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Abstract
Tolerance of recurrent mechanical wounding and exogenous ethylene is a feature of the rub-

ber tree. Latex harvesting involves tapping of the tree bark and ethephon is applied to increase

latex flow. Ethylene is an essential element in controlling latex production. The ethylene sig-

nalling pathway leads to the activation of Ethylene Response Factor (ERF) transcription fac-

tors. This family has been identified inHevea brasiliensis. This study set out to understand the

regulation of ERF genes during latex harvesting in relation to abiotic stress and hormonal treat-

ments. Analyses of the relative transcript abundance were carried out for 35HbERF genes in

latex, in bark frommature trees and in leaves from juvenile plants under multiple abiotic

stresses. Twenty-oneHbERF genes were regulated by harvesting stress in laticifers, revealing

an overrepresentation of genes in group IX. Transcripts of threeHbERF-IX genes from

HbERF-IXc4,HbERF-IXc5 andHbERF-IXc6were dramatically accumulated by combining

wounding, methyl jasmonate and ethylene treatments. When an ethylene inhibitor was used,

the transcript accumulation for these three genes was halted, showing ethylene-dependent

induction. Subcellular localization and transactivation experiments confirmed that several

members of HbERF-IX are activator-type transcription factors. This study suggested that

latex harvesting induces mechanisms developed for the response to abiotic stress. These

mechanisms probably depend on various hormonal signalling pathways. Several members of

HbERF-IX could be essential integrators of complex hormonal signalling pathways inHevea.

Introduction
Latex, a rubber-containing cytoplasm, is harvested by tapping soft bark tissues of Hevea brasi-
liensis. Latex production depends on the flow and regeneration of latex between two tappings.
Ethephon, an ethylene releaser, is applied to the tapping panel to stimulate latex production.
Ethephon application induces several biochemical changes in laticifers, such as sucrose loading
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[1], water uptake [2], and nitrogen assimilation or synthesis of defence proteins [3], involving a
large number of ethylene-response genes [4]. Production of endogenous ethylene by tapping
and exogenous ethylene by ethephon stimulation are likely to be sources of stress conducive to
the biosynthesis of defence proteins and secondary metabolites, comprising rubber, in order to
protect wounded laticifers [5]. Over a certain limit of environmental and harvesting stress, an
intra-laticifer oxidative burst is generated. This oxidative stress leads to the peroxidation of
membranes and the release of agglutinins such as Hevein from lutoids, which are defined as a
polydispersed lysosomal vacuome [6]. Hevein is involved in the in situ coagulation of rubber
particles [7]. This physiological syndrome, called tapping panel dryness (TPD), is responsible
for substantial rubber production losses [8]. Ethylene therefore plays an ambivalent role that is
conducive to latex production, but becomes unfavourable beyond a certain level.

The ethylene signal is perceived in plant cells through cascades of responses [9,10]. Eth-
ylene Response Factors (ERFs) are the last known actor in the ethylene transduction path-
way and regulate downstream ethylene-responsive genes. The ERF family belongs to the
AP2/ERF superfamily. These transcription factor proteins have at least one AP2 conserved
domain [11]. ERFs are trans-acting factors that bind to GCC or DRE/CRT cis-acting ele-
ments in the promoter region of target genes [12]. Many studies have shown that ERF
genes are associated with plant development and responses to biotic and abiotic stress [13].
This family of genes has been extensively characterized, especially for responses to cold, de-
hydration, and low-oxygen sensing [14]. ERFs have been commonly classified as ethylene-
dependent genes and regulate downstream target genes with or without interaction with
other phytohormones [15]. The ERF family has been subdivided into ten groups with spe-
cific functions [16].

Recently, a comprehensive transcriptome led to the identification of 87 unique contigs relat-
ed to Hevea ERFs, which were organized in 10 groups [17,18]. The characterization of these
transcription factors has been carried out in different biological contexts, such as the somatic
embryogenesis process [19], jasmonic acid-induced laticifer differentiation [20], and abiotic
stress [21–23]. Although more recent characterization revealed a high accumulation of tran-
scripts for some ERF groups (HbERF-II and HbERF-VII) in laticifers [18], their transcriptional
regulation under abiotic stress related to the practice of latex harvesting have yet to be elucidat-
ed. Tapping can be considered as mechanical wounding and osmotic stress due to the loss of
cytoplasm. Consequently, latex harvesting stress should involve several hormone signalling
pathways such as ethylene, jasmonate, and ABA.

This paper set out to understand the regulation of ERF genes during latex harvesting in rela-
tion to abiotic stress and hormonal treatments. Analyses of the relative transcript abundance by
real-time RT-PCR were carried out in latex, in bark frommature trees and in leaves from juvenile
plants under multiple abiotic stresses. The Table 1 summarizes earlier work and current work on
the 35Hevea brasiliensis ERF genes tested in response to harvesting stress in bark and latex. A hi-
erarchical clustering of gene expression profiles led to the identification of 21HbERF genes regu-
lated by ethylene (ET), methyl-jasmonate (MeJA) and dehydration in laticifers. Several members
ofHbERF-IX are induced by ethephon and/or tapping in latex and bark. Synergetic effects of eth-
ylene and MeJA on transcript accumulation were observed forHbERF-IXc4,HbERF-IXc5 and
HbERF-IXc6. Pharmacological experiments using the inhibitor of ethylene action 1-methylcyclo-
propene (1-MCP) revealed that some ERFs are ethylene-independent. Subcellular localization
and transactivation experiments suggested that several members of the HbERF-IX group are an
activator type of transcription factors. This work is the first in-depth characterization of ERFs in
a perennial tropical species and provides insight into the complex transcriptional regulations of
ERFs. This study suggested that latex harvesting induces mechanisms developed for the response
to abiotic stress. These mechanisms probably depend on various hormonal signalling pathways,

Stress-InducedHevea ERFs

PLOSONE | DOI:10.1371/journal.pone.0123618 April 23, 2015 2 / 26

The Institut Français du Caoutchouc (IFC), and the
Michelin, Socfinco and Société Internationale de
PLantations d'Hévéas (SIPH)companies provided a
18-month scholarship to Mr. Riza-Arief Putranto, and
funded all bench fees for experiments related to this
paper. CATAS and the Beijing Institute of Genomics
provided access to the Hevea genome sequence.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript. The IFC agreed to
publish this manuscript.

Competing Interests: This work was supported by
the Institut Français du Caoutchouc, and the Michelin,
Socfinco and SIPH companies. There are no patents,
products in development or marketed products to
declare. This does not alter the authors' adherence to
PLOS ONE policies on sharing data and materials.



Table 1. Summary of 35Hevea brasiliensis ERF genes tested in response to harvesting stress in bark and latex .

