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Abstract
Genetic association studies routinely involve massive numbers of statistical tests accompa-

nied by P-values. Whole genome sequencing technologies increased the potential number

of tested variants to tens of millions. The more tests are performed, the smaller P-value is

required to be deemed significant. However, a small P-value is not equivalent to small

chances of a spurious finding and significance thresholds may fail to serve as efficient filters

against false results. While the Bayesian approach can provide a direct assessment of the

probability that a finding is spurious, its adoption in association studies has been slow, due

in part to the ubiquity of P-values and the automated way they are, as a rule, produced by

software packages. Attempts to design simple ways to convert an association P-value into

the probability that a finding is spurious have been met with difficulties. The False Positive

Report Probability (FPRP) method has gained increasing popularity. However, FPRP is not

designed to estimate the probability for a particular finding, because it is defined for an entire

region of hypothetical findings with P-values at least as small as the one observed for that

finding. Here we propose a method that lets researchers extract probability that a finding is

spurious directly from a P-value. Considering the counterpart of that probability, we term

this method POFIG: the Probability that a Finding is Genuine. Our approach shares FPRP's

simplicity, but gives a valid probability that a finding is spurious given a P-value. In addition

to straightforward interpretation, POFIG has desirable statistical properties. The POFIG av-

erage across a set of tentative associations provides an estimated proportion of false dis-

coveries in that set. POFIGs are easily combined across studies and are immune to

multiple testing and selection bias. We illustrate an application of POFIG method via analy-

sis of GWAS associations with Crohn's disease.
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1 Introduction
Multiple statistical tests are routinely applied in genetic association studies and the correspond-
ing P-values are reported. Journals require that P-values should be adjusted for multiple testing
to protect against spurious findings. Nevertheless, findings often do not replicate in subsequent
studies. Various explanations have been suggested for the low replicability of findings in obser-
vational studies, including inadequate accounting for multiple testing [1, 2]. In modern genetic
studies, the number of statistical tests can be very large. Such discovery studies are often per-
formed in a manner in which some small number of the most promising results are selected for
closer investigation in a replication study.

It is now appreciated that a P-value does not reflect uncertainty about validity of a hypothe-
sis. Yet P-values do contain information that can be used to evaluate this uncertainty, and we
incorporate that information into our proposed method. A solution to the dilemma which
findings are false and which are genuine can be obtained via conversion of P-values to Bayesian
probabilities that a finding is genuine. A simple Bayesian solution has been proposed previous-
ly, termed the False Positive Report Probability (FPRP) [3]. In this approach, tailored to genetic
association P-values, a plausible effect size, for example an odds ratio and the prior probability
of the null hypothesis are proposed by a researcher, and “the probability of no true association”
is determined for any finding with the P-value that is smaller than a preset threshold.

It has been suggested that the FPRP approach has two main deficiencies. First, as acknowl-
edged by its authors, FPRP is not the probability that a particular finding is false, because it is
based on the tail distributions rather than on the respective densities. The FPRP approach ad-
vocated plugging in an observed P-value in place of a fixed threshold. The result can only be in-
terpreted as “the lowest FPRP for which the finding meets a preset criterion for
noteworthiness” [4]. In his critique of the FPRP, Lucke [5] wrote that “the FPRP can promote
false positive results”, due to a peculiar property of the FPRP that it cannot exceed the proposed
prior probability. Secondly, the usage of a single “typical” value of the odds ratio fails to ac-
knowledge that in reality different genuine signals carry different effect sizes and a proper cal-
culation should take into account the entire distribution of possible effect sizes. Lucke was not
optimistic regarding performance of methods such as FPRP built using this simplification [5].
However, the extent of imprecision introduced by the usage of a single value remains unclear.
Lastly, we note that in the FPRP approach, all variants are divided into two classes, the first
class containing those that are truly associated, and the second class containing variants with
the effect size that is precisely equal to zero. The second class is assumed to contain majority of
the variants and corresponds to the sharp null hypothesis,H0. While such approach is common
due to its convenience, the non-associated set is likely to contain many variants with effect
sizes sufficiently small to be either inconsequential to a researcher or undetectable given a par-
ticular sample size. It is more realistic to define the null hypothesis in such a way as to allow in-
clusion of variants with negligibly small effects.

The FPRP method is simple to apply and it has been referenced extensively since its intro-
duction in 2004. Similarly simple methods are needed to convert a particular P-value to the
“probability of no true association”, so that the result can be interpreted as the probability
about this particular report. One such method has been proposed by Wakefield, called the
“Bayesian false-discovery probability” (BFDP) [6]. In BFDP, the prior distribution of effect
sizes, specified in terms of the log relative risk, is assumed to be normal. Strength of association
is modeled via the variance of that distribution. BFDP has a sound Bayesian foundation, but
the focus on the relative risk and the usage of the normal prior distribution for the effect sizes
might be somewhat restrictive.
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Here we introduce POFIG, “Probability that a Finding is Genuine”—a solution inspired by
the idea behind the FPRP approach. Our method shares generality and simplicity of FPRP in
that it utilizes P-values that may result from various association statistics. POFIG alleviates the
main shortcomings identified with the FPRP approach. The usage of a single value taken to be
the mean of the underlying effect size distribution does introduce a bias that can be substantial
for very small P-values. However, a modification based on just three typical values (small, me-
dium, and large) with their respective frequencies provides a much better approximation to the
complete specification of the effect size distribution. Typically, most signals would carry small
effect sizes, some signals would fall into the middle group around the mean of the effect size
distribution, and signals of large magnitude would represent only a small proportion of the dis-
tribution. In addition, the “null bin” can also be defined to capture magnitudes of effect sizes
that are close to zero (Fig 1). Instead of testing the usual null hypothesis that a variant has pre-
cisely zero effect, one can test a hypothesis whether the effect associated with a variant is suffi-
ciently close to zero, i.e., falls into the null bin. Statistical methods are starting to appear that
allow to characterize the effect size distribution in a tabulated way. Park et al. proposed a meth-
od to extract tabulated effect size values with their abundances from genome-wide association

Fig 1. Approximating the effect size distribution by three values.Discretization of the Gamma(shape = 1,
scale = 1) distribution. The middle bin is centered around γmedium = μ = scale×shape = 1 and has the width μ.

doi:10.1371/journal.pone.0124107.g001
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studies of complex traits [7]. Our method is designed to utilize such tables of estimated or plau-
sible effect sizes. Correct specification of the effect size distribution becomes especially impor-
tant when top hits are selected from a study with very many tests. When the distribution of
effect sizes is specified correctly, posterior probabilities of association are completely unaffected
by multiple testing and by the process of selection of the most significant results. In an experi-
ment with multiple tests, one can sort results by an association statistic and take the most ex-
treme one: the POFIG calculations do not depend on the number of tests. POFIG is similarly
unaffected by the process where only those multiple testing experiments are retained which
contained statistically significant results. Computed probabilities that a finding is genuine are
still correct when selectively applied to experiments that contained statistically
significant findings.

2 Results
Our method estimates the posterior probability of the null hypothesis (H0) that an association
is spurious, or the posterior probability of the alternative hypothesis (HA) that an association is
genuine. These probabilities are estimated given the association strength summarized by a P-
value (p). POFIG can be defined using the Bayes rule in a traditional way as POFIG = Pr(HAjp)
= 1 − Pr(H0jp),

POFIG ¼ 1� 1þ 1�Pr ðH0Þ
Pr ðH0Þ

� f �gðpÞ
� ��1

: ð1Þ

POFIG depends on the marginal probability density of P-values for truly associated variants,
given by

f �g ðpÞ ¼
PB

i¼1 wifgiðpjgÞPB
i¼1 wi

: ð2Þ

In calculating this marginal density one specifies B plausible ranges (i.e, “bins”) of effect sizes,
with the effect size value for the bin i given by γi, and the number of loci with that effect size
(wi). The index i = 1, . . ., B tracks the current bin in the summation. If the total number of loci
in the genome is K, the prior probability of the null hypothesis is Pr(H0) = 1 − ∑wi/K.

