

; by ¼
Dy

D0

; bz ¼
Dz

D0

: ð29Þ

Solutions of Sine-Gordon Equation in More than One Space Dimension

PLOS ONE | DOI:10.1371/journal.pone.0124306 May 28, 2015 8 / 21



In Eq (29),

Dx ¼

pð1Þ0 pð1Þy pð1Þz

pð2Þ0 pð2Þy pð2Þz

pð3Þ0 pð3Þy pð3Þz

�����������

�����������
; Dy ¼

pð1Þ0 pð1Þz pð1Þx

pð2Þ0 pð2Þz pð2Þx

pð3Þ0 pð3Þz pð3Þx

����������

����������
; Dz ¼

pð1Þ0 pð1Þx pð1Þy

pð2Þ0 pð2Þx pð2Þy

pð3Þ0 pð3Þx pð3Þy

�����������

�����������

D0 ¼

pð1Þx pð1Þy pð1Þz

pð2Þx pð2Þy pð2Þz

pð3Þx pð3Þy pð3Þz

����������

����������

: ð30Þ

When Δ0 6¼ 0, for the transformation to be feasible, the magnitude of~b must be smaller

than 1. If Δ0 = 0, there is no solution for~b unless Δx, Δy, and Δz vanish as well. As a result, the
three vectors must be linearly dependent. Hence, the system can be rotated to (1+2) dimen-
sions. This point will be of relevance in the classification of multi-front solutions in (1
+3) dimensions.

Moving-Front Solutions in (1+2) Dimensions

3.1 Brief summary
As will be shown in the following, in the case of N� 3 fronts, only two of the momentum vec-
tors are independent. The remaining vectors are given as linear combinations of the two
“basis” vectors, p(1) and p(2). If this pair of vectors obeys Eq (19), then the coefficients V(p(i),
p(j)) in Eqs (4), (5) and (8) are all positive. Hence, f(x;P) of Eq (5) does not vanish anywhere.
The resulting multi-front solution, u(x;P), varies (possibly, several times) over the range [0, 2
π]. Concurrently, the solution propagates at a velocity that is lower than c = 1.

If p(1) and p(2) obey Eq (20), then f(x;P) of Eq (5) vanishes on some manifold (a line in (1+1)
dimensions, a plane in (1+2) dimensions). The resulting multi-front solution, u(x;P), varies
over the range [0, 2 N π], where N is the number of fronts. Concurrently, the solution propa-
gates at a velocity that is greater than, or equal to c.

3.2 Single- and two-front solutions of SG2
The solution procedure of SG2 is rather cumbersome, and best implemented with the aid of
symbolic manipulation software. (MATHEMATICA has been used in this study). One begins
by substituting Eqs (2)–(5) in

Q ¼ ð@m@
muþ sinuÞðf ðx; PÞ2 þ gðx; PÞ2Þ2 : ð31Þ

Eqs (6)–(8) ensure that Q vanishes for the single-and two-front solutions.
The single-front solution propagates at a velocity that is lower than c = 1. The situation in

the case of the two-front solution is different. Constructing this solution through Eqs (2)–(8)
with two momentum vectors, p(1) and p(2), finds that two-front solution obeys the following
identity:

uðt;~x þ~btÞ ¼ uðt ¼ 0;~xÞ : ð32Þ

In Eq (32), the time- and space-parts of x, the position vector in (1+2) dimensions, have

been written out explicitly. The components of the velocity vector,~b, are given in Eq (17).
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Thus, the two-front solution propagates at a velocity that is either lower than c or exceeds c, de-

pending whether j~bj < 1 or j~bj � 1, respectively. This requires that Eq (19) or Eq (20), respec-
tively, holds for the two momentum vectors, from which the solution is constructed.