ERF group Gene Previous studies (Duan et al. 2013; Piyatrakul et al.,
2014)

This work

Contig Length
(bp)

Gene
expression
marker in
non-tapped
trees

Phylogenetic
analysis

Predicted
miR-
targeted
ERFs

Number
of
introns

Cis-acting
element-
related
hormonal
pathways
present in
ERF
promoters

Gene expression marker
in tapped trees

Harvesting
stress

Expression
in latex

HbERF-I HbERF-Ib4 CL1Contig10232 1983 Male flower 0 ET, JA,
ABA, IAA,
CK, GA

HbERF-Ib7 CL1Contig11231 1956 0 ET, JA,
ABA, CK,
GA

T, Eth High

HbERF-Ib11 CL13631Contig1 905 Male flower,
bark, latex

0 ET, JA,
ABA, IAA,
CK, GA

HbERF-II HbERF-IIb2 CL17512Contig1 675 Embryo, leaf ORA47 0 ET, JA,
ABA, CK,
GA

T, Eth High

HbERF-III HbERF-IIIb1 CL7809Contig2 1450 Latex 0 ET, JA,
ABA, IAA,
CK, GA

Eth

HbERF-IIIe1 CL1Contig2578 1434 miR894 0 JA, ABA,
IAA, CK, GA

HbERF-IV HbERF-IVa3 CL10676Contig1 1324 Male flower,
latex

0 ET, JA,
ABA, CK,
GA

T, Eth High

HbERF-V HbERF-Va2 CL1Contig20078 467 0 ET, JA,
ABA, IAA,
CK, GA

HbERF-VI HbERF-VI1 CL15015Contig1 844 Male flower 0 ET, JA,
ABA, IAA,
CK, GA

T High

HbERF-VI3 CL10440Contig2 1585 Embryo, leaf 0 ET, JA,
ABA, IAA,
CK, GA

T High

HbERF-VI5 CL1Contig16711 1616 Latex miRn11 ET, JA,
ABA, IAA,
CK, GA

T, Eth High

HbERF-VI-L HbERF-VI-L3 CL932Contig9 1213 Male flower CRF10 0 ET, JA,
ABA, CK,
GA

Eth

HbERF-VI-L4 CL5142Contig2 1918 Male flower 1 ET, JA,
ABA, CK,
GA

T High

HbERF-VII HbERF-VIIa1 CL1Contig8301 1014 Embryo, cotyledon 1 ET, JA,
ABA, IAA,
CK, GA

HbERF-VIIa12 CL1Contig1275 1825 Bark, latex RAP2.12 2 ET, JA,
ABA, IAA,
CK, GA

T High

HbERF-VIIa20 CL1Contig726 1046 Leaf RAP2.3 miR894 1 ET, JA,
ABA, CK,
GA

T High

(Continued)
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Table 1. (Continued)

ERF group Gene Previous studies (Duan et al. 2013; Piyatrakul et al.,
2014)

This work

Contig Length
(bp)

Gene
expression
marker in
non-tapped
trees

Phylogenetic
analysis

Predicted
miR-
targeted
ERFs

Number
of
introns

Cis-acting
element-
related
hormonal
pathways
present in
ERF
promoters

Gene expression marker
in tapped trees

Harvesting
stress

Expression
in latex

HbERF-VIII HbERF-VIIIa4 CL1Contig10902 1126 Latex ERF3 0 JA, ABA,
CK, GA

T

HbERF-VIIIa8 CL1273Contig1 1009 Latex 0 ET, JA,
ABA, CK,
GA

T

HbERF-VIIIa9 CL1273Contig2 1270 0 ET, JA,
ABA, CK,
GA

T High

HbERF-VIIIa10 CL1257Contig1 1017 ERF11 0 ET, JA,
ABA, IAA,
CK, GA

T, Eth High

HbERF-VIIIa12 CL1Contig591 1106 0 ET, JA,
ABA, CK,
GA

T High

HbERF-VIIIa13 CL4149Contig1 945 ERF12 0 ET, JA,
ABA, IAA,
CK, GA

T, Eth High

HbERF-VIIIa14 CL4149Contig2 743 0 ET, JA,
ABA, IAA,
CK, GA

T, Eth High

HbERF-VIIIb1 CL1Contig9348 709 DRNL 0 ET, JA,
ABA, IAA,
CK, GA, OX

T

HbERF-IX HbERF-IXa3 CL8461Contig3 695 Latex AtERF1 0 ET, JA,
ABA, CK,
GA

T, Eth High

HbERF-IXb1 CL6925Contig1 1158 Latex miR408 0 ET, JA,
ABA, IAA,
CK, GA

T, Eth High

HbERF-IXb2 CL10861Contig1 736 0 ET, JA,
ABA, CK,
GA

HbERF-IXb3 CL1054Contig1 1221 Latex ERF5/MACD1 0 ET, JA,
ABA, IAA,
CK, GA

T

HbERF-IXc1 CL108Contig2 887 0 ET, JA,
ABA, CK,
GA

T High

HbERF-IXc4 CL4147Contig3 888 Bark ERF1 0 ET, JA,
ABA, IAA,
CK, GA, OX

T, Eth High

HbERF-IXc5 CL4147Contig1 934 Bark ERF1 miR894 0 ET, JA,
ABA, CK,
GA, OX

T, Eth High

HbERF-IXc6 CL6690Contig1 1059 ORA59 miR1511 0 ET, JA,
ABA, CK,
GA

T, Eth

(Continued)
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such as ethylene and jasmonate, which greatly regulateHbERF-IX genes. Crosstalk between these
complex hormonal regulations might play an important role in laticifers.

Materials and Methods

Plant material
Latex and bark tissues were collected after one year of tapping from 8-year-old mature rubber
trees of clone PB 260 at the Sembawa Station of the Indonesian Rubber Research Institute, P.O
Box 1127, Palembang 30001, Indonesia (Latitude -2.9279748; Longitude 104.55701850000003)
A half-spiral cut was made downward on the trees to release latex. Ethephon (Eth) was applied
to the bark once a month at a concentration of 2.5%. Samples were collected 24 hours after
ethephon treatment.

In vitro plantlets of clone PB 260 were obtained by somatic embryogenesis with line CI07060
using the method developed by CIRAD (Latitude 43.610769, Longitude 3.8767159999999876)
[24]. The plantlets were acclimatized and grown for 3 months in a greenhouse at a temperature
of 27°C with 45% humidity. Several treatments mimicking abiotic stress were carried out, such
as wounding (W), MeJA, ET, dehydration and cold at 1, 4, 8 and 24 hours. The leaves were me-
chanically wounded by squeezing their entire surface with pincers, whilst the bark was wounded
every 0.5 cm by scarification with a razor blade. The treatment with ET andMeJA was carried
out by placing the plants in a 300 L open-door Plexiglas box overnight before treatment. Five
parts per million of pure ET gas (1.5 mL/300 L) was injected into the sealed air-tight box. A con-
centration of 100 μL of liquid�95%MeJA solution was diluted in 500 μL of absolute ethanol
and then placed onWhatman paper inside the box for gas release. Control plants used for the
ET andMeJA treatments were placed in the box and exposed to air only. The dehydration treat-
ment was carried out by taking the plants out of their pots and leaving them dry under laminar
air flow. The cold treatment was carried out by placing the plants inside a cold chamber at 4°C.