Consistent with the FPRP and BFDP approaches, the above formulation presents the null
hypothesis as sharp, i.e, as a special class for signals with precisely zero effect size. In an alterna-
tive specification of POFIG, the null hypotheses can be defined to encompass variants with ef-
fect sizes that are small enough to be considered undetectable. This formulation has a number
of advantages. The sharp null hypothesis, H0:γ = 0 is a convenient statistical concept, however
it implies that the effect size distribution has a spike at a single point γ = 0, which is biologically
unrealistic. Instead, it is believed that there is a very large number of variants with tiny effect
sizes that influence common traits and complex diseases. These effects are of negligible size
when a particular variant is considered by itself, but collectively these effects may explain a sub-
stantial proportion of heritability [8, 9]. Rather than treating null effects as a special class, we
define an extra bin for the effects with the average effect size equal to γ0, in a narrow interval
near zero and the number (or the proportion) of such effects, w0. The posterior probability of
the null hypothesis is evaluated via

Pr ðHjjpÞ ¼
Pr ðHjÞfgjðpjgÞPB
i¼0Pr ðHiÞfgiðpjgÞ

ð3Þ

with j = 0. The posterior probabilities for the rest of the bins (i.e., j = small, medium, large) can
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be calculated similarly. The weights wi in Eq (2) are proportional to Pr(Hi) andPB
i¼0 PrðHiÞ ¼ 1. The posterior mean for the effect size

EðgjpÞ ¼
XB

i¼0

giPr ðHijpÞ : ð4Þ

The summation index in Eqs (3, 4) now starts from zero rather than from one to accommodate
inclusion of the null bin that is no longer associated with the point null hypothesis (H0), as in
Eq (1). The effect size in Eqs (1–4) is defined as a parameter of the P-value density. As an exam-
ple, we will use the usual one degree of freedom chi-square SNP association statistic, but the P-
value density is defined in the same way for statistics that have distributions other than the chi-
square (details are given in Materials and Methods). The P-value density is

fgiðpjgÞ ¼ ggiðG�1
0 ð1� pÞÞ

g0ðG�1
0 ð1� pÞÞ ; ð5Þ

where gγi(�) is the one degree of freedom noncentral chi-square density function with the non-
centrality γi and subscript 0 refers to the central chi-square density. The function G�1

0 ð�Þ is the
inverse central chi-square cumulative distribution with one degree of freedom. Tabulated effect
size values can be given in terms of the odds ratios and then related to noncentralities, assum-
ing a logistic regression model:

g ¼ N � Dqð1� qÞ ¼ N � E; ð6Þ

where D is the squared log of odds ratio, N is one half of the harmonic mean of case and control
sample sizes (n1, n2, in allele counts), N = n1 n2/(n1 + n2), and q is the pooled allele frequency.
Thus, the effect of an increase in sample size is an increase in the noncentrality and an in-
creased skewness toward zero in the distribution of P-values. E can be interpreted as a stan-
dardized effect size: 2E corresponds to the contribution of a SNP to the additive genetic
variance of the trait. Park et al. gave a method for estimating the distribution of E that utilizes
data from replicated GWAS findings [7]. As noted above, the effect size distribution can be
modeled in terms of parameters, such as relative risk or odds ratio, or directly in terms of the
noncentralities. Park et al. used a standardized effect distribution which is the same as the dis-
tribution defined in terms of noncentralities. When sample sizes are the same for all tested vari-
ants in a study, placing the distribution directly on E (equivalently, on γ) gives posterior
probabilities that have the same ranks as P-values. On the other hand, specification of the dis-
tribution for D will give probabilities with ranks that differ from the ranks of P-values. In SNP
association testing, the same noncentrality (γ) may result from a SNP with a large odds ratio
and a small allele frequency, as well as from a SNP with a small odds ratio but a large allele fre-
quency. Thus, usage of the standardized effect size implicitly assumes that rare variants tend to
have a larger effect size compared to common variants.

Our approach utilizes a weighted sum of B tabulated effect size values (Eqs 1–3). At one ex-
treme we may consider a single “typical” effect size value (B = 1), as in the FPRP approach. At
the other extreme, the effect size distribution may be represented by a continuous function.
These modifications and the relation between POFIG and FPRP are given in Materials and
Methods.

Representation of the effect size distribution by a discrete set of bins offers several advan-
tages. Among them are (1) simplicity of calculations; (2) emergence of methods for estimation
of effect size distribution in human genome [7]; (3) straightforward specification by practition-
ers, e.g., it is easier for a researcher to come up with several plausible effect sizes and their rela-
tive abundances than to specify parameters of a continuous distribution; (4) flexibility of the

Probability that a Finding Is Genuine

PLOS ONE | DOI:10.1371/journal.pone.0124107 May 8, 2015 5 / 24



approach: the binned distribution does not need to be cast in a form of a parametric statistical
distribution, such as a normal distribution, and thus can reflect more closely a biologically
realistic distribution.

The advantages of our approach might be offset if the number of bins (B) is too small to rep-
resent the actual effect size distribution for the purpose of estimating posterior probabilities
with good precision. It is especially important that the probabilities are well-estimated for top
hits of a study, i.e., for those variants that are selected based on the smallest association P-val-
ues. Such selection of top hits is known to induce bias known as the “winner’s curse” phenome-
non, in which selected P-values tend to be too small and the corresponding estimated effect
sizes tend to be too large. Correcting this bias is known to be difficult [10]. Fully Bayesian infer-
ence is not susceptible to the winner’s curse [11], as long as the prior distributions are specified
correctly. In our case, prior for the effect size distribution needs to reflect the actual prevalence
of all possible signal magnitudes in the genome. Our proposal to collapse the effect size distri-
bution into discrete bins may induce imprecision and make the method susceptible to the win-
ner’s curse bias. However, our results demonstrate that even a crude approximation based on
three ranges for effect sizes provides good protection against bias due to selection of top stron-
gest signals in a study.

2.1 Simulation results
Simulation experiments were designed for judging precision of our method in evaluating the
proportion of true signals among smallest P-values in multiple-testing experiments. We as-
sumed that the effect size is represented by the odds ratios (OR) and that the squared logarithm
of OR has an L-shaped distribution. For any true effect, its effect size was sampled from an L-
shaped distribution and the corresponding P-value was obtained based on that effect size
value. We also allowed for a proportion Pr(H0) of signals to be completely spurious (false), i.e.,
to have the OR of exactly one. In a single multiple-testing simulation experiment with K P-val-
ues, each P-value carried a flag indicating whether it originated from a true (T) or a false (F)
signal. Once K P-values were sorted, we examined the fraction of flags that were equal to T in a
set of K smallest P-values. This gives an empirical (i.e., true) proportion of true signals among
K smallest P-values for a single simulation experiment. Our POFIG method provides an esti-
mate of this proportion: it is the average of POFIG values for these K smallest P-values. Next,
we averaged the true (empirical) and the POFIG-estimated proportions over a large number of
simulation experiments. Given this simulation setup, correctness of our method can be judged
by closeness of the estimated values to the true values obtained using the knowledge of which
P-values are actually generated from true signals. This gives an overview of the simulation
setup; more detailed description is given in Material and Methods.

In the simulation experiments, we defined the effect size D in terms of the squared log of
odds ratio, and further allowed for the effect size to have different values for different genuine
signals, assuming a continuous (gamma) distribution. We assumed the proportion of null sig-
nals is known and considered three degrees of the knowledge regarding the effect size
distribution:

1. Complete knowledge, i.e., precise fraction of signals with the odds ratio greater than any
given magnitude. Note that the knowledge of the distribution does not imply knowledge of
the effect size that gave rise to any given P-value. Only summary information given by a
probability distribution of various odds ratios is assumed. We refer to this as the exact or
the integration method.