3.3 Three-front solution of SG2
Repeating the procedure delineated above in the case of three-front solutions of SG2, after im-
plementing Eqs (6)–(8), the quantity Q of Eq (31) remains proportional to (Δz)

2, with Δz de-
fined in Eq (30). For a three-front solution to exist, Δz must, therefore, vanish. This
requirement was first observed by Hirota [25]. It means that a three-front solution exists only
if one of the three momentum vectors, say p(3), is a linear combination of the other two vectors
34]. This also means that the solution has a planar structure, as the three momentum vectors
lie in a plane.

3.4 N > 3 front solutions of SG2
The proof that, in solutions with N> 3 momentum vectors, (N−2) of the vectors must be linear
combinations of just two of them is cumbersome but straightforward. To show how the proof
goes, consider the case of N = 4. One repeats the construction procedure delineated above
through Eqs (2)–(8). Among the remaining monomials in Q of Eq (31), one considers the col-

lection of monomials that do not φðx; pðiÞÞ ¼ ep
ðiÞ�x for some value of 1� i� 4. This collection

is just Q in the three-front case (i.e., as if the front associated with p(i) did not exist). For this
three-front part to vanish, the remaining three vectors, p(j), 1� j 6¼ i� 4, must be linearly de-
pendent, as found by Hirota [25] and reviewed in Section 3.3. This must hold for any1� i� 4.
Hence, of the four vectors, two must be linear combinations of the other two. The proof for any
N> 3 is by induction. The Hirota condition [25] is found to apply to each triplet of vectors
that can be formed from the Nmomentum vectors. Hence, (N–2) of the vectors must be linear
combinations of just two vectors 34]:

pðiÞ ¼ mi p
ð1Þ þ ni p

ð2Þ ð3 � i � NÞ : ð33Þ

3.5 Properties of (1+2)-dimensional solutions
As a result of Eq (33), the velocity of a solution with N� 2 fronts is determined by the velocity
required for the transformation of the two “basis” vectors (the choice of which is arbitrary), p(1)

and p(2), from which all other momentum vectors are constructed, to the form given in Eq
(13).

If these two vectors obey Eq (19), then a Lorentz transformation with a velocity, given in Eq
(17), and lower than c, transforms the two vectors to the form given in Eq (13). Hence, the solu-
tion propagates rigidly at that velocity, and is transformed by the transformation to a rest
frame, in which it is static: stationary and time-independent. If the two basis vectors obey Eq
(20), then the velocity of Eq (17) exceeds c, corresponding to a solution that propagates rigidly
at a velocity, v� c. Thus, the (1+2)-dimensional solutions are divided into two subsets: solu-
tions that propagate as a whole at v< c and at v� c.

The inclusion of the case of solutions whose velocity is v = c in the second subset is not arbi-
trary. If the two basis vectors, p(1) and p(2), obey Eq (19), then the limit of equality, Eq (21), is
achievable only through Eq (22). However, direct substitution in Eqs (2)–(8) yields that, in this
limit, a slower-than-light solution degenerates into a slower-than-light solution with a smaller
number of fronts. If the (+) sign holds in Eq (22) then the coefficient V(p(1),p(2)) of Eq (8)
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vanishes, causing the solution to degenerate into a slower-than-light solution with (N-1) fronts.
If the (-) sign holds in Eq (22), then V(p(1),p(2)) becomes infinite, causing the solution to degen-
erate into a slower-than-light solution with (N-2) fronts. In summary, the speed of light cannot
be achieved from within the subset of slower-than-light solutions.

The situation is different in the case of solutions constructed with basis vectors that obey Eq
(20). The front pairs then propagate rigidly at velocities v� c. The discussion that leads to Eqs
(25)–(27) shows that the limit v = c is included in this subset of solutions.

Front Solutions in (1+3) Dimensions

4.1 Single- and two-front solutions of SG3
The single- and two-front solutions of SG3 are readily generated by the Hirota algorithm [18].
As in the case of the solutions of SG2, the single-front solution propagates at a velocity that is
lower than c, whereas the velocity of the two-front solution is lower than, equal to, or higher
than c, depending on whether the two associated momentum vectors obey, respectively, Eq
(19) or Eq (20). It is nothing but a spatially rotated (1+2)-dimensional solution.