Table 1. (Continued)

ERF group Gene Previous studies (Duan et al. 2013; Piyatrakul et al.,
2014)

This work

Contig Length
(bp)

Gene
expression
marker in
non-tapped
trees

Phylogenetic
analysis

Predicted
miR-
targeted
ERFs

Number
of
introns

Cis-acting
element-
related
hormonal
pathways
present in
ERF
promoters

Gene expression marker
in tapped trees

Harvesting
stress

Expression
in latex

HbERF-X HbERF-Xa2 CL98Contig4 1526 Immature
female flower

RAP2.6-LIKE 1 ET, JA,
ABA, IAA,
CK, GA

T

HbERF-Xa8 CL17010Contig1 737 ABR1 miRn11 1 ET, JA,
ABA, CK,
GA

T, Eth High

HbERF-Xb1 CL6880Contig1 1097 RRTF1 0 ET, JA,
ABA, IAA,
CK, GA

T, Eth High

The table summarizes earlier works by Duan et al., 2013; Piyatrakul et al., 2014 and current work. T: tapping, Eth: ethephon. ET: ethylene, JA: jasmonic

acid, ABA: abscisic acid, IAA: indole acetic acid, CK: cytokinin, GA: gibberellic acid, OX: oxidative stress.

doi:10.1371/journal.pone.0123618.t001
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Each treatment was started at 7:00 am and leaf samples were collected after 1 h, 4 h, 8 h and 24
h of treatment.

Buds of the rubber clone PB 260 were grafted onto seedling rootstocks. The budded plants
were grown at 28°C in a greenhouse under natural light. Three-month-old epicormic shoots
from budded plants and leaves were treated at the same time. Leaves and bark of these plants
were subjected or not to various factors, either alone or in combination (treatments): mechani-
cal wounding, MeJA, ET, WxMeJA, WxET, MeJAxET, WxMeJAxET. Leaves were mechanically
wounded by squeezing the entire surface of the leaves with pincers, whilst the bark was wounded
every 0.5 cm by scarification with a razor blade. For the ET andMeJA gas treatments, plants
were placed in a 300 L open-door Plexiglas box overnight before the treatment. One ppm of
pure ethylene gas (0.3 mL/300 L) was injected into the sealed air-tight box. The concentration
was controlled by gas chromatography (Type HP 5280 with FID detector). For the methyl jas-
monate treatment, 20 μL of liquid� 95% methyl jasmonate solution was diluted in 500 μL of
absolute ethanol, and then placed onWhatman paper inside the box for gas release. Each treat-
ment was compared to a specific control sampled at the same time and with the same culture
conditions in three biological replications. Plants were treated at 8:00 am and tissues were col-
lected 4 hours after treatment based on various preliminary kinetics experiments [4]. An inhibi-
tor of ET action, 1-MCP, was used to demonstrate the specific effect of ET. Plants were pre-
treated for 16 h with 1 ppm 1-MCP prepared with 480 mg of a 1-MCP-releasing powder dis-
solved in 7.2 mL of water. After ventilation, plants were then treated with 1 ppm of ET for 4 h.
Control plants used for the ET, 1-MCP/ET treatment, were placed in the box and exposed to air
only. In order to avoid variation due to the daytime and to biological development, each treat-
ment was compared with a specific control sampled at the same time and with the same culture
conditions in three biological replications. After treatment, bark tissues were collected and im-
mediately frozen in liquid nitrogen and stored at -80°C until RNA extraction.

Total RNA isolation
Total RNAs were isolated using the caesium chloride cushion method adapted from Sambrook
[25] by Duan and coll. [4]. One gram of fresh matter was ground and transferred to a tube con-
taining 30 mL of extraction buffer consisting of 4 M guanidium isothiocyanate, 1% sarcosine,
1% polyvinylpyrrolidone and 1% ß-mercapto-ethanol. After homogenization, tubes were kept
on ice and then centrifuged at 10,000 g at 4°C for 30 minutes. The supernatant was transferred
to a new tube containing 8 mL of 5.7 M CsCl. Ultracentrifugation in a swinging bucket was car-
ried out at 89,705 g at 20°C for 20 hours. The supernatant and caesium cushion were discarded
whilst the RNA pellet was washed with 70% ethanol. After 30 minutes of air drying, the pellet
was dissolved in 200 μL of sterile water. Although DNA could not cross the caesium cushion for
this centrifugation condition, DNA contamination was checked by PCR amplification using
primers of the Actin gene including the intron sequence. RNAs were conserved at -80°C.

Primer design and analysis of transcript abundance by real-time
RT-PCR
Several rules were applied in order to reduce the risk of error in relative gene expression data.
The integrity of total RNA was checked by electrophoresis. Primers were designed at the 3’ side
of each sequence in order to reduce the risk of error due to short cDNA synthesis using the
Primer 3 module of Geneious. Real-time PCR amplification and the fusion curve were carried
out using a mix of cDNAs in order to check the specificity of each pair of primers. Sequencing
of the PCR amplicon was carried out to verify the product sequence. Primer sequences are
listed in S1 Table.

Stress-InducedHevea ERFs
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cDNAs were synthesized from 2 μg of total RNA to the final 20 μL reaction mixture using a
RevertAidTMM-MuLV Reverse Transcriptase (RT) kit according to the manufacturer's in-
structions. Full-length cDNA synthesis was checked on each cDNA sample by PCR amplifica-
tion of the Actin cDNA using primers at the cDNA ends. Quantitative gene expression analysis
was finally carried out by real-time RT-PCR using a Light Cycler 480. Real-time PCR reaction
mixtures consisted of 2 μL RT product cDNA, 0.6 μL of 5 μM of each primer, and 3 μL
2×SYBR green PCR master mix in a 6-μL volume. PCR cycling conditions comprised one de-
naturation cycle at 95°C for 5 min, followed by 45 amplification cycles (95°C for 20 s, 60°C for
15s, and 72°C for 20s). Expression analysis was performed in a 384-well plate. Samples were
loaded using an automation workstation.

Real-time PCR was carried out for eleven housekeeping genes in order to select the most sta-
ble gene as the internal control for all samples (HbelF1Aa, HbUBC4, HbUBC2b, HbYLS8,
HbRH2b,HbRH8, HbUBC2a,HbalphaTub,Hb40S,HbUbi,HbActin) (S2 Table).HbRH2b was
selected as the best reference gene according to its stability in tissues from various treatments
in mature trees and juvenile trees. The homogeneity of theHbRH2b gene Cp confirmed that it
could be used as an internal reference gene. The HbRH2b gene was amplified in each reaction
plate in parallel with target genes. The transcript abundance level for each gene was relatively
quantified by normalization with the transcript abundance of the reference HbRH2b gene. Rel-
ative transcript abundance took into account primer efficiencies. All the normalized ratios cor-
responding to transcript accumulation were calculated automatically by Light Cycler Software
version 1.5.0 provided by the manufacturer using the following calculation: Normalized
Ratio = Efficiency -Δ(Cp target-Cp RH2b).

Statistical analysis for the comparison of relative transcript abundance
and for the analysis of interactions in mature trees and in juvenile
budded plants
Each relative transcript abundance value was the mean of three biological replicates. Statistical
analysis was performed after logarithmic transformation of raw data. The comparison of rela-
tive transcript abundances between treated and control plants was carried out using an
ANOVA followed by a Fisher test.