Probability that a Finding Is Genuine
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2. Knowledge about the abundance of three classes of odds ratios, low, average and high. We
refer to this as the discretization or the tabulated values method. In this paper, we approxi-
mate the effect size distribution by three bins, capturing the bulk of the effect size distribu-
tion and the fourth “null” bin containing close-to-zero effect sizes, as illustrated in Fig 1.
Posterior probabilities in these simulations were evaluated by Eq (3), assuming that the null
bin includes odds ratios of 1 to 1.001. We also evaluated these probabilities by Eq (1) that as-
sumes the sharp null hypothesis. Results obtained by these two methods were identical (up
to the reported precision). Note that the simulations also modeled the null hypothesis as
sharp, i.e., the expected proportion Pr(H0) of all signals in a simulation experiment had ex-
actly zero effect size.

3. Knowledge about only the mean of the distribution. We refer to this as the single-value or
the distribution mean method.

In our experiments we focused on estimating POFIG probabilities for the smallest P-values.
Selection of the smallest P-values may cause bias in estimation. An extreme case of selection is
when the single smallest P-value is selected from a multiple testing experiment, which we call
the minP. Additionally, we may envision a process whereby the entire experiment is discarded
by a researcher unless the minP is smaller than the multiple testing adjusted significance
threshold. Thus, we considered two types of P-value selection (1) selecting the smallest P-val-
ues of every experiment and (2) selecting the smallest P-values of only those experiments
where statistically significant findings were observed. First, we considered just the single small-
est P-value, the minP, to determine whether our method can correctly recover the probability
that the minP represents a spurious signal in both of these selection scenarios. Next, we extend-
ed the experiments by considering a larger set of the smallest P-values. In these experiments,
we calculated the proportion of spurious signals among selected smallest P-values and evaluat-
ed how well our method can recover that proportion. We used either the Bonferroni at the
level of 0.05/K or Benjamini and Hochberg’s FDR criterion [12] at the level of 10% as the rule
for discarding sets of the smallest P-values.

2.1.1 Posterior probability ofH0 for a signal with the smallest P-value with or without a
multiple testing correction. Table 1 summarizes the posterior probabilities that the smallest
P-value is a spurious signal in a study with K tests. As expected, the posterior probabilities are
unaffected by the “winner’s curse” phenomenon: the true (first number in each cell) and the es-
timated probabilities are nearly identical for the “exact”method (the second entry in each cell)
which assumes precise knowledge of the effect size distribution (the number of simulations was

Table 1. Probability that the minimumP-value is a false finding. Table entriesW/X/Y/Z give the true probability (W), followed by the estimated probabili-
ties using the integration method (X); the discretization method (Y); the distribution mean method (Z). Sample sizes (n1, n2: number of cases, controls in allele
counts): n1 + n2 = 800 for K = 10 to 10,000; n1 + n2 = 4000 for K = 106.

Number of tests Pr(H0) = 0.5 Pr(H0) = 0.9

No correction α = 0.05/K No correction α = 0.05/K

K = 10 0.40/0.40/0.40/0.40 0.26/0.26/0.26/0.27 0.86/0.86/0.86/0.86 0.76/0.76/0.76/0.77

K = 100 0.28/0.28/0.28/0.29 0.18/0.18/0.18/0.20 0.79/0.79/0.79/0.80 0.67/0.67/0.67/0.70

K = 1000 0.19/0.19/0.19/0.21 0.12/0.12/0.13/0.16 0.70/0.70/0.71/0.73 0.56/0.56/0.58/0.62

K = 10,000 0.12/0.12/0.13/0.15 0.08/0.08/0.09/0.12 0.59/0.59/0.61/0.65 0.45/0.45/0.48/0.55

Pr(H0) = 1-1000/106 Pr(H0) = 1-150/106

No correction α = 0.05/K No correction α = 0.05/K

K = 106 0.36/0.36/0.47/0.74 0.13/0.13/0.23/0.58 0.84/0.84/0.89/0.97 0.51/0.51/0.68/0.91

doi:10.1371/journal.pone.0124107.t001
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50,000 for Table 1 and 10,000 for other tables). The three-value approximation works well but
becomes conservatively biased with 1 × 106 tests; the bias increases for Bonferroni-selected
scans (the “0.05/K” columns) compared to experiments without selection and for experiments
with the relatively higher proportion of non-zero signals. The single value approximation (last
number in each cell) is surprisingly good for small to moderate number of tests. At 1 × 106

tests, the bias for the smallest P-value becomes excessive (Table 1), but the bias is greatly re-
duced as P-values with higher ranks are considered (Table 2). Results in Table 1 suggests that
the Bonferroni adjustment for multiplicity (α = 0.05/K columns) fails to substantially decrease
the probability that the smallest P-value is a spurious finding: although we observe a decrease
in the values of posterior probability, the reduction is not as drastic as may have been anticipat-
ed, considering the stringency of the Bonferroni threshold, 0.05/K.

2.1.2 Proportion of false signals among the 5 smallest P-values with and without an ap-
plication of the FDR criterion. Similar conclusions can be drawn from Table 3 where Benja-
mini and Hochberg’s FDR criterion [12] (B&H’s FDR) was applied at the level of 10%. In
experiments with the application of B&H’s FDR, the five smallest P-values were discarded un-
less all five satisfied B&H’s FDR criterion. Proportions of spurious signals are very similar for
the results with and without the application of B&H’s FDR criterion.

2.1.3 Proportion of false signals among the 100 smallest P-values. Table 2 summarizes
the proportion of false signals among the set of 100 smallest P-values. That proportion, or the
false discovery rate (FDR), is simply the average of posterior probabilities among the 100 small-
est P-values. In this case, even the single-value approximation is reasonably close to the true
value: as the P-value rank moves away from minP, the bias decreases.

Table 2. The average of posterior probabilities among the 100 smallest P-values, i.e., the false discov-
ery rate (FDR) among the 100 smallest P-values. Table entries W/X/Y/Z give the true averaged probability
(W), followed by the estimated averaged probabilities using the integration method (X); the discretization
method (Y); the distribution mean method (Z). Sample sizes (n1, n2: number of cases, controls in allele
counts): n1 + n2 = 800 for K = 10 to 10,000; n1 + n2 = 14000 for K = 106.

Number of tests Pr(H0) = 0.5 Pr(H0) = 0.9

K = 100 0.50/0.50/0.50/0.50 0.90/0.90/0.90/0.90

K = 500 0.42/0.42/0.42/0.42 0.87/0.87/0.87/0.87

K = 1000 0.38/0.38/0.38/0.38 0.85/0.85/0.85/0.85

K = 10,000 0.26/0.26/0.26/0.27 0.78/0.78/0.78/0.79

Pr(H0) = 1-1000/106 Pr(H0) = 1-150/106

K = 106 0.17/0.17/0.16/0.23 0.82/0.82/0.81/0.84

doi:10.1371/journal.pone.0124107.t002

Table 3. The average of posterior probabilities among the 5 smallest P-values, i.e., the false discovery rate (FDR) among the 5 smallest P-values.
Table entriesW/X/Y/Z give the true probability (W), followed by the estimated probabilities using the integration method (X); the discretization method (Y); the
distribution meanmethod (Z). Sample sizes (n1, n2: number of cases, controls in allele counts): n1 + n2 = 800.

Pr(H0) = 0.5 Pr(H0) = 0.9

Number of tests No correction B&H’s FDR at 10% No correction B&H’s FDR at 10%

K = 10 0.47/0.47/0.47/0.47 0.36/0.36/0.36/0.36 0.89/0.89/0.89/0.89 0.84/0.83/0.83/0.83

K = 100 0.35/0.35/0.35/0.35 0.26/0.26/0.26/0.27 0.83/0.83/0.83/0.84 0.75/0.76/0.76/0.77

K = 1000 0.23/0.23/0.24/0.25 0.18/0.18/0.19/0.20 0.75/0.76/0.76/0.77 0.66/0.66/0.67/0.70

K = 10,000 0.15/0.15/0.16/0.18 0.13/0.12/0.13/0.15 0.66/0.65/0.67/0.69 0.56/0.56/0.58/0.63

doi:10.1371/journal.pone.0124107.t003
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Interestingly, the three tables of simulation results demonstrate the phenomenon that as the
number of tests becomes larger, the proportion of spurious signals among a given number of
top hits decreases. This can be inferred from inspecting results of experiments with the num-
bers of tests K increasing from 10 to 10,000, where the sample size and the prior Pr(H0) were
held the same for different values of K.