4.2 N� 3 front solutions of SG3
Let us begin with the three-front solution. After having implemented Eqs (2)–(8), one finds
that for the solution to exist (namely, for Q of Eq (31) to vanish), the four determinants defined
in Eq (30) must obey the constraint first presented in Ref. [26]:

0 ¼ ðD0Þ2 � ððDxÞ2 þ ðDyÞ2 þ ðDzÞ2Þ ¼

1� 2ðpð1Þ � pð2ÞÞðpð1Þ � pð3ÞÞðpð2Þ � pð3ÞÞ � ðpð1Þ � pð2ÞÞ2 � ðpð1Þ � pð3ÞÞ2 � ðpð2Þ � pð3ÞÞ2
: ð34Þ

The first observation is that Eq (34) contains the (1+2)-dimensional solutions as a special
case [26]. When all vectors are (1+2)-dimensional, namely, lacking z-components, it yields the
separate vanishing of each determinant in Eq (34). In particular, Δz = 0. This is just the condi-
tion for the existence of (1+2)-dimensional solutions [25].

The second observation is that Eq (34) limits the choice of the three momentum vectors.
Viewing it as an equation for (p(2) � p(3)), the solution for the latter is:

ðpð2Þ � pð3ÞÞ ¼ �ðpð1Þ � pð2ÞÞðpð1Þ � pð3ÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðpð1Þ � pð2ÞÞ2Þð1� ðpð1Þ � pð3ÞÞ2Þ

q
: ð35Þ

As all the scalar products are real numbers, one can only have the following possibilities.
One possibility is that the three scalar products obey simultaneously either Eq (19), or Eq (20).
(The proof for the existence of solutions presented in [26] applies to the case of Eq (19).) An-
other possibility is that at least one of the three scalar products obeys

jðpðiÞ � pðjÞÞj¼1 : ð36Þ

Despite these limitations, Eq (34) allows for a family of three-front solutions that is much
richer than the three-front solution of SG2. There are two ways to satisfy Eq (34).

1. Δ0 = 0: Solution reduces to SG2 solution.
In this situation, each of the three remaining determinants on the r.h.s. of Eq (34) must van-
ish. As a result, the three momentum vectors must be linearly dependent. One of them, say,
p(3), must obey Eq (32). Then, the three-front solution is a mere rotation into three space di-
mensions of a three-front solution of SG2. Hence again, it propagates rigidly in a plane at a
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velocity that is lower than, equal to, or higher than c, depending on whether the “basis” vec-
tors, p(1) and p(2), obey, respectively, Eq (19) or Eq (20).

2. Δ0 6¼ 0: Solution propagates rigidly at speed of light.
The geometrical interpretation provided for this case in Ref. [26] is that Eq (34) is the condi-
tion for the vanishing of the area of the hyper-surface spanned in Minkowski space by the
three (1+3)-dimensional momentum vectors. This situation has, in addition, a simple physi-
cal meaning. Exploiting Eqs (29) and (30), Eq (34) can be re-written as:

bx
2 þ by

2 þ bz
2 ¼ 1 : ð37Þ

Namely, the velocity of the Lorentz boost required for transforming the three-front solution
to a static one (the three associated momentum vectors to be transformed to the form given by
Eq (13)) is equal to speed of light. Thus, the constraint presented in Ref. [26] allows only for a
non-planar three-front solution that propagates rigidly at the speed of light. This happens de-
spite the fact that each individual front propagates at a velocity that is lower than c. The mean-
ing of this last statement is that, if one chooses a frame of reference, in which one of the fronts
is static (this is always possible), then one, or both of the other two fronts will be receding away
from it at a speed that equals c. Such are the peculiarities of tachyonic momentum vectors. . .

In summary, the three-front solution of SG3 is either a space rotated three-front solution of
SG2, in which case, it propagates rigidly in a plane at a velocity that is either lower than, equal
to, or higher than c, or a genuine (1+3)-dimensional solution, which propagates rigidly at v = c.