The experimental design for mature trees included three factors (tapping, ethephon and a
combination of both). The analysis of interactions between treatments was performed by an
ANOVA followed by a Newman-Keuls test. The level of interaction between tapping (T), eth-
ephon (Eth) and a combination of both (TxEth) was assessed for each tested gene in a vari-
ance table.

The experimental design for juvenile budded plants included three factors (wounding,
methyl jasmonate, and ethylene) alone and in combination leading to eight treatments (Con-
trol (C), W, MeJA, ET, WxMeJA, WxET, MeJAxET, WxMeJAxET). The experimental unit was
one plant. The level of expression was calculated as the ratio between the mean values of rela-
tive transcript abundances of treated and control plants. It was considered as an up-regulation
when the ratio was>1.0, and a down-regulation when the ratio was<1.0. The ratio with a p-
value of� 0.05 was adopted as significant for down- or up-regulation. The level of interaction
between W, MeJA and ET was assessed for each tested gene in a variance table.

Both analyses on mature trees and juvenile budded plants generated variance tables
that included F values for each interaction and the corresponding P-values were noted as
follows: <0.001 (���); <0.01 (��); <0.05 (�); <0.1 (°).

Stress-InducedHevea ERFs

PLOSONE | DOI:10.1371/journal.pone.0123618 April 23, 2015 7 / 26



Construction of hierarchical gene regulation profiles between harvesting
stress in mature trees and abiotic stress in juvenile plants
The profiles of gene regulation between harvesting stress in mature trees and abiotic stress in ju-
venile plants was combined and hierarchized, based on gene induction related to tapping and
ethephon in latex and bark. The level of expression of genes in latex was filtered from high to
low, and other data from bark of mature plants and leaves of juvenile plants were automatically
hierarchized. The level of expression was calculated as the ratio between the mean values of rela-
tive transcript abundances of treated and control plants, tapped and non-tapped plants, ethe-
phon and non-ethephon-stimulated plants. It was considered as an up-regulation when the
ratio was� 5.0, and a down-regulation when the ratio was� 0.2. For juvenile plants, data were
selected from kinetic expression by considering the tendency of gene expression in response to
stress. Data were aligned and modified into a standard colour code based on their up-regulation
or down-regulation expression. No statistical analysis was performed on juvenile plants. For
mature trees, the previous analysis of interactions (T, ET, TxET) was employed to validate sig-
nificant data for the tapping or ethephon effect for each gene.

Genomic scaffold analysis and in silico search for putative regulatory
elements
The presence of introns was checked in the coding sequence of genomic scaffolds related to
HbERFs by using the sequence-to-sequence alignment module of Geneious. The Hevea geno-
mic scaffold was provided for theHbERFs by the CATAS-BIG Hevea Genome Project. The
Hevea genome from clone CATAS 7-33-97 was assembled in 7787 scaffolds with a N50 size of
1,281,786 bp. In silico promoter analysis for six genes of HbERF-IX was conducted with the on-
line tool PLACE: http://www.dna.affrc.go.jp/PLACE/signalscan.html [26]. A 2000 bp sequence
upstream from the start codon was scanned for the presence of putative cis-acting regulatory
elements using the database associated search tools. The number of copies for each cis-acting
element was then counted.

Subcellular localization and transcriptional activity tests by transient
expression in a single cell system
Tobacco protoplasts were used in the subcellular localization because Hevea protoplasts have
short viability. GFP N-terminal fusions were obtained withHbERF-VIIIa13 and HbERF-IXc6
and used for tobacco protoplast BY-2 transfection according to Chaabouni and coll. [27]. The
subcellular location of the fluorescence was determined after 20 hours using
confocal microscopy.

A transactivation experiment was carried out according to the procedure published by
both Chaabouni and Pirrello [27,28]. A synthetic reporter construct (4XGCC-GFP) was used
[28]. Effector constructs were generated by fusing the 35S promoter to the CDS of the genes
(HbERF-IXc4, HbERF-IXc5 and HbERF-IXc6). For transient assays, tobacco (Nicotiana taba-
cum) BY-2 protoplasts were co-transformed with reporter and effector constructs [27]. Trans-
formation assays were performed in three independent replicates. After 16 h, GFP expression
was analysed and quantified by flow cytometry. Data were analysed using Flowing software.
For each sample, 100–400 protoplasts were gated on forward light scatter (FSC) and side light
scatter (SSC) to check the size and the structure of protoplasts and eliminate debris from the
analysis. The GFP fluorescent protoplasts used for the calculation of GFP activity were select-
ed within a gate. This gate was previously defined by the comparison between transformed
protoplasts (co-transformation with the effector plasmid lacking the HbERF coding sequence)

Stress-InducedHevea ERFs
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and non-transformed protoplasts. The green fluorescence detected in the defined gate showed
a marked hook. The GFP fluorescence per population of cells corresponded to the average
fluorescence intensity of the cell population after subtraction of autofluorescence determined
with non-transformed BY-2 protoplasts. The data were normalized using an experiment with
protoplasts transformed with the reporter vector in combination with the vector used as the
effector plasmid, but lacking the HbERF coding sequence. The ratio of GFP activities between
GCC::GFP and mGCC::GFP constructs revealed the capacity of transcription factors to acti-
vate (ratio> 1) or repress (ratio< 1) the GCC promoter.

Results

Analysis of relative transcript abundance of the Hevea AP2/ERF genes
during latex harvesting
Specific amplification of 47 of the 114 Hevea genes from the AP2/ERF superfamily including
AP2, ERF and RAV genes was validated by sequencing [18].The relative transcript abundance
for these 47 genes was analysed in latex and bark of 1-year-old tapped trees treated or not by
ethephon (Fig 1). Thirty-seven genes were differentially regulated according to the ANOVA
analysis (S3 Table). Of all the studied genes, HbRAV-4 had a low relative transcript abundance
under all conditions with a value lower than 10-2, equally for the genes of the AP2 family, ex-
cept for HbAP2-3,HbAP2-6, andHbAP2-9. Seven out of eight genes for ERF group VIII
(HbERF-VIIIa4, HbERF-VIIIa8, HbERF-VIIIa9,HbERF-VIIIa10, HbERF-VIIIa12, HbERF--
VIIIa13, and HbERF-VIIIa14) had a high relative transcript abundance in all tissues and treat-
ments with a value higher than 10-1, whereas five out of eight group IX genes (HbERF-IXa3,
HbERF-IXc1,HbERF-IXc4,HbERF-IXc5, and HbERF-IXc6) had a high transcript abundance
specifically due to tapping in bark. More particularly, the HbERF-VIIa12 gene had a high rela-
tive transcript abundance in latex and bark, regardless of the treatments.