2.1.4 POFIGs for the smallest P-value from a scan, its replication P-value, and for the
combined scan and replication P-value. In Fig 2, the first graph is a histogram of estimated
posterior probabilities associated with the smallest P-value for a simulated discovery scan with
10,000 tests (simulation details are described in the Methods section “Scan, replication and
combined probabilities”). Smaller probabilities that the finding is false are associated with the
over-presence of genuine signals, indicated by red color, while large probabilities are associated
with false signals, indicated by blue color. The mean value of the first histogram does estimate
the true proportion of false signals in an unbiased way. However, there is a large area of overlap
(purple color), that is, there is no good separation of “red” and “blue” signals. Once all of these
signals are evaluated in a four times larger replication sample (middle histogram), we observe
an appropriately U-shaped distribution. Now most low and high probabilities correctly capture
the genuine and the false signals, respectively, although there is a sizable purple bar at the right
indicating mis-classification of some genuine signals as false. We observe that a sufficiently
large sample size assures a good correspondence between the probability and the actual status
(genuine vs. false) of a signal. The U-shape becomes more prominent in the last histogram that
is based on probabilities for the combined scan and replication P-values, due to an increased
sample size. These figures clearly demonstrate utility of POFIG for discrimination of genuine
and spurious signals. A value of Pr(H0jP-value) that is close to one reflects high likelihood that
the finding is spurious. In contrast to that, large association P-value does not give support to-
ward the hypothesis of no association.

2.2 POFIG application to Crohn’s disease P-values
For the analysis of real data, we used SNP association P-values for Crohn’s disease from Barrett
et al.[13] We considered newly identified loci from Table 2 of their work, selecting those SNPs
for which genes of interest were listed. Utilizing their scan and replication P-values, we applied
the POFIG method to provide scan and replication posterior probabilities of no association for

Fig 2. Distribution of estimated posterior probabilities that a P-value is a false finding.Color refers to whether the actual signal is genuine (red) or false
(blue). Purple color denotes the overlap of genuine and false signals. First graph: Estimated probability that the smallest P-value in a scan (minP) is a false
finding. Second graph: Estimated probability that the signal from the scan with the smallest P-value is a false finding when evaluated in a replication study.
Third graph: Estimated probability that the finding is false based on the combined P-value (the smallest scan P-value combined with the replication P-value).

doi:10.1371/journal.pone.0124107.g002
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selected SNPs. We used the prior for the H0 equal to 1-142/12877, where 142 is the number of
susceptibility loci estimated by Park et al.[7] and 12877 is the total number of loci, estimated
using their definition of a locus based on the extent of linkage disequilibrium. We assumed the
effect size distribution to be a gamma with the shape parameter 1 and the scale parameter was
chosen to give the distribution mean computed from Supplementary Table 3 of Park et al. We
also conducted a sensitivity analysis, utilizing different priors and effect size distributions in-
cluding tabulated effect sizes given in Park et al.[7].

It is common to combine P-values or association statistics between studies, for example, as
presented in Barrett et al.’s Table 2. It should be pointed out that although this type of meta-
analysis, based on summary statistics can be nearly as efficient as analysis based on pooling raw
data [14], possible non-independence of samples and effect size heterogeneity between studies
require careful consideration during meta-analysis of GWAS [15].

The scan and replication probabilities can also be combined. These combined probabilities
can be obtained by using the posterior probability from the scan as the prior Pr(H0) for the rep-
lication. This is mathematically equivalent to replacement of f �gðpÞ in Eq (1) by the product
f �gðp1Þ � f �gðp2Þ where p1 and p2 are the scan and the replication P-values, while using the ini-
tial prior probability, Pr(H0), for the scan. Using this approach, combined posteriors probabili-
ties, labeled as “Combined Pr(H0jP-value)”, were obtained by combining the scan and the
replication posterior probabilities that the finding is spurious for the newly discovered SNP as-
sociations. The results based on the combined probabilities provide substantially higher
chances that the newly identified loci are genuine findings. Barrett et al. reported combined P-
values for the scan and the replication statistics. Their values were based on a combination of
two-sided statistics. Therefore, in our analyses, both the scan- and the replication posterior
probabilities were obtained using two-sided P-values. This approach does not take into account
direction of the association (i.e., effect sign). In Materials and Methods we describe a simple
way that takes into consideration the correspondence of effect directions between studies (sec-
tion “Scan, replication and combined probabilities”).

Fig 3 and Table 4 provide combined posterior probabilities for the newly identified loci re-
ported in Barrett et al.[13]. Barrett et al.’s scan, replication, and combined P-values are given in
the table for comparison. Figs 4 and 5 and Table 5 illustrate the effect of the prior probability
and the assumed effect size distribution on the posterior estimates of Pr(H0jP-value). Neither
of the choices considered in the Table and Figures substantially affected the posterior probabili-
ty that the association is false. In particular, posterior probabilities using the tabulated distribu-
tion are similar to the ones obtained assuming a continuous, L-shaped gamma distribution.

Fig 6 illustrates the comparison of the POFIG posterior probabilities of no true associations
to the FPRP values. The FPRP estimates tend to be smaller, as they refer to the whole tail of P-
values as small as the one observed. The posterior probabilities ofH0 are monotone in the rank-
ing of P-values as the distribution of the noncentralities for this analysis was specified directly
(Eq 14), based on the results reported in Park et al.[7]

3 Discussion
Modern molecular technologies continue to reveal information about genetic architecture of
human diseases. It is now possible to utilize available knowledge to make informed decisions
regarding parameters needed for the calculation of probability that a P-value represents a genu-
ine association, namely the overall proportion of susceptibility loci and the distribution of their
effect sizes. The “False Positive Report Probability” (FPRP) approach [3] utilizing these param-
eters was proposed previously, however the FPRP was not designed as a method for assessing
the probability that a finding (i.e., a “report”) in question is false. Here we introduce a similarly
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inspired approach, the method for assessing the “PrObability that a FInding is Genuine”
(POFIG). Our method eliminates the shortcomings of FPRP, but shares its
computational simplicity.

As in the FPRP approach, one can simply assume a “typical” effect size (taken to be the
mean of the underlying true distribution). This results in a method that is just as simple com-
putationally as the FPRP. Its bias in the estimation of the posterior probability increases with
the number of tests, but decreases with the P-value magnitude or rank. That is, the bias is the
largest for the most significant finding in a study. When the mean value is used, estimate of the
posterior probability that the finding is spurious appears to be conservative (i.e., it is larger
than the true value) and is tolerably small for experiments with as many as 10,000 tests. Truly
massive multiple testing experiments such as whole genome sequencing and genome-wide as-
sociation studies may require a more precise specification of the effect size distribution. Ideally,
the whole probability distribution needs to be specified and the population genetics theory sug-
gests that a gamma distribution can be successfully utilized to model the expected L-shaped
distribution of effect sizes [16]. A far more convenient way is to assume several tabulated effect
size values with the relative abundance of each. Methods and data from which these values can
be readily extracted are starting to emerge [7]. We find that this computationally simple

Fig 3. Minus log of posterior probabilities that the finding is spurious.Minus 1-POFIG for novel SNP
associations with Crohn’s disease in Barrett et al. reported on the logarithmic scale.

doi:10.1371/journal.pone.0124107.g003
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approach can greatly reduce the bias and usage of only three bins with low, moderate and large
effect size values already provides sufficient precision.

False signals can be handled in two different ways within our approach. Traditionally, false
signals are assumed to have zero effect size; this requires specification of the prior probability
of the null hypothesis, Pr(H0). Alternatively, an extra “null bin” is introduced with its respective
proportion for signals which effect sizes are within a narrow interval close to zero. The second
specification acknowledges an understanding that there are many signals whose effect sizes are
tiny but non-zero, avoiding an unrealistic assumption that there is a sizable fraction of signals
with exactly zero effect size.

