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Abstract

Carbon nanotubes (CNTSs) are widely used in industry, but their environmental impacts on
soil microbial communities are poorly known. In this paper, we compare the effect of both
raw and acid treated or functionalized (fCNTs) multi-walled carbon nanotubes (MWCNTSs) on
soil bacterial communities, applying different concentrations of MWCNTSs (0 ug/g, 50 pg/g,
500 pg/g and 5000 pg/g) to a soil microcosm system. Soil DNA was extracted at 0, 2 and 8
weeks and the V3 region of the 16S rRNA gene was PCR-amplified and sequenced using
paired-end lllumina bar-coded sequencing. The results show that bacterial diversity was not
affected by either type of MWCNT. However, overall soil bacterial community composition,
as illustrated by NMDS, was affected only by f[MWCNT at high concentrations. This effect,
detectable at 2 weeks, remained equally strong by 8 weeks. In the case of IMWCNTSs, overall
changes in relative abundance of the dominant phyla were also found. The stronger effect

of IMWCNTSs could be explained by their intrinsically acidic nature, as the soil pH was

lower at higher concentrations of IMWCNTSs. Overall, this study suggests that IMWCNTs
may at least temporarily alter microbial community composition on the timescale of at least
weeks to months. It appears, by contrast, that raw MWCNTSs do not affect soil microbial
community composition.

Introduction

Carbon nanotubes (CNTs) are widely used in novel industrial materials because of their partic-
ular chemical and physical characteristics [1-3]. They are currently used for—or under devel-
opment in—electron emission devices, energy storage devices, drug delivery mechanisms, and
a range of other engineering applications [4-9]. Carbon nanotubes (CNTs) are single atom lay-
ers of hexagonal carbon rolled up into hollow cylinders. They are classified as single-walled
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carbon nanotubes (SWCNT's) and multi-walled carbon nanotubes (MWCNTs). SWCNTs are
single-layered graphitic cylinders with a diameter ranging from 0.4 to 2 nm and MWCNTs
which are composed by 2 to 30 concentric cylinders with outer diameters ranging between 2
and 100 nm [10]. Previous studies have demonstrated that SWCNT's are more toxic to human
and animal cells, whereas MW CNT's exhibit a milder toxicity [11,12], indicating that the diam-
eter of CNT's was a key factor governing their toxic activity [11]. Furthermore, short MWCNTSs
exhibited significant toxicity when they were uncapped, debundled, and dispersed in solution
[13]. Liu et al. [14] showed that SWCNTs dispersed individually in solution were more toxic to
bacteria than aggregated SWCNTs, because individually dispersed SWCNT's can behave as nu-
merous moving “nano darts” and can constantly attack bacterial cells, causing degradation
then death of bacterial cell [15].

Global carbon nanotube production is increasing by around 25% per year and by 2015 is ex-
pected to reach 9300 tons with a production value of $1.3 billion [16]. Nevertheless, there are
no strict rules regulating CNT's production, usage and release. Consequently, substantial quan-
tities of CNT's could be released into the environment with the potential to affect the environ-
ment and human health [17]. There is still limited knowledge on the actual and potential
production volume as well as the release of CNTs in the environment [18]. Moreover, the cur-
rently predicted low average released concentrations will slowly increase due to increased
CNTs production and use [19,20]. The release of CNT's to the environment may occur during
the production phase or the usage and disposal phases. Direct or indirect exposure pathways to
CNTs have rarely been studied, and the risks to human health and the general environment are
still poorly understood [21]. To assess the environmental risks presented by CNTs, it is impor-
tant to understand their fate after release (their mobility, reactivity and persistence in environ-
mental compartments), and their impact on living organisms [22].

Despite their evident advantages in practical applications, the potential toxicity of CNTs is a
major concern because of their potential impact in the environment [23]. CNTSs’ toxicity has
been studied in both in vivo and in vitro, and has been related to various factors such as CNTs’
length, type of functionalization, concentration, duration of exposure, method of exposure,
concentration of the solubilizing agent, and the surfactant used. So far, while many studies sug-
gest that CNTs do not show toxicity, certain others suggest that CNTs are harmful to human
health and the environment. These inconsistencies might be due to differences in experimental
protocol [24].

Up to the present, few studies have investigated the impact of CNTs on living organisms in
the environment [2,25,26]. Most ecotoxicological studies that have dealt with their effects on
bacteria have been conducted under culture conditions [11,27]. Only few studies have investi-
gated the influence of these nanoparticles on microbial community in situ [28,29]. For exam-
ple, Kang et al. [30], demonstrated that the exposure of Escherichia coli to highly purified CNT
aggregates can lead to cell death. In other studies, it has been shown that CNT's dispersed using
a range of different surfactants can have antimicrobial properties when incubated with bacteria
[14,31]. It has been demonstrated that carbon nanotubes can also lower soil enzyme activities
and microbial biomass when applied to soil [2,32,33].