Effect of tapping, ethephon and a combination of tapping and ethephon
on the relative transcript abundance of Hevea AP2/ERF genes
The effects of tapping, ethephon and T x Eth interaction on the relative transcript abundance
ofHevea AP2/ERF genes in latex and bark were studied by analysing the variance table of 47
genes (Fig 2, S4 Table). The tissue effect was significant for 32 of the 47 genes. Eleven genes
had a higher relative transcript abundance in latex, as opposed to 21 genes in bark. Notably, all
eight genes of ERF group IX were significantly changed in bark. In general, the effects of treat-
ments were found to be stronger in bark. Thirty genes, as opposed to 21, showed a stronger ef-
fect of tapping in bark compared with latex. Seven genes (HbERF-IIb2,HbERF-IIIe1,
HbERF-IVa3,HbERF-VI1,HbERF-VI-L4,HbERF-VIIIa12, and HbAP2-15) were induced spe-
cifically in latex. Thirty genes, as opposed to 24, had a stronger ethephon effect in bark com-
pared with latex. Lastly, the combination effect was greater in bark compared with latex: 20
genes as opposed to 13, respectively.

Fold change in the transcript abundance of Hevea AP2/ERF genes in
response to abiotic stress in juvenile plants
Juvenile plants were a simple system for studying independently the effect of abiotic stress and
hormone treatments on the relative transcript abundance. Leaves were chosen because of the
sensitivity of that tissue. The ratio between the relative transcript abundances of treated and
control plants was monitored 1, 4, 8 and 24 hours after treatments for 47 genes in leaf tissues
of 7-month-old plants grown under conditions of various types of abiotic stress (Fig 3). A fold
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Fig 1. Relative transcript abundance profile of 47 AP2/ERF genes of Hevea brasiliensis in latex and bark tissues of mature trees during latex
harvesting. Tapping without ethephon (Eth-) and with ethephon (Eth +) were applied in both studied tissues. Heat map representation was used for values
ranging as follows� 1, 10–1, 10–2, 10–3 and� 10–4 from dark to light green.

doi:10.1371/journal.pone.0123618.g001
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Fig 2. Interaction analysis profile of 47 AP2/ERF genes ofHevea brasiliensis in latex and bark tissues of mature trees during latex harvesting. P-
values are indicated from black to white as follows: 0.001; 0.01; 0.05; 0.1 and non-significant data. T: tapping; Eth: ethephon; TxEth: combination of both.

doi:10.1371/journal.pone.0123618.g002
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change threshold of 5 was selected to identify induced genes (ratio>5 in red) and down-regu-
lated genes (ratio<0.2 in green). AllHbERF genes were induced by at least one treatment,
whereas the HbAP2 andHbRAV genes showed a low ratio of transcript abundance in response
to any stress, except for HbAP2-6 in response to ethylene. Several ERF genes differentially re-
sponded to stress. High gene induction was noted for two ERF groups, in response to ethylene
and dehydration for ERF group IX, and in response to dehydration and cold for ERF group
VIII, respectively.

Hierarchized transcript abundance ratios of Hevea AP2/ERF genes in
response to harvesting and abiotic stress
The ratios of relative transcript abundance values for mature trees and juvenile plants in re-
sponse to harvesting and abiotic stress were hierarchized from high to low ratios in latex in

Fig 3. Gene regulation profile of 47 AP2/ERF genes ofHevea brasiliensis under various types of abiotic stress in leaves of juvenile plants.Up-
regulated genes are shown in red with a threshold value� 5; down-regulated genes are shown in green with a threshold value� 0.2. The non-significant
genes are shown in yellow.

doi:10.1371/journal.pone.0123618.g003
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order to highlight genes that were highly regulated in that tissue (Fig 4). Three clusters of genes
were highlighted. The first cluster consisted of thirty-four genes having a high ratio in response
to harvesting. Most of the genes induced by harvesting stress were also induced by one or
more types of abiotic stress, except HbAP2-3, HbAP2-7,HbAP2-10,HbAP2-13, ERF-VI1 and
HbERF-VIL3. The second cluster contained six genes (HbERF-Ib4,HbERF-Ib11, HbERF-IIIe2,
HbERF-Va2,HbERF-VIIa1 and HbERF-Xb2) that specifically responded to abiotic stress in the
leaves of juvenile plants. The last cluster contained seven genes (6HbAP2 and 1HbRAV genes)
with a drop in transcript abundance in response to most of the abiotic stresses in leaves.

For the first cluster, twenty-oneHbERF genes and oneHbAP2-10 gene were induced by har-
vesting stress in latex. A majority of the 16 AP2/ERF genes induced by tapping in latex was also
induced by abiotic stress in leaves (7 by wounding, 7 by MeJA, 12 by ET, and 10 by dehydra-
tion). Of the 14 AP2/ERF genes induced by ethephon in latex, 8 were also induced by ET in
leaves. Conversely, 5 ET-responsive genes in leaves were not induced by ethephon in latex. The
HbERF genes from group IX and group VIII were the largest represented groups with 5 genes
of each group induced by harvesting stress in latex and abiotic stress. Transcripts ofHbER-
F-IXc4 and HbERF-IXc5 genes were the most dramatically accumulated in response to stress.

Gene structure and in silico promoter analysis of HbERF-IX genes
To understand the gene structure ofHbERF genes, transcript sequences were compared and
aligned withHevea genomic scaffolds provided by BIG and CATAS. Thirty-three scaffolds cor-
responding to 35 contigs were annotated. This analysis revealed a structure of genes with one
or two exons (S5 Table). All analysed sequences from ERF-IX genes showed a uniform struc-
ture with 1 exon. For other groups, HbERF genes had no strict gene structure with 1 or 2 exons.
For instance,HbERF-VI-L4, HbERF-VIIa1,HbERF-VIIa12,HbERF-VIIa20,HbERF-Xa2 and
HbERF-Xa8 had 2 exons.

The in silico analysis of the 2000 bp region upstream of the start codon (ATG) of 35HbERF
genes was carried out using PLACE (S6 Table). Forty-five putative cis-acting regulatory ele-
ments were identified on these promoter sequences. The work was then focused on 8HbER-
F-IX genes, which corresponded to 7 genomic scaffolds. The number of copies of cis-acting
elements could reach 59 for the 7 analysed scaffolds. A large number of cis-acting regulatory el-
ements were associated with hormone signalling pathways, metabolic activities and plant de-
velopment. Sixteen of the 45 cis-acting elements were related to hormone and stress response:
ERE, GCC-box, DRE/CRT I, DRE/CRT II, LTRE, JERE, E-box, W-box, ABRE, erd1, ARF,
ARR1, GARE, Pyrimidine box, MYB, ARE1 (Table 2). All the members of HbERF-IX were pre-
dicted to have a primary ethylene response element (ERE). All members also had at least one
GCC, DRE/CRT or LTRE box except HbERF-IXc6, revealing putative regulation by another
ERF. These promoters had a large number of cis-acting elements involved in jasmonate (up to
47 elements), cytokinin (up to 43 elements) and gibberellin (up to 22 elements) signalling path-
ways. Finally, onlyHbERF-IXc4 andHbERF-IXc5 promoters harboured cis-acting elements for
oxidative stress such as the Antioxidant Response Element 1 (ARE1).