4.2.2 Solutions with N� 4 fronts
The extension to more fronts follows the steps presented in the case of SG2. Ref. [26] provides
the results for N = 4, and the proof for any number of fronts is, again, by induction. The re-
maining task is the classification of the solutions. There are four subsets of solution types.

1. Δ0 = 0 for all momentum triplets: Solutions reduce to the two subsets of SG2 solutions.
In this case, each of the three remaining determinants on the r.h.s. of Eq (34) also vanish for
all momentum triplets. As a result, only two of the momentum vectors are linearly indepen-
dent, and the remaining (N-2) vectors obey Eq (33). The N-front solution is a mere rotation
into three space dimensions of an N-front solution of SG2. Hence again, the solution propa-
gates rigidly in a plane at a velocity that is lower than, equal to, or higher than c, depending
on whether the “basis” vectors, p(1) and p(2), obey, respectively, Eq (19) or Eq (20).

2. Δ0 6¼ 0 for all triplets.
Solutions that belong to this subset are three-dimensional structures—branes. Each triplet
of fronts propagates rigidly at v = c = 1. However, different triplets may be propagating in
different directions. Hence, this is an “expanding” solution.
The case when only three vectors are linearly independent,

pðiÞ ¼ mi p
ð1Þ þ ni p

ð2Þ þ si p
ð3Þ ð4 � i � NÞ ; ð38Þ

is of particular interest. The whole set of N� 4 fronts then propagates rigidly at the speed
of light.

3. Δ0 6¼ 0 for some but not all triplets:Hybrid solutions.
When Eq (34) is obeyed with Δ0 6¼ 0 by some but not all momentum triplets, and with
Δ0 = 0 for the remaining triplets, the solutions are also three-dimensional structures—
branes. In a cluster of three fronts, for which Δ0 6¼ 0, all three momentum vectors are
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linearly independent. Hence, by Eqs (37) this cluster propagates rigidly at the speed of light,
c = 1. In a cluster of three fronts, for which Δ0 = 0, only two of the three momentum vectors
are linearly independent, defining a plane. Hence, this cluster may propagate at a velocity, v
< c, or v� c, depending on whether the two independent momentum vectors obey Eq (19)
or (20), respectively.

Every triplet of momentum vectors has to be tested against Eqs (34) or (37). Consider one
momentum vector, say, p(i). Some triplets that contain it may obey Eq (37) with Δ0 6¼ 0. Conse-
quently, the triplets of fronts constructed from these three vectors propagates rigidly at c = 1.
Other triplets that contain p(i) may obey Eq (37) but with Δ0 = 0. In this case, only two of the
three momentum vectors in a triplet are linearly independent. Consequently, the correspond-
ing triplet of fronts may propagate rigidly at a velocity, v, which obeys v< c, or v� c, depend-
ing on whether the two independent vectors obey, respectively, Eq (19) or Eq (20).

This allows for the existence of “hybrid” solutions, in which different front clusters may
have different velocities, some lower than c, some equal to c and some higher than c.

Example for Hybrid solution. To demonstrate the peculiarities of tachyonic momentum vec-
tors, consider a four-front solution with the following momentum vectors:

pðiÞ ¼ f0; cosφðiÞ; sinφðiÞ; 0g ; 1 � i � 3

pð4Þ ¼ fpð4Þ0 ; cosφð4Þ; sinφð4Þ;�pð4Þ0 g ; pð4Þ0 > 0
: ð39Þ

All triplets of vectors obey Eq (34). Hence, this is a valid four-front solution in (1+3) dimen-
sions, constructed via Eqs (2)–(8). This can be also verified by direct substitution if the solution
in Eq (1).

The {1,2,3} triplet obeys Eq (34) trivially, as each of the determinants in Eq (30) vanish.
Consequently, the fronts constructed from p(1), p(2) and p(3), are static—in a rest frame in the
x-y plane. However, in a triplet that contains p(4), Eq (34) is obeyed in a non-trivial manner;
the different determinants do not vanish individually. Consequently each such triplet is seen as
propagating rigidly at the speed of light.