Soil is likely to be one of the main ultimate recipients of nanomaterial contamination in the
environment, more so than water and air [25,26,34]. Soil microbial communities play a vital
role in soil ecosystem activities such as nutrient cycling, and are known to be susceptible to al-
teration by heavy metals and a range of other chemical agents [14,35,36]. Therefore, it is im-
portant to study the impact of CNTs on these living soil systems [2,12,17]. If it were to turn out
that CNTs strongly alter the composition or functioning of the soil ecosystem, and that the ef-
fects persist over the long term, precautionary measures for their manufacture, usage and dis-
posal could be necessary.
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Previous studies on CNTs in the soil system have been carried out by Chung et al. [2] who
demonstrate that short-term exposure (20 days) to multi-walled CNT's can lower most enzy-
matic activities and overall microbial biomass in soils, at exposures of around 5000 pg of
MWCNTs per gram of soil. The same group [32] has observed similar effect of CNTs on soil
enzyme activities and microbial biomass at the concentration 300-1000 pg/g but using single-
walled CNTs (SWCNTs). Another short-term study indicates that SWCNT's may alter the
structure of activated sludge microbial communities [37]. Furthermore, many of the previous
studies used untreated CNTs, which are known to be hydrophobic, mixing poorly with soils.
Only a subset of studies has used the far more easily miscible acid-treated CNTs (functiona-
lized or fCNTs), which are also commonly used in industry [32], and which seem more likely
to interact with the soil ecosystem.

Here we set out to understand the effect of both treated (fMWCNTSs) and untreated
MWCNTs on soil bacterial communities at a range of taxonomic levels. We consider shifts in
both relative abundance and diversity. The relative abundance of certain groups might be im-
portant because particular taxa are consistently associated with ecological functions in the soil,
especially at the finer taxonomic level. Diversity may be important because it is widely thought
that ecosystem resilience is affected by taxonomic diversity [38-40].

Furthermore, we continued our experiment for 8 weeks; most other studies ran for less than
4 weeks [2,32]. Given that soil bacteria are generally thought to be slow growing with a high
proportion of dormant cells much of the time, a longer duration of study seems desirable,
being more likely to show relevant shifts in ecology. Shrestha et al. [17] evaluated the impact of
MWCNTs on soil microbial community structure and functioning in soil over 90 days of expo-
sure and they found no effect on soil respiration, enzymatic activities and microbial communi-
ty composition. However, at the highest (MWCNTs) concentration (10,000 mg/kg), shifts in
microbial community composition and abundance of some bacterial genera were observed.

Essentially our hypotheses were as follows:

1. That fIMWCNTs will have a greater effect on soil bacteria than untreated MWCNTs, due to
their greater ability to mix with soil water and interact directly with bacterial cells. This
higher concentration of MWCNTs will also have stronger effects.

2. That given the relatively slow and long-term nature of soil processes, including bacterial
community shifts, the 8-week timeframe will show a different result from the much shorter
2-3 week timeframe used in most previous studies. The effect may intensify, as more cells
die or are unable to reproduce under the effect of the MWCNTs.

In the present study, we use paired-end Illumina bar-coded sequencing of hypervariable V3
region of 16S rRNA gene to investigate the impact of multi-walled carbon nanotubes on
soil bacteria.

Materials and Methods
Soil sampling

Soil samples were collected in June 2013 from an overgrown flowerbed on Seoul National Uni-
versity campus, which is located in the Gwanak Mountain area, south of Seoul. This sampling
site was selected because it represents a typical and widespread type of soil (slightly acidic
sandy loam) in South Korea. The upper 10 cm of soil was sieved and thoroughly mixed in a
sterile container. The soil was divided into pots containing 200 g soil each. Soil pH was mea-
sured using a soil pH meter (Hanna Instruments HI 99121N Direct Soil pH Meter). Soil pH
was around 6.1 and it contained 10.4% clay, 18.4% silt and 71.2% sand. Soil texture and organic
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matter content were measured at National Instrumentation Center for Environmental Man-
agement (NICEM, South Korea) following the standard protocol of SSSA (Soil Science Society
of America).

Preparation of MWCNTSs

Pure commercial MWCNT's were purchased from Hanwha Nanotech, Republic of Korea. Two
forms of CNTs were used in the present experiment: raw and functionalized forms of
MWCNTs. The powder MWCNT's were not treated, but used in the form received from the
purchaser because this is a form that microorganisms might encounter if there is an accidental
release from a manufacturing facility. The functionalized MWCNTSs are more commonly used
during fabrication processes of commercial products, so would more likely be released at those
sites [32].