Subcellular localization of HbERF-IXc4, HbERF-IXc5 and HbERF-IXc6
and transactivation of a GCC synthetic promoter
In order to validate the function of HbERF-IXs as transcription factors, subcellular localization
and transactivation experiments were carried out for three HbERFs (HbERF-IXc4, HbERF-IXc5,
HbERF-IXc6). Transient expression of an HbERF/GFP translational fusion into BY-2 tobacco
protoplasts revealed GFP activity of the fusion protein in the nucleus for each tested HbERF,
in contrast with a pMDC83 empty control plasmid (Fig 5). In addition, the GFP reporter gene
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Fig 4. Ratios of gene expression for 47 AP2/ERF genes ofHevea brasiliensis in response to latex
harvesting stress in mature trees and various types of abiotic stress in juvenile plants.Up-regulated
genes are shown in bright red for a threshold value� 5, dark red for a value 2<n<5, and down-regulated
genes are shown in bright green for a threshold value� 0.2, dark green for a value 0.5>n>0.2. The non-
significant fold changes are shown in a dark colour.

doi:10.1371/journal.pone.0123618.g004
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under the control of a synthetic promoter harbouring the GCC cis-acting element was transacti-
vated by the three HbERF-IX candidates (Fig 6). All three HbERF-IXs showed a ratio greater
than 1 (about 1.5) and could significantly be considered as activators.

Synergistic effect of multiple stresses on HbERF-IX gene expression
The relative transcript abundance was analysed in bark tissue of juvenile plants for allHbER-
F-IX subgroup genes in response to mechanical wounding, MeJA and ET in order to check
the specificity of gene induction in response to these factors. These factors were applied alone
or in combination in order to study the interaction between ethylene and methyl jasmonate,

Fig 5. Subcellular localization of HbERF-IXs. The merged pictures of the green fluorescence channel
(middle panels) and the corresponding bright field (left panels) are shown (right panels). Control cells
expressing fluorescence absence are shown in the top panel. The scale bar indicates 10 μm.

doi:10.1371/journal.pone.0123618.g005
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and identify orthologues to ERF1 that dramatically respond to a combination of ET and MeJA.
The expression ratio of 6 genes of the 8 tested (HbERF-IXa3,HbERF-IXb1,HbERF-IXb2,
HbERF-IXc4,HbERF-IXc5,HbERF-IXc6) showed significant changes for at least one treatment
compared with the control (Table 3). Transcripts of six HbERF-IX genes (HbERF-IXa2, HbER-
F-IXb1,HbERF-IXb2, HbERF-IXc4,HbERF-IXc5,HbERF-IXc6) were significantly accumulated
in response to the combined W x MeJA x ET treatment. Interestingly, theHbERF-IXc4, HbER-
F-IXc5 and HbERF-IXc6 genes were induced by all the treatments with a ratio ranging from
2.95 to 3143. This expression ratio was dramatically increased when ET was combined with W
and/or MeJA treatments. In particular for HbERF-IXc4, the ratio increased up to 39, 54 and
306-fold for the W, MeJA and ET treatments, respectively, and when ethylene was combined
with MeJA this ratio jumped to 1754 and 3143. HbERF-IXc5 andHbERF-IXc6 showed similar
but lower gene induction. By contrast, HbERF-IXb2 was significantly down-regulated by these
treatments. This gene was induced by ET, and conversely down-regulated (2–3 times) by W x
MeJA and W x ET combinations.

Interactions between wounding, ethylene and methyl jasmonate were studied through the
variance in transcript abundance of the 8 HbERF-IX genes in response to the eight different
combinations of factors. The expression of 6 genes was significantly changed by the W, MeJA
and ET treatments, respectively (S7 Table). The relative transcript abundance of theHbER-
F-IXa3,HbERF-IXb1 andHbERF-IXc4 genes was significantly modified for all the three factors
applied alone. HbERF-IXb1 and HbERF-IXb2 showed a significant effect of interactions be-
tween the W xMeJA, MeJA x ET and W xMeJA x ET treatments. Three genes (HbERF-IXa1,

Fig 6. Transactivation of the synthetic GCC-box andmGCC containing promoters by HbERF-IXc4,
HbERF-IXc5 and HbERF-IXc6 proteins. ERF candidates are activators (ratio > 1) or repressors (ratio < 1).
(*) indicates a significant difference for the Student test (p<0.01).

doi:10.1371/journal.pone.0123618.g006
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HbERF-IXb1 and HbERF-IXb2) were significantly regulated by the MeJA and ET treatment.
Although the expression ratio for the HbERF-IXc4 gene was dramatically increased for the
combined MeJA x ET andW xMeJA x ET treatments, only the interaction between W and ET
was significant in this analysis, but not for MeJA and ET.

The effect of an ethylene action inhibitor, 1-MCP, was tested on the relative transcript
abundance of 47 AP2/ERF genes in order to check the specificity of the ethylene induction of
these genes. The transcript abundance of seven of these genes was reduced or abolished in
1-MCP + ET-treated plants (S8 Table). Three out of 8 genes from ERF group IX (HbER-
F-IXc4, HbERF-IXc5, and HbERF-IXc6) showed a significant inhibition of ethylene induc-
tion by 1-MCP (Fig 7). By contrast, the transcript accumulation of 5 genes of ERF group IX
(HbERF-IXa3, HbERF-Xb1, HbERF-IXb2, HbERF-IXb3, and HbERF-IXc1) was not affected
by 1-MCP pre-treatment, revealing an indirect action of ethylene.

Discussion

Latex harvesting-induced mechanisms developed for the response to
abiotic stress
The technique for latex harvesting in rubber trees is a unique feature that requires recurrent
tapping to allow latex flow, and regular applications of ethephon for someHevea clones with a
low laticifer metabolism to stimulate latex production. This mechanism is achievable because
rubber trees can tolerate repeated tapping [29]. Tapping induces various types of stress, such as
mechanical wounding, osmotic stress due to latex flow and consequent laticifer plasmolysis, as
well as metabolic activity necessary for latex regeneration between two tappings. With regard
to ethephon, the application of exogenous ethylene induces the activation of
metabolic defences.

These dramatic harvesting stresses result in complex regulation following responses ob-
served for various types of abiotic stress. As many types of abiotic stress ultimately result in cell
desiccation and osmotic imbalance [30], there is an overlap of stress responses. Most likely,
similar mechanisms could take place during latex harvesting, which means that the effect of

Table 3. Analysis of the relative transcript accumulation of 8 ERF genes ofHevea brasiliensis from group IX by real-time RT-PCR in the bark of the
control (C) and plants subjected to seven different treatments: (W) wounding; (MeJA) methyl jasmonate; (ET) ethylene, either individually or in a
combination of treatments (T).