First, consider the solution at t = 0. Eqs (2)–(8) generate a four-front structure, three of
which, (generated from p(1), p(2) and p(3)) lie in the x-y plane, whereas the front generated from
p(4) protrudes outside this plane. Thus, the solution is a brane.

For t 6¼ 0, the solution varies in time thanks to the fact that pð4Þ0 > 0. (The other three vectors
have vanishing time components, hence, do not contribute to the time dependence of the solu-
tion.) A surprise is discovered in the limits t! ±1. For t!-1, the solution tends to

4 tan�1 ex
ð1Þ þ ex

ð2Þ þ ex
ð3Þ þ ex

ð1Þþxð2Þþxð3Þ Vðpð1Þ; pð2ÞÞVðpð1Þ; pð3ÞÞVðpð2Þ; pð3ÞÞ
1þ exð1Þþxð2Þ Vðpð1Þ; pð2ÞÞ þ exð1Þþxð3Þ Vðpð1Þ; pð3ÞÞ þ exð2Þþxð3Þ Vðpð2Þ; pð3ÞÞ

" #
; ð40Þ

where ξ (i) are the exponents in Eq (6):

xðiÞ ¼ pðiÞm xm þ di ; i ¼ 1; 2; 3 : ð41Þ

As p(1), p(2) and p(3) have vanishing time components, the result in Eq (40) is independent
of time, and represents a static three-front solution that lies in the x-y plane.
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The t! +1 limit of the solution is:

2p�

4 tan�1

ex
ð1Þ
Vðpð1Þ; pð4ÞÞ þ ex

ð2Þ
Vðpð2Þ; pð4ÞÞ þ ex

ð3Þ
Vðpð3Þ; pð4ÞÞþ

ex
ð1Þþxð2Þþxð3Þ Vðpð1Þ; pð2ÞÞVðpð1Þ; pð3ÞÞVðpð1Þ; pð4ÞÞVðpð2Þ; pð3ÞÞVðpð2Þ; pð4ÞÞVðpð3Þ; pð4ÞÞ

0
@

1
A

1þ ex
ð1Þþxð2Þ Vðpð1Þ; pð2ÞÞVðpð1Þ; pð4ÞÞVðpð2Þ; pð4ÞÞ

þex
ð1Þþxð3Þ Vðpð1Þ; pð3ÞÞVðpð1Þ; pð4ÞÞVðpð3Þ; pð4ÞÞ

þex
ð2Þþxð3Þ Vðpð2Þ; pð3ÞÞVðpð2Þ; pð4ÞÞVðpð3Þ; pð4ÞÞ

0
BBBB@

1
CCCCA

2
666666666666664

3
777777777777775

:ð42Þ

This is also a static solution, with the same three fronts. Relative to the t!-1 limit, they
are shifted by finite shifts in the x-y plane. The shifts are consequences of the numerical coeffi-
cients that multiply each of the exponential functions. In addition, the sign of each front
is flipped.

Now consider a Lorentz transformation along the z-axis. In the limit of the boost velocity
approaching c (corresponding to a reference frame that moves along the z-axis at a velocity

equal to ±c (z = ±t, the sign corresponding to�pð4Þ0 in Eq (39)), the solution tends to a static
four-front structure; the four fronts are seen as propagating rigidly at the speed of light.

Invariance Property of Slower-Than-Light Solutions in (1+3)
Dimensions
The slower-than-light (1+3)-dimensional N-front solutions of SG3 deserve additional atten-
tion. Only two of the Nmomentum vectors are linearly independent. Consider, first, a static so-
lution. The space components of all the momentum vectors (~q ið Þ of Eq (13)) lie in a plane in the
three-dimensional space. Denote the unit vector normal to this plane by~n. In a moving frame,
~q ið Þ are transformed to the (1+3) dimensional space-like momentum vectors p(i), and~n is trans-
formed into a space-like vector, n, obeying