There are various desirable properties of POFIG. When the same genetic variant (hypothe-
sis) is tested in several studies, one can assess the combined posterior probability of false associ-
ation by sequentially using the 1-POFIG probability from one study as the prior Pr(H0) for the
next. This can be entered in any order and is equivalent to using the initial prior probability, Pr
(H0), while replacing fγ(p) in Eq (1) by the product fγ(p1) × fγ(p2) × . . ., where pi is the i-th
study P-value. Alternatively, one can combine study-specific P-values first and convert the re-
sult to the posterior probability of a hypothesis. This approach gives a simple way to account
for correspondence in the effect direction between studies (Eqs 20, 21). We may contrast this
approach with the practice of combining scan and replication statistics or P-values. Barrett
et al. reported scan, replication and combined P-values in their Table 2. Their combined values
are obtained by pooling Z-statistics, and very similar values can be obtained by combining
their scan and replication P-values by the inverse normal method [17]. These combined P-val-
ues are biased under the hypothesis of no association by the fact that the scan P-values were se-
lected among the set of the smallest P-values. To preserve the type-I error rate in a conservative
way, these combined P-values would need to be adjusted by the number of tests in the scan.
Ideally, classical P-value combination procedures would need to take into account the number
of tests as well as ranks of P-values in both the scan and the replication studies [18].

Following our approach, we combined the scan and the replication posterior probabilities
for novel SNP associations with Crohn’s disease [13] using our approach (Fig 3). Not only the
two probabilities can be combined in a straightforward way, but they can also be averaged
across selected SNPs. This average gives the estimated proportion of spurious signals among

Table 4. P-values reported for the newly identified loci for Crohn’s disease in Barrett et al. and the corresponding posterior probabilities of the null
hypothesis. Rows highlighted in bold correspond to the maximum and minimum Scan P-values.

P-value Pr(H0jP-value)
SNP Scan Replic. Combined Scan Replic. Combined Gene

rs2476601 1.8 × 10-5 1.0 × 10-4 1.5 × 10-8 0.043 0.174 1.1 × 10-4 PTPN22

rs2274910 3.5 × 10−7 4.8 × 10−4 1.5 × 10−9 0.001 0.457 1.4 × 10−5 ITLN1

rs10045431 8.8 × 10-9 3.7 × 10-6 3.9 × 10-13 4.9 × 10-5 0.012 6.7 × 10-9 IL12B

rs6908425 2.5 × 10−7 2.8 × 10−4 9.0 × 10−10 0.001 0.340 6.3 × 10−6 CDKAL1

rs2301436 3.3 × 10−7 3.3 × 10−7 1.0 × 10−12 0.001 0.001 2.3 × 10−8 CCR6

rs10758669 6.8 × 10−7 4.3 × 10−4 3.5 × 10−9 0.003 0.432 2.2 × 10−5 JAK2

rs7927894 1.4 × 10−7 7.3 × 10−4 1.3 × 10−9 0.001 0.551 9.0 × 10−6 C11ORF30

rs11175593 1.3 × 10−7 1.6 × 10−4 3.1 × 10−10 0.001 0.245 2.2 × 10−6 LRRK2-MUC19

rs2872507 2.1 × 10−6 2.9 × 10−4 5.0 × 10−9 0.007 0.350 4.2 × 10−5 ORMDL3

rs744166 5.9 × 10−6 9.1 × 10−8 6.8 × 10−12 0.017 4.6 × 10−4 8.7 × 10−8 STAT3

rs762421 1.1 × 10−5 1.6 × 10−5 1.4 × 10−9 0.028 0.041 1.4 × 10−5 ICOSLG

The proportion of false findings (FDR) 0.009 0.237 1.9 × 10−5

doi:10.1371/journal.pone.0124107.t004
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the SNPs. In the analysis of Barrett’s data, we computed probabilities that a finding is spurious
(i.e., false). The average of these probabilities gives the estimated proportion of false signals, or
the false discovery rate estimate (FDR), as reported in the last row of Table 4.

Selection issues aside, the scan and combined P-values in Table 4 should be viewed with
caution, because the smallest GWAS P-values may themselves be imprecise for various reasons,
including residual confounding, genotyping errors, and violations of statistical assumptions in
computing P-values from very large values of association statistics. We also assume that the
bulk of P-value distribution is appropriately flattened by methods that adjust for systematic bi-
ases caused by population stratification or other sources of confounding [19–21]. Our posterior
probabilities are extracted from P-values, thus they are similarly affected by these issues.

Our approach compares favorably to classical estimation procedures where effect size esti-
mates for top hits of a study tend to be over-estimated and the corresponding P-values tend to
be too small. This bias, known as the winner’s curse phenomenon, has been a formidable chal-
lenge. Bowden and Dudbridge concluded that in the classical (frequentist) statistical frame-
work, no unbiased correction is possible without replication data [10]. Combination of selected

Fig 4. Probability that a finding is false (1-POFIG). The probability that the most significant newly identified
loci reported in Barrett et al. is false. The prior probabilities are based on the estimates for the total number of
susceptibility SNPs reported in Park et al. The shape parameter 0.634 was chosen to yield the median value
of the noncentrality distribution to be twice as small as that of the exponential distribution (Shape = 1) for the
same value of the scale.

doi:10.1371/journal.pone.0124107.g004
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Fig 5. Probability that a finding is false (1-POFIG). The probability that the least significant newly identified loci reported in Barrett et al. is false. The prior
probabilities are based on the estimates for the total number of susceptibility SNPs reported in Park et al. The shape parameter 0.634 was chosen to yield the
median value of the noncentrality distribution to be twice as small as that of the exponential distribution (Shape = 1) for the same value of the scale.

doi:10.1371/journal.pone.0124107.g005

Table 5. Posterior Pr(H0jP-value) for two newly identified loci based on the results reported in Barrett et al. [13]. The three prior probabilities are
based on the three estimates for the total number of susceptibility SNPs taken from Park et al’s. supplementary Table 5. [7] The “Tabulated” effect size distri-
bution is based on Park et al’s supplementary Table 3; “scale” in Gamma(1 or 0.634, scale) is chosen to have the distribution mean equal to that of the
tabulated distribution.

SNP Gene Reported P-value Prior Effect size distribution Posterior

rs10045431 IL12B 8.80 × 10−9 1-76/12877 Tabulated 1.9 × 10−4

Gamma(0.634, 27.21) 1.0 × 10−4

Gamma(1, 17.25) 8.6 × 10−5

1-142/12877 Tabulated 9.9 × 10−5

Gamma(0.634, 27.21) 5.5 × 10−5

Gamma(1, 17.25) 4.6 × 10−5

1-219/12877 Tabulated 6.4 × 10−5

Gamma(0.634, 27.21) 3.6 × 10−5

Gamma(1, 17.25) 3.0 × 10−5

rs2476601 PTPN22 1.81 × 10−5 1-76/12877 Tabulated 0.082

Gamma(0.634, 27.21) 0.096

Gamma(1, 17.25) 0.078

1-142/12877 Tabulated 0.045

Gamma(0.634, 27.21) 0.054

Gamma(1, 17.25) 0.043

1-219/12877 Tabulated 0.030

Gamma(0.634, 27.21) 0.035

Gamma(1, 17.25) 0.028

doi:10.1371/journal.pone.0124107.t005

Probability that a Finding Is Genuine

PLOS ONE | DOI:10.1371/journal.pone.0124107 May 8, 2015 14 / 24



smallest P-values results in complicated distributions [22–24] and methods for combining re-
sults from studies, some of which involve selection of the best results, are lacking. The main ap-
peal of our method is that it is unaffected by selection of either smallest or statistically
significant P-values, as we demonstrated by simulation experiments. Estimated posterior prob-
abilities and their averages among selected P-values (FDR estimates) are unbiased. These esti-
mates of posterior probabilities and especially of their averages among the smallest P-values
were shown to be robust in the presence of high linkage disequilibrium [25]. Admittedly, high
precision in estimation of true probabilities comes at a price of correct specification of the effect
size distribution and the overall proportion of susceptibility variants. This underlines impor-
tance of emerging statistical research on estimation of these parameters from large scale
genetic data.