Gene Treatments

W MeJA ET W x MeJA W x ET MeJA x ET W x MeJA x ET

ratio p-value ratio p-value ratio p-value ratio p-value ratio p-value ratio p-value ratio p-value
T/C T/C T/C T/C T/C T/C T/C

HbERF-IXa3 2.60 0.13 1.63 0.20 0.65 0.37 2.35 0.14 9.88 0.06 7.68 0.06 124.96 0.05

HbERF-IXb1 0.40 0.14 2.53 0.37 8.84 0.01 0.41 0.14 0.32 0.11 4.09 0.03 30.35 0.01

HbERF-IXb2 0.73 0.27 0.62 0.24 5.26 0.01 0.36 0.02 0.42 0.03 1.95 0.14 12.40 0.05

HbERF-IXb3 0.06 0.16 0.69 0.80 0.21 0.57 0.28 0.63 0.08 0.22 1.18 0.78 0.14 0.37

HbERF-IXc1 0.35 0.49 2.85 0.64 0.15 0.89 1.08 0.25 3.03 0.16 0.93 0.33 32.76 0.25

HbERF-IXc4 38.81 0.01 53.90 0.00 306.20 0.003 38.82 0.01 396.07 0.001 1754.05 0.000 3143.14 0.003

HbERF-IXc5 5.38 0.03 2.95 0.04 38.53 0.002 4.36 0.02 224.85 0.001 120.67 0.004 502.54 0.02

HbERF-IXc6 17.09 0.01 29.52 0.01 57.90 0.003 4.28 0.08 124.79 0.002 257.63 0.002 588.72 0.01

It was considered as an up-regulation when the ratio was >1.0, and a down-regulation when the ratio was <1.0.

doi:10.1371/journal.pone.0123618.t003
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Fig 7. Effect of 1-MCP treatment on the relative transcript abundance of 8 genes ofHevea brasiliensis
ERF group IX.

doi:10.1371/journal.pone.0123618.g007
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tapping and ethephon stimulation is not specific. In this study, most of the genes induced by
tapping were induced by dehydration and only some of them were specifically triggered by
wounding, methyl jasmonate or ethylene. Likewise, most of the ethephon-induced ERFs were
induced by dehydration resulting in osmotic stress. For example, three genes uniquely regulat-
ed by ethephon in latex (HbERF-IVa3 andHbERF-VIIIa13) and in bark (HbERF-VIIIa10)
were induced by dehydration. This result suggests that harvesting stress generates predomi-
nantly osmotic stress, which is translated into several hormonal responses.

Members of several ERF groups could be major actors in the response to harvesting stress.
Indeed, twenty genes belonging to ERF groups I, II, IV, VI, VII, VIII, IX and X were differen-
tially regulated during these stresses and considered as expression marker genes. The genes of
ERF groups III and IV, which correspond to CBF/DREB according to the Sakuma classifica-
tion, were regulated under osmotic stress during acclimatization against cold and dehydration
[13,31,32]. Of these two groups, only HbERF-IVa3 was identified as expression marker genes.
Induced by cold and dehydration in juvenile plants, HbERF-IVa3 transcripts were highly accu-
mulated in response to tapping in latex. Two other genes, HbERF-VIIIa9 and HbERF-VIIIa10,
also had the same pattern of induction by dehydration and cold. The promoter analysis of
these genes has been carried out using genomic sequence from another Hevea clone CATAS 7-
33-97. Consequently, gene expression analyses for clone PB 260 and prediction from promoter
analyses for clone CATAS 7-33-97 must be carefully compared. These genes harboured CRT/
DRE and LTRE cis-acting elements (data not shown), which are involved in the response to
cold, dehydration and low temperature [33,34]. This result suggests a regulation ofHbER-
F-IVa3, HbERF-VIIIa9 and HbERF-VIIIa10 by osmotic stress in latex after tapping. Tran-
scripts ofHbERF-VII genes were abundant in latex [18]. HbERF-VIII and HbERF-IX members
induced during latex harvesting showed more complex regulation. Most of theHbERF-VIII
genes were repressor-type transcription factors [35]. The expression marker gene, HbERF--
VIIIa10 was orthologous to AtERF11, a negative regulator for ABA-mediated control of ethyl-
ene synthesis. Its expression during latex harvesting suggests a certain negative control of the
effect of osmotic stress in laticifers. Differential responses of several HbERF-IX genes showed
possible multilayer regulation (see later in the discussion). For ERF group X,HbERF-Xb1 had a
high transcript accumulation in latex after tapping and ethephon stimulation, and interestingly
was found to be orthologous to RRTF1, which was demonstrated to be a regulator of redox sta-
tus [36]. Taken all together, these results suggest that osmotic stress occurring during latex
flow and consequent hormone biosynthesis might play an important role in the regulation of
HbERF genes.

Putative involvement of hormonal, reactive-oxygen species and nitric
oxide signalling pathways in the response to harvesting stress
The response to harvesting stress used potentially hormonal, reactive-oxygen species (ROS)
and nitric oxide (NO) signalling pathways. Harvesting stress could induce the biosynthesis of
hormones. The biosynthesis of ethylene is induced by wounding [37] but also by osmotic stress
and exogenous ethylene from ethephon application [29]. Several ERFs are known to activate
the biosynthesis of hormones. Recently, one member of ERF group II, ORA47, was postulated
as a positive regulator of JA biosynthesis [38]. The expression of the ORA47 gene was reported
to be induced by JA in a COI1-dependent manner [39]. InHevea, HbERF-IIb2, an orthologue
to ORA47, was also induced by JA and might have a similar role in laticifers.

ERFs, which were previously described as ethylene-dependent transcription factors, are
also shown to be regulated by various hormonal signalling pathways. In Hevea, although most
of the ERF genes were induced by ethylene and/or ethephon, several of them are likely to be
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ethylene independent. Firstly, HbERF-Ib7, HbERF-VIIIa8, and HbERF-VIIIa9 were not in-
duced by either ethephon in mature trees or by ethylene in juvenile plants. Secondly, some
other genes (HbERF-IIb2,HbERF-IVa,HbERF-VI5,HbERF-VIIa20,HbERF-VIIIa10,HbERF--
VIIIb1, HbERF-IXa3, HbERF-IXb3, HbERF-IXc1, HbERF-Xa8, andHbERF-Xb1) were induced
by both ethylene and other treatments. Given that an ethylene inhibitor could not hamper the
expression of these genes, an indirect effect of ethylene, or too low a 1-MCP concentration,
were suspected. In addition, contigs related to hormonal biosynthesis genes were found in the
Hevea clone PB 260 transcriptome database [18], which showed the existence of hormonal bio-
synthesis pathways in Hevea (Table S9 in [18]). Furthermore, in silico analysis of promoters of
HbERF genes confirmed the presence of cis-acting regulatory elements related to hormonal sig-
nalling. Ethylene-response elements were putatively identified in all members of HbERF group
IX suggesting a potential primary response in the ethylene transduction pathway. The presence
of 1–2 copies of the GCC-box suggests that HbERF-IXa3, HbERF-IXb1, HbERF-IXb2, HbER-
F-IXc4, and HbERF-IXc5 could be targeted by other ERFs.