nm p
ðiÞm ¼ 0 ; pðiÞmp

ðiÞ m ¼ nmn
m ¼ �1 : ð43Þ

As the x-dependence of the solution appears only through the Lorentz invariant scalar prod-
uct in Eq (6), the front solutions in (1+3) dimensions are invariant under the transformation:

uðx;QÞ ¼ uðx þ aðxÞn;QÞ ; ð44Þ
for any scalar function α(x). In particular, Eq (44) implies that the current density obeys:

nmJm ¼ nm@mu ¼ 0 : ð45Þ

Numerical examples
The solutions of physical interest are the slower-than-light ones. These are two-dimensional
structures, and can be always Lorentz-transformed to a rest frame, where they are static. There-
fore, the examples shown here are of static solutions over two space coordinates. The space
part of each (1+2)-dimensional momentum vector used in the construction of the solution
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through Eqs (2)–(8) is given by:

q!ðiÞ¼fcosφi; sinφig : ð46Þ

Fig 1 shows the single-front solution. Fig 2 shows Jy = @yu, the y-component of the current
density, in which a single soliton is visible. Fig 3 shows a two-front solution. To show the effect
of the choice of the free phases in Eq (6) on the number of junctions in a solution, Figs 4 and 5
show Jx = @xu, the x-component of the current density of a three-front solution for, respective-
ly, a case of a single junction and a case of three junctions. The current density has been chosen
rather than the solution, because the junctions are easier to discern in that plot. Fig 6 presents a
four-front solution.

The Case of Time-Like Momentum Vectors
Consider the following modification of Eq (1):

@m@
mu� sinu ¼ 0; m ¼ 0; 1; ::; n; n ¼ 1; 2; 3 : ð47Þ

A trivial way to obtain Eq (47) is to replace u by (u ± π) in Eq (1). One constructs the solu-
tions in the manner described in Section 1.2.1, and then adds ± π to the result. However, unlike
the solutions of Eq (1), the resulting solutions of Eq (47) then do not vanish at infinity in some
direction in the (1+n)-dimensional space. The following discussion addresses the non-trivial
case, in which front solutions of Eq (47) obey vanishing boundary conditions in some direction
at infinity. The application of the Hirota algorithm generates N-front solutions for all N� 1,

Fig 1. Static single-front solution.Momentum vector given by Eqs (13) and (46). φ1 = -π/3, δ1 = 0.

doi:10.1371/journal.pone.0124306.g001
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Fig 2. y-component of current density (Eq (9)) of single-front solution of Fig 1.

doi:10.1371/journal.pone.0124306.g002

Fig 3. Static two-front solution. φ1 = π/6, φ2 = π/3, δ1 = δ2 = 0.

doi:10.1371/journal.pone.0124306.g003

Solutions of Sine-Gordon Equation in More than One Space Dimension

PLOS ONE | DOI:10.1371/journal.pone.0124306 May 28, 2015 16 / 21



Fig 4. x-component of current density (Eq (9)) of three-front solution. φ1 = π/4, φ2 = π/3, φ3 = -π/4, φ4 =
-π/3, δ1 = δ2 = δ3 = δ4 = 0.

doi:10.1371/journal.pone.0124306.g004

Fig 5. x-component of current density (Eq (9)) of three-front solution. φ1 = π/6, φ2 = π/3, φ3 = π/4, δ1 =
20, δ2 = 0, δ3 = -20.

doi:10.1371/journal.pone.0124306.g005
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for n = 1,2,3. The only changes in the algorithm are that Eqs (7) and (8) are replaced by:

pðiÞm p
ðiÞ m ¼ þ1 ; ð48Þ

and

Vðp; p0Þ ¼ 1� pm p
0m

1þ pm p0m
: ð49Þ

The constraints for the existence of N� 3 front solutions in (1+2) dimensions, (Eq (33)),
and in (1+3) dimensions (Eq (34)), are arrived at also in the present case.