Fig 6. Posterior probabilities of the null hypothesis by POFIG and FPRPmethods. The posterior probabilities are calculated for the newly identified
Crohn’s disease associations from Barrett et al.’s study [13]. Unmarked genes in the lower left corner: IL12B, LRRK2-MUC19, C11orf30, CDKAL1, CCR6,
ITLN1—for red and blue; IL12B, LRRK2-MUC19, C11orf30, CDKAL1, CCR6, ITLN1, JAK2—for green (FPRP).

doi:10.1371/journal.pone.0124107.g006
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Table 1 shows that in experiments with and without a multiplicity correction, the smallest
P-value is increasingly more likely to represent a genuine signal as the number of tests increases
from 10 to 10,000. In experiments with the multiplicity correction, only those experiments
were retained for analysis where one or more results were significant. Although the multiplicity
adjustment itself does not change the order of P-values, probability for the signal with the
smallest P-value to be genuine changes when computed among those retained experiments
with significant findings. There is another interpretation of these results. In the columns with
the multiplicity correction, simulations can be thought of as modeling a process that leads to
the publication bias phenomenon: experiments without significant findings are put in a file
drawer, while those with significances are sent to a journal. The fact that the calculated posteri-
or probability correctly estimates the true proportion of spurious results indicates that our
method is unaffected by the publication bias phenomenon. The calculation of posterior proba-
bilities is not informed in any way by the significance threshold used or by how many tests
were performed.

It is understood within the research community that P-values, even after a multiplicity ad-
justment still do not reflect chances that the finding is spurious. Nevertheless, multiplicity ad-
justments are thought to be highly efficient in filtering out spurious results, similarly to how
the distillation process turns the wash into vodka. It is evident from Table 1 after comparing
probabilities for columns with and without the correction that the multiplicity adjustment
even as strict as the Bonferroni does not necessarily serve as a good filter of spurious signals.
Application of Benjamini and Hochberg’s FDR criterion (Table 3) changes the true proportion
of spurious signals only slightly. When half of the signals are genuine, this proportion drops
from 15% to 12%, but in these simulations, only about 1 in every 18 experiments had all five
smallest P-values significant by this criterion. These simulations were deliberately designed to
be under-powered to detect any single genuine signal. In studies with low power, genuine sig-
nals do not come up at the top with high certainty. In these situations, multiple-testing ap-
proaches should supposedly shield us from accepting too many spurious signals as genuine. As
we see, this is not the case. Moreover, there appears to be increased enrichment of top hits by
genuine signals as the number of tests becomes larger.

In summary, P-values, despite their deficiencies, do contain information that can be used
for judging validity of findings and we propose POFIG for converting P-values to valid proba-
bilities that a finding is genuine. As we demonstrate, this simple method avoids numerous
complications that arise in making decisions based on P-values. POFIG requires an informed
input from researchers regarding a likely proportion of genuine signals in their multiple testing
experiments and some characterization of the effect size distribution. The later can be replaced
by a good guess for the mean of that distribution unless the P-values are extremely small, in
which case validity of P-values themselves is likely in doubt.

Software
Microsoft Excel and R programs to convert P-values to posterior probabilities that a finding is
genuine are available at https://sites.google.com/site/pofigscript/ or by a request to D.V.Z. The
programs assume that P-values result from one degree of freedom chi-square tests, but can be
easily modified to accommodate other tests statistics. We welcome requests for help
with modifications.

4 Materials and Methods
Suppose our test statistic is Z, with the cumulative distribution function (CDF) under the null
hypothesis denoted by G0(�). Under the alternative hypothesis, HA, we denote its CDF by Gγ(�).
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The parameter γ captures deviation from the null hypothesis. P-value is obtained in the usual
manner, as P = 1 − G0(Z). By rewriting this and applying the inverse of the CDF, G�1

0 ð�Þ, we re-
cover the statistic Z:

1� P ¼ G0ðZÞ
G�1

0 ð1� PÞ ¼ Z
ð7Þ

Under HA, the P-value has the CDF 1 − Gγ(Z). We can apply 1 − Gγ(�) to the both sides of Eq
(7) to write this distribution in terms of the usual P-value computed under H0. Thus, under
HA, the P-value CDF, which we denote by Fγ(p) is

FgðpjgÞ ¼ 1� Gg½G�1
0 ð1� pÞ� ð8Þ

By differentiating this CDF, we obtain the corresponding probability density function, PDF:

fgðpjgÞ ¼ ggðG�1
0 ð1� pÞÞ

g0ðG�1
0 ð1� pÞÞ ð9Þ

Here, g0(�) and gγ(�) are the PDFs that correspond to the CDFs G0(�) and Gγ(�).
P-value distribution as defined in this section arises from a broad range of statistical tests.

For a normally distributed test statistic, γ is the normal mean, shifted away from zero. For chi-
squared F, and t statistics, γ is the noncentrality parameter of the corresponding distribution.
In all these cases, zero value of γ corresponds to H0. Thus, the P-value distribution is quite gen-
eral with regard to the underlying statistical test. Its applicability is not limited to models with a
single predictor; e.g., in regression models with adjustment for covariates, distribution of P-
value for a predictor of interest can be modeled in the same way. The proposed approach ap-
plies to continuous test statistics with a distribution where the degree of deviation fromH0 is
captured by a value of a single parameter (γ). Because this approach requires an explicit specifi-
cation of the distribution, it cannot be readily applied to P-values that result from permuta-
tion-based tests and other tests that are based on resampling. It is at present unclear whether
our approach would provide sufficient precision when applied simply as a convenient statistical
device to approximate and model an unknown (e.g., resampling) distribution. We note that a
beta distribution has been used successfully to mimic P-value distributions in several studies
concerned with problems related to those considered here [26–29]. The choice of a beta distri-
bution in these studies was due to flexibility of its shape rather than to any known relation to
the actual distribution of P-values. Good performance of approximations based on a beta dis-
tribution is encouraging, given that the P-values of common test statistics do not in fact follow
that distribution. Thus, the issue of applicability of our approach to P-values that do not neces-
sarily follow an assumed parametric distribution is worthy of future investigation.

To make the exposition more focused, we primarily discuss the binary outcome, a chi-
square statistic, and the effect size defined via odds ratios or directly as a value of the noncen-
trality, but there is no restriction for the outcome to be binary. Lee and Wray provide useful ex-
pressions that present the noncentrality parameter in terms of the proportion of variability in
the outcome due to a genetic predictor [30]. These expressions cover a variety of designs with
different sampling schemes and both continuous and binary outcomes. Yang et al. give
formulas to relate noncentralities of population-based quantitative trait and case-control
designs [31].
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4.1 False Positive Report Probability
If the rejection of the null hypothesis is based on some nominal α-level, such as 5%, the proba-
bility of obtaining P-value, P, that is at least as small as α is equal to α, given that the null
hypothesis is true: Pr(P� αjH0) = α. The value α defines the type-I error rate. Under the alter-
native hypothesis, denoted byHA, the corresponding probability is the power: Pr(P� αjHA) =
1 − β, where β is the type-II error rate: the probability of failing to reject the null hypothesis
correctly. By the Bayes rule,

Pr ðH0jP � aÞ ¼ Pr ðP � ajH0ÞPr ðH0Þ
Pr ðP � ajH0ÞPr ðH0Þ þPr ðP � ajHAÞPr ðHAÞ

¼ 1þ 1�Pr ðH0Þ
Pr ðH0Þ

�Pr ðP � ajHAÞ
Pr ðP � ajH0Þ

� ��1
ð10Þ

This approach was used by Morton to define posterior probabilities in the context of genetic
linkage analysis [32]. It also forms the basis of the false positive report probability (FPRP)[3].
Although Wacholder et al. assumed a single (typical) effect size, the probability Pr(P� αjHA)
depends on the distribution of all possible effect sizes and has to be represented in its marginal
form, i.e., averaged over all possible values of the effect size for genuine signals