Free radicals such as ROS and NO are considered as secondary messengers that regulate
ERFs. Members of ERF-VII (RAP2.3 and RAP2.12) were able to perceive both hypoxia and
NO signals and to integrate the N-end rule pathway for protein degradation [40] whereas
ERF6 (group ERF-IXb) and RRTF1 (group ERF-Xb) detected ROS or redox status [36,41]. NO
is synthesized during tissue damage. InHevea, NO is assumed to be related to the cyanogenesis
process [42]. At a certain level, this process could lead to bark necrosis and cessation of latex
flow [43]. With a stronger effect of tapping than ethephon, a high transcript accumulation of
HbERF-VII after tapping suggests the existence of antioxidant transcriptional regulations in
wounded latex cells. The induction of two ERF genes from group IX (ERF1 and ERF2) occurred
during reoxygenation after hypoxia in Arabidopsis [44]. The antioxidant-responsive element 1
is a regulatory motif of redox sensing mechanisms [45,46]. InHevea, the promoter regions of
HbERF-IXc4 and HbERF-IXc5 have an ARE1 cis-acting element revealing their putative in-
volvement in the response to oxidative stress.

The ERF genes from group IX potentially play an important role in
laticifers
Among the other ERF groups, many HbERF-IX members were strongly regulated by harvest-
ing and abiotic stress. The presence of various cis-acting regulatory elements in HbERF-IX
promoters suggested an activation of these genes by ethylene, jasmonate, auxin, cytokinin, gib-
berellins, abscisic acid, and oxidative stress. The high level of expression of HbERF-IX genes
might be related to the absence of an intron, which is also observed in ERF-IX genes from other
plant species [16]. The absence of an intron could result in rapid and constitutive gene expres-
sion required upon stress [47].

From a previous analysis, the orthologues in Arabidopsis of five members of HbERF-IX were
predicted:HbERF-IXa3 with AtERF1,HbERF-IXb3 with ERF5/MACD1,HbERF-IXc4 and
HbERF-IXc5 with ERF1, andHbERF-IXc6 withORA59 [18]. The induction ofHbERF genes by
ET andMeJA suggests a role in the crosstalk between these two hormones. For example, the
high expression of Arabidopsis ERF1 depends on the combination of ET and JA [48]. The two
Hevea orthologues to ERF1 had a similar expression profile. Both the JA and ET treatments
could triggerHbERF-IXc4 andHbERF-IXc5 expression and the combination of both JA and ET
resulted in a synergetic effect. Although ERF1 is at the crosstalk of the signalling pathways of ET
and JA, the expression of its orthologues inHevea was strictly inhibited by an ethylene inhibitor
(1-MCP). These genes were demonstrated to be dramatically induced by the combination of ET
and JA, suggesting that the jasmonate signalling pathway might intervene upstream of ethylene.
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The ABA signalling pathway could also be upstream of ET and JA [49]. Intriguingly, this recent
study demonstrated that ABA treatment extinguished the combinatory effect of ET and JA on
ERF1. Given the twoHevea orthologues to ERF1 showed strong expression during dehydration,
HbERF-IXc4 and HbERF-IXc5 could be related to the regulation of ABA during osmotic stress.
This hypothesis should be followed up by further analysis on ABA interaction with ET and JA.

HbERF genes might play a major role in the regulation of latex production. Firstly,
ORA59 and ERF1 are known to induce the expression of defence genes, and in particular
PDF1.2, which harbour the GCC-box in their promoter sequences [48,50]. Given HbER-
F-IXc4 and HbERF-IXc5 were able to transactivate the GCC-box, their involvement in the
control of defence genes in laticifers is assumed. Secondly, this kind of regulation has also
been illustrated in the control of redox status via RRTF1. This gene induced a cluster contain-
ing GCC-box target-genes during the occurrence of redox imbalance [36]. The Hevea ortho-
logue, HbERF-Xb1, should play a role in the normal adjustment of redox status in laticifers
after latex harvesting. Thirdly, water exchanges between the inner liber and latex cells is pro-
moted by HbPIP2;1 and HbTIP1;1 [2]. For example, an ERF called TRANSLUCENT GREEN
has been shown to regulate aquaporin genes directly [51]. An analogous mechanism should
exist for sucrose loading since several sucrose transporters have been demonstrated to be in-
duced by ethylene [52]. Lastly, induction of the biosynthesis pathways of secondary metabo-
lites always requires hormonal interaction between JA and others. Thus, many ERFs are
known to be dependent on ethylene and jasmonate. For example, in Catharanthus roseus and
Nicotiana tabaccum, ORCA3 has been shown to be a master regulator of secondary metabo-
lism during jasmonate responses [53]. The involvement of jasmonate in the biosynthesis of
terpene, a defence molecule, has been highlighted [54]. As natural rubber biosynthesis fol-
lows that route, the genes of ERF group IX are assumed to play an important role in regulat-
ing latex cell metabolism. Further functional analysis should lead to the identification of
target genes related to latex production and tapping panel dryness.

Supporting Information
S1 Table. List of primer sequences for 47 genes of theHevea brasiliensis AP2/ERF super-
family.
(XLSX)

S2 Table. Comparison of Cp values, standard deviation and coefficient of variance for gene
expression analysis by real-time RT-PCR of 11 housekeeping genes in 30 different samples
of matures trees and juvenile plants.
(XLSX)

S3 Table. Relative transcript abundance profile of 47 genes of theHevea brasiliensis AP2/
ERF superfamily in latex and bark tissues of mature trees during latex harvesting. The rela-
tive transcript abundance was measured by real-time RT-PCR. Tapping without ethephon (Eth-
) and with ethephon (Eth +) were applied to both studied tissues. Values are the means of three
biological replicates. Values of relative transcript abundances were analysed with XLSTAT after
LOG(X) transformation. The statistical analysis was performed with an ANOVA followed by
the Student Newman-Keuls test.
(XLSX)

S4 Table. Interaction analysis profile of 47 genes of theHevea brasiliensis AP2/ERF super-
family in latex and bark tissues of mature trees during latex harvesting. Statistical analysis
of the tissue effect was performed using an ANOVA followed by a Newman-Keuls test. The
level of interaction between treatments was assessed for each tested gene. The data correspond
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to F values. P-values for significant data are indicated using asterisks as follows: 0.001 (���);
0.01 (��); 0.05 (�); and 0.1 (°). T: tapping; Eth: Ethephon TxEth: combination of both.
(XLSX)

S5 Table. Genomic scaffold analysis for 35 genes forHevea ERFs. Contig sequences were
generated from 454 RNA sequencing (Duan et al, 2013; Piyatrakul et al, submitted). Genomic
scaffolds from clone CATAS 7-33-97 were provided by the Beijing Institute of Genomics.
(XLSX)

S6 Table. Number of copies of cis-acting regulatory elements involved in the HbERF-IX
promoter region using an in silico pattern matching search against PLACE. The analysis
was carried out in the -2kb region upstream of the start codon (ATG).
(XLSX)

S7 Table. Summary of the analysis of variance tables for each tested gene fromHevea brasi-
liensis ERF group IX in 3-month-old epicormic shoots of clone PB 260. The data correspond
to F values. P-values are indicated as follows: 0.001 (���); 0.01 (��); 0.05 (�); 0.1 (°).
(XLSX)

S8 Table. Effect of 1-MCP treatment on the relative transcript abundance of 47 genes of the
Hevea brasiliensis AP2/ERF superfamily. The values of the relative transcript abundance
were analysed with XLSTAT software after LOG(X) transformation. The statistical analysis
was performed with an ANOVA followed by the Student Newman—Keuls test. ND refers to
non-determined data.
(XLSX)
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