Owing to Eq (48), in all space dimensions, an individual front (be it the single-front solu-
tion, or one front in a multi-front solution) propagates at a velocity, v� c. The (1+1)-dimen-
sional solutions are readily constructed. Interesting effects of the time-like nature of the
momentum vectors on multi-front solutions show up in higher space dimensions. The effects
are consequences of the fact that there is no Lorentz transformation that can simultaneously
transform two, or more, different time-like vectors to a rest frame (certainly, no transformation
to Eq (13) exists!).

(1+2) dimensions: The fronts in a two-front solution propagate each at a different velocity, v
� c. In solutions with N� 3 fronts, Δz, defined in Eq (30), must vanish for all triplets of mo-
mentum vectors. Hence, only two vectors are linearly independent, and all remaining vectors
must obey Eq (33). Again, each front propagates at a different velocity, v� c.

(1+3) dimensions: Two-front solution: The fronts in a two-front solution propagate each at a
different velocity, v� c. Hence, this solution is a rotated (1+2)-dimensional solution.

Fig 6. Static four-front solution. φ1 = π/6, φ2 = π/3, δ1 = δ2 = 0.

doi:10.1371/journal.pone.0124306.g006
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N-front solutions, N� 3: Unlike the case of space-like momentum vectors, analyzed in the
preceding sections, all (1+3)-dimensional solutions with N� 3 fronts are also mere space rota-
tions of (1+2)-dimensional solutions; all momentum-vector triplets must obey Eq (33). Name-
ly, there are only two linearly independent vectors. This characteristic is a direct consequence
of two properties of the solutions. The first property is the time-like nature of the momentum
vectors (Eq (48)). The second property is that all momentum triplets must obey Eq (34), with
Δ0, Δx, Δy and Δz defined in Eq (31). (This last statement is reached by a repetition of the analy-
sis of Ref. [26].)

To see that all momentum-vector triplets must obey Eq (33), consider a triplet. One can al-
ways Lorentz transform one of the momenta, say p(3), to its rest frame:

pð3Þ ! f1; 0; 0; 0g : ð50Þ

As a result, Δ0 of Eq (30) vanishes in the rest frame. Obeying Eq (34) then requires that each
of the three determinants, Δx, Δy and Δzmust vanish. This, in turn, requires that the space parts
of p(1) and p(2) must be proportional to one another:

pð1Þ ¼ fpð1Þ0 ;~p 1ð Þg ; pð2Þ ¼ fpð2Þ0 ; a~p 1ð Þg : ð51Þ

Eqs (48), (50) and (51) yield a linear relation amongst the (1+3)-dimensional vectors:

pð3Þ ¼ ða pð1Þ � pð2ÞÞ
a pð1Þ0 � pð2Þ0

: ð52Þ

This linear relation is preserved when the three vectors are transformed back to their forms
prior to the transformation that yields Eq (50). As this conclusion applies to all momentum
triplets, only two of the momenta are linearly independent. Hence, all N-front solutions in (1
+3) dimensions are merely space-rotated (1+2)-dimensional solutions.

Concluding Comments
Despite the fact that the Sine-Gordon equation in (1+2) and (1+3) dimensions does not pass
traditional integrability tests, it does have a wealth of single- and multi-front solutions with in-
teresting physical characteristics. These characteristics are, to a great extent, consequences of
properties of the tachyonic momentum vectors, from which the solutions are constructed,
under Lorentz transformations in Minkowski space. Some of these characteristics defy our in-
tuition, which is based on our experience with time-like momentum vectors, vectors that repre-
sent physical particles.

Of particular significance are the characteristics of solutions that propagate rigidly at veloci-
ties that are lower than the speed of light, c = 1. They exist in (1+2) dimensions, as well in (1
+3) dimensions, where they are merely space-rotated (1+2) dimensional solutions, so that they
have a planar configuration. The subspace of slower-than-light solutions cannot be connected
by a continuous change of parameters into the subspace of solutions that have faster-than-light
front clusters. This is, clearly a consequence of the fact that the solutions of Eq (1), constructed
through Eqs (2)–(8), are scalars under Lorentz transformations, and that a relativistically in-
variant system does not allow the crossing of the speed of light from physical systems that are
slower than light.
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