Pr ðP � ajHAÞ ¼
Z

FgðajgÞGðgÞdg ð11Þ

assuming that γ follows the distribution Γ(γ). By using the notation F�gðaÞ ¼ PrðP � ajHAÞ
and assuming, following Wacholder et al., uniformity of P-values under H0, so that F0(α) = Pr
(P� αjH0) = α, the FPRP is

FPRP ¼ 1þ 1�Pr ðH0Þ
Pr ðH0Þ

� F�gðaÞ
a

� ��1

ð12Þ

Eq (12) gives the proportion of null signals among P-values that are smaller or equal to a fixed
threshold α. Wacholder et al. advocated plugging in an observed P-value in place of α. Because
Pr(P� αjHA)� Pr(P� αjH0), the result can never be larger than the prior probability, Pr(H0).
For the result to be interpreted as the probability of no true association between a genetic vari-
ant and disease given a P-value, a modification is needed, as described in the next section.

4.2 POFIG: Probability that a finding a genuine
In this section, we present POFIG via its relation to FPRP, assuming the point null hypothesis,
i.e., exactly zero effect size for false signals. To obtain the posterior probability of H0 given a
particular P-value, one cannot simply substitute α in Eq (12) for the P-value (p), because the
ratio of CDFs, F�gðpÞ=F0ðpÞ ¼ F�gðpÞ=p would refer to the entire interval [0, p]. To assess the
posterior probability ofH0 given an observed P-value, one could consider a narrow interval
around p instead. This is simply achieved by replacing the ratio of CDFs by the ratio of densi-
ties:

Pr ðH0jpÞ ¼ lim
d!0

Pr ðH0jP 2 ½p; pþ d�Þ

¼ 1þ 1�Pr ðH0Þ
Pr ðH0Þ

� f�gðpÞ
f0ðpÞ

� ��1

As in the original FPRP approach, we will assume that P-values follow the uniform distribution
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under H0, i.e., f0(p) = 1, so that the probability that the finding is genuine is

POFIG ¼Pr ðHAjpÞ ¼ 1�Pr ðH0jpÞ ¼ 1� 1þ 1�Pr ðH0Þ
Pr ðH0Þ

� f�gðpÞ
� ��1

ð13Þ

where f �gðpÞ is the marginal P-value density that acknowledges that different signals have dif-
ferent effect sizes. The next subsection presents basic ways to take this distribution into account
in computing the averaged (“marginal”) P-value PDF. Conceptually, 1-POFIG corresponds to
the local FDR [33, 34]. The equivalence of local FDR and the “point null” version of POFIG is
in that they are both inversions of the conditional probability. Both can be described as an ap-
plication of the Bayes rule. There are several differences between the approaches. One differ-
ence is that P-value and POFIG ranks are not necessarily the same, while local FDR (and q-
values) have the same ranks as P-values. Further, POFIG in its general form, where the null hy-
pothesis is not a point, Eq 3) is no longer equivalent to the local FDR. We argue that this form
is a more biologically realistic representation of the effect size distribution; not only the point
null is a statistical abstraction, but it is expected that most genetic variants with heritable con-
tribution have only tiny effect on a trait. Another distinction is in how the P-value distribution
is modeled. Local FDR relies on an Empirical Bayes approach which uses the totality of data to
evaluate prior parameters. This approach works well when non-null signal frequency is high,
as found in differential gene expression studies. In contrast, q-value and local FDR approaches
are not commonly applied in genetic association studies, where they may not be reliable due to
high sparsity of true signals [35].

4.2.1 Marginal P-value density: Continuous approach.

1. If the sample size is the same or similar for all tests, as can be found in SNP association stud-
ies, one can specify the distribution for the parameter γ directly: γ* Γ(�). Realistic shapes
for the effect size distribution in association studies would assume that there are many small
effects and few that are large. Effect size distributions for such genetic association signals fol-
low an “L-shape” that is well approximated by a Gamma distribution with the shape param-
eter smaller or equal to one [16]. There are some advantages to this approach. As suggested
by Park et al.[7], when γ is defined as in Eq (6), then γ × 2/N can serve as a definition of the
effect size and corresponds to the contribution of a SNP to the additive genetic variance of
the trait. It is also very general in that γmay refer to a parameter that is measuring a devia-
tion from H0 for a variety of test statistics, including noncentrality for chi-square and F dis-
tributions, and mean shift for normally or t-distributed test statistics. It has been noted that
because γ values would typically depend on allele frequency, an implicit assumption in
modeling the distribution of γ directly is that less frequent alleles tend to have larger effect
size [36]. With this approach, the marginal P-value PDF is

f�g ðpÞ ¼
Z

fgðpjgÞGðgÞ dg ð14Þ

2. When sample sizes (N) differ among tests, we can take advantage of the fact that N often ap-
pear as a separate term (as in Eq 6) and specify a distribution for the standardized effect
size, E* ΓE(�). Contingency table chi-square noncentrality can be similarly written in
terms of the actual (oi) and expected ei frequencies as γ = N × ∑(oi − ei)

2/ei. For the normal

test statistics,
ffiffiffiffi
N

p
factors out instead. Thus, allowing for varying sample sizes of different
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tests, the marginal P-value PDF is

f�g ðpÞ ¼
1

s

Z
fg pjgð ÞGE

g
s

� �
dg ð15Þ

where σ is equal to N for chi-square and
ffiffiffiffi
N

p
for normal test statistics.

3. It is also possible to specify a distribution for a non-standardized effect size, defined, for ex-
ample, by the square of log odds ratio, D, as in the logistic model (Eq 6). This model speci-
fies that D follows the distribution ΓD(�). In this case, the marginal PDF is a function of both
the P-value and the allele frequency, q. Then the marginal P-value PDF is

f�g ðpÞ ¼
1

s

Z
fg pjgð ÞGD

g
s

� �
dg ð16Þ

In this specification, s ¼ Nq̂ð1� q̂Þ, where q̂ is the sample pooled allele frequency.

Given the three alternative specifications of the marginal P-value density just described, we will
consider two approximations that do not require the complete specification of the effect size
distribution, Γ(�) and allow to sidestep calculation of the integral.

4.2.2 Marginal P-value density: Typical effect size method. The first approximation is
reminiscent of the FPRP approach where a “typical” single value is considered in place of the
entire effect size distribution. By writing Eq (14) as an expectation and applying the first order
Taylor expansion, we obtain an approximation as

fgðpÞ ¼ EffgðpjgÞg
� fgðpjmgÞ

ð17Þ

where μγ is the mean value of the effect size distribution. With the specification by Eq (14), μγ =
E(γ). With the specifications by Eqs (15, 16), μγ = σ × E(E) and μγ = σ × E(D), respectively. This
approximation is appealing primarily because it is a much simpler task for a researcher to spec-
ify a single “typical” value than to come up with the entire effect size distribution. Here, we con-
sider utilization of the mean primarily as a way of misspecification of the effect size
distribution. The effect size distribution can be misspecified in an infinite number of ways, and
reducing the distribution to just the mean gives one such natural way. The effect of misstating
the mean would introduce further bias in posterior estimates, however it is difficult to system-
atically evaluate that bias, since its degree would depend on many parameters, including sam-
ple size. Nevertheless, for any specific study, researchers may evaluate the effect of varying the
mean on robustness of the posterior inference.

4.2.3 Marginal P-value density: Tabulated values (discretization) method. While the
simple “mean” approximation can be sufficient, sometimes it may introduce a noticeable im-
precision. The second approximation is based on discretizing the effect size distribution into
several “bins”. While only slightly more complex than the previous approximation, our results
indicate that usage of as little as three bins provides sufficient precision. One possible way,
based on the extension of the previous single-value method is to take the middle bin to be cen-
tered around the mean value of the effect size distribution μ, with the left and the right sides ex-
tending to μ − μ/2 and μ + μ/2, respectively. Assuming the majority of signals are of small size
and signals of large magnitude are rare, the effect size distribution can be represented by a
Gamma(shape, scale) distribution with the shape smaller or equal to one. These distributions
taper off as shown in Fig 1 and the mean value is μ = scale × shape. The figure also illustrates a
representation of a continuous distribution by three mean values for each of three bins. Each
bin is characterized by its mean effect size value μi and the relative proportion (signal count)
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for the bin, wi. The marginal density approximation is

f�g ðpÞ �
PB

i¼1 wifgðpjgiÞPB
i¼1 wi

ð18Þ

where B is the number of bins. With the specification given by Eq (14), γi = μi. With the specifi-
cations given by Eqs (15, 16), γi = μi σ. Park et al. designed a method for tabulating effect sizes
with their respective abundances (wi) based on GWAS data and provided such tabulated values
for several diseases. In their definition, effect sizes are expressed as γ × 2/N (where γ and N are
given by Eq 6).

4.3 Simulation experiments
Each simulation experiment consisted of K one degree of freedom chi-square allelic association
tests. Each test with its corresponding P-value was randomly chosen to represent either a genu-
ine or a spurious signal with respective probabilities 1 − Pr(H0) for genuine and Pr(H0) for spu-
rious signals. For experiments with K� 10000 tests, we assumed two distinct proportions of
false signals. Scenario 1 was modeled after a “fishing expedition”, using a relatively large pro-
portion 0.9. Scenario 2 was “we know what we are doing” setup with the smaller proportion of
0.5. For simulations with a very large number of tests, K = 106, we used much larger propor-
tions of false signals, 1-(150/106) and 1-(1000/106) that are expected in genome wide associa-
tion studies. These proportions and the number of tests are given in Table 1.

For a given genuine signal, its effect size D was sampled from a gamma distribution with pa-
rameters as will be specified below. Then, the population SNP frequency q was sampled from
the uniform (0.05, 0.95) distribution. For a given sample size parameter N (given by Eq 6), the
noncentrality parameter was determined as γ = N D q(1 − q), according to Eq (6). Next, the P-
value for this particular genuine effect was sampled as follows: (1) sample a normal Z-score Z
from the standard normal distribution; (2) convert Z to a noncentral chi-square statistic

X ¼ ðZ þ ffiffiffi
g

p Þ2; (3) calculate the P-value using the central chi-square cumulative distribution
function (CDF) with one degree of freedom, G0(�), as P-value = 1 − G0(X). The value γ was dis-
carded, i.e., it was assumed to be unknown, and only the P-value was stored. P-values for spuri-
ous signals were sampled from the uniform (0,1) distribution.

For the effect size distribution, we assumed an L-shaped gamma distribution with the shape
equal to one. We assumed the mean odds ratio of 1.1 from which the effect size distribution is
given approximately by Gamma(1, [log(1.1)]2). Sample sizes are given in footnotes for the ta-
bles of results (Tables 1, 2 and 3). Since effect sizes were modeled in terms of odds ratios instead
of the noncentralities, the marginal P-value density for the exact method was computed via Eq
(16). Allele frequency was binomially sampled given the signal-specific population allele fre-
quency and the sample size. The noncentrality parameter was computed via Eq (6). Eq (1) was
used to obtain the posterior probability, assuming known prior proportion of spurious signals.
Note that the method of modeling the effect size distribution in terms of odds ratios, applied in
these simulations does not preserve the ranking of P-values when they are converted to the
posterior probability ofH0. This is because two SNPs with the identical odds ratios may have
different allele frequencies, and the allele frequency is a part of the posterior computation.

4.3.1 Scan, replication and combined probabilities that the finding is genuine. To illus-
trate the distribution of scan, replication and combined posterior probabilities as well as their
accuracy in distinguishing between genuine and spurious signals, we used a simulation setup
similar to the one just described. In each of these experiments, we took the smallest P-value
(minP) from the scan (N = 4000), and generated a random replication P-value, re-using the ef-
fect size associated with the scan minP. For the replication study, we assumed a four times
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larger sample size, Pr(H0) = 0.99, and the number of tests equal to K = 10000. Probabilities for
the replication samples were computed in a conservative way, using the same effect size distri-
bution as that assumed for the scan, although the effect size distribution in replication studies
is expected to be modified.

One can most easily combine scan and replication posterior probabilities, or more generally,
probabilities from S independent studies if P-values are reported as one-sided, that is, when a
specific direction of association is being tested. In this case, the distribution of effect sizes needs
to reflect the effect direction as well, for example, log odds ratios instead of their squared values
might be used. Then Eq (1) is modified as

POFIG ¼ 1� 1þ 1�Pr ðH0Þ
Pr ðH0Þ

�
YS
j¼1

f�gðpjÞ
" #�1

ð19Þ

Most association P-values are reported as two-sided, i.e., based on an association statistic
where the direction of association is not reflected. There is also convenience in using two-sided
P-values, in which case the effect size distribution is specified based on its magnitude, without
taking into account the sign of the effect. A simple way of taking the effect sign into account is
to convert two-sided scan and replication P-values to one-sided, then combine one-sided P-
values, and convert the result (po) back to a two-sided P-value, pt. The resulted combined P-
value approximates well the P-value that would have been obtained by pooling individual-level
data [37]. In general, several two-sided P-values (pi, i = 1, . . ., k) can be combined with this
method as follows:

po ¼ 1� F
Pk

i¼1½2Iðsigni ¼ sign1Þ � 1�wiF
�1ðpi=2ÞPk

i¼1 w
2
i

" #
ð20Þ

pt ¼ 2min ðpo; 1� poÞ ð21Þ
where I(�) is the indicator function, signi is the effect direction associated with the P-value pi,
F−1(�) is the inverse normal CDF, and wi are the weights which can be taken to be square roots
of the sample sizes (square root of the harmonic mean of case and control sample sizes for
case-control studies). Such combined P-value can be converted to the posterior probability in
the same way as the original P-values (using Eq 1), but utilizing the total sample size of the
studies. We illustrated this approach via simulation experiments (as summarized in Fig 2).

4.4 POFIG application to Crohn’s disease P-values
For Crohn’s disease, the total number of susceptibility loci was estimated together with the tab-
ulated effect size distribution by Park et al.[7] and given in their supplementary Tables 3 and 5
in a standardized fashion as 2Dq(1 − q) which is 2/N of the noncentrality for the logistic model
(Eq 6). Therefore, we modeled the marginal P-value density, which is a part of Eq (1) for the
posterior probability by assuming the distribution for the noncentralities directly (Eq 14). This
method preserves the ranking of P-values when they are converted to the posterior probability
ofH0. We assumed a gamma distribution with the shape parameter equal to 1. The second pa-
rameter of the gamma distribution, its scale, was obtained using its property that
mean = shape × scale. Park’s Supplementary Table 5 was used to derive the mean effect size
value. We used Park’s estimate of 142 susceptibility loci. The “loci” in this case correspond to
associated regions, defined by Barrett et al. on the basis of linkage disequilibrium, with the av-
erage locus length equal to 232973 base pairs. Taking the total genome length to be 3 billion
base pairs, the number of segments with that length in the genome is 12877. We used these
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numbers to derive the prior for theH0 as 1 − 142/12877. Additionally, we evaluated our
POFIG approach with different priors and effect size distributions. We considered different es-
timated numbers of susceptibility loci obtained by different methods as given in Supplementa-
ry Table 5 of Park et al. For the approach that assumes a continuous effect size distribution, we
utilized a gamma distribution with the shape parameter equal to 1 or 0.634. The value 0.634 for
shape parameter value was chosen to yield the median value of the noncentrality distribution
to be twice as small as that of the distribution with the shape equal to 1 for the same value of
the scale. Again, the second (scale) parameter was determined by the mean effect size value.
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