The MWCNT's were functionalized (fMWCNTs), following the protocol described by Saito
et al. [41], by attaching carboxyl groups (-COOH) to their surfaces using acidic solutions [42].
A mixture of H,SO,HNOj; = 3:1 (v:v) were added to the raw MWCNT's at room temperature
[43]. The mixture was bath sonicated for 24h, followed by vacuum filtration through 0.22 pm
Millipore Teflon membrane (JGWP04700). Then, the membrane was thoroughly washed using
deionized (DI) water, and was immersed in DI water according to established protocols [44].
The MWCNTs were then dried overnight in the oven at 60°C.

Characterization of MWCNTSs

MWCNTSs were characterized using Energy-Filtering transmission electron microscopy
(EF-TEM: LIBRA 120, Carl Zeiss, Germany) and field-emission scanning electron microscopy
(FE-SEM: S-4800, Hitachi, Japan). These techniques were effective in characterizing the inter-
nal structure (diameter and wall number) of MWCNTSs. Raman spectra were taken to deter-
mine the diameter distribution using LabRam Aramis (Horiba Jobin-Yvon, France).

The metal components in the MWCNTs are less than 5% in weight. They have been ana-
lyzed by the manufacturer (Hanwha Nanotech, Republic of Korea) and are aluminum, iron,
and molybdenum.

Soil incubation

The soil was divided into plastic self-draining pots containing 200 g soil each, to give 3 repli-
cates to be exposed to each concentration of raw MWCNTSs or IMWCNTs. The concentrations
of MWCNTs applied to soil were 0 (DI water only), 50, 500, and 5000 pg/g soil. The soils were
then well mixed to ensure homogeneity before incubation in a BOD incubator at 25°C for 8
weeks. The pots were not covered to allow free gas exchange to the soil microbial community.
The positions of replicate pots of different treatments were randomized and randomly inter-
changed each week. Soil moisture was adjusted to 60% water holding capacity. Soil moisture
content was maintained by weighing the pots twice a week and adjusting to initial weight by
regular addition of DI water. Samples of 3 g of soil were collected from each pot, at different
time points (0, 2, and 8 weeks), to be used for DNA extraction. At T = 0 weeks, we took samples
almost immediately (1 hour later) after adding MWCNT: to soil.

DNA extraction and sequencing

The soil DNA was extracted from 0.3 g of the mixed 3 g sample of soil, using the Power Soil
DNA extraction kit (MO BIO Laboratories, Carlsbad, CA, USA) following the protocol de-
scribed by the manufacturer. DNA isolated from each sample was amplified using primers 338F
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(5 = —XXXXXXXXGTACTCCTACGGGAGGCAGCAG-3 =) and 533R (5 = TTACCGCGGCTGCT
GGCAC-3 =), targeting the V3 hypervariable regions of the bacterial 16S rRNA gene (the X se-
quence denotes a barcode sequence) [45]. The Polymerase chain reactions (PCR) were carried
out under the following thermal profile: denaturation at 94°C for 2 min, followed by 25 cycles of
amplification at 94°C for 30 s, 57°C for 30 s and 72°C for 30 s, followed by a final extension of
72°C for 5 min. PCR products were analyzed by electrophoresis in 1% agarose gels and were pu-
rified using Wizard SV Gel and PCR Clean-up System (Promega, USA). The paired-end se-
quencing was performed at Kim lab incorporation (Yonsei University, Seoul), using a paired
150-bp HiSeq 2000 sequencing system (Illumina) according to the manufacturer’s instructions.
Library preparation, sequencing and initial quality filtering were performed as described previ-
ously [46].

Quantitative PCR analysis

Relative abundance of bacterial subunit rRNA gene copies was quantified using quantitative
PCR (qPCR). Standard curves were created using a 6-fold serial dilution (10 to 10”) of a plas-
mid containing a full-length copy of the Escherichia coli 16S rRNA gene, to estimate bacterial
relative abundance. qPCR assays were conducted in 48-well plates. Each 10 pl reaction con-
tained 5 pl of reaction mixture (2X Real-Time PCR Smart mix), 0.5 ul of forward and reverse
primers (Eub 338 and Eub 518), and DNA-free water. PCR conditions were 2 min at 50°C, and
15 min at 95°C, followed by 40 cycles of 95°C for 60 s, 53°C for 30 s and 72°C for 45 s. Melting
curve analyses was performed to confirm that the amplified products were of the appropriate
size. Each plate included triplicate reactions per DNA sample.

Data analysis

The sequenced data were processed using the mothur platform [47]. Illumina sequencing data
was pair-assembled using pandaseq [48] with an assembly quality score of 0.9, which is the
most stringent option to reduce errors. Next, the sequences were aligned against the EzTaxon-
aligned reference [49]. Sequences were denoised using the ‘pre.cluster’ command in mothur,
which applies a pseudo-single linkage algorithm with the goal of removing sequences that are
likely due to pyrosequencing errors [50]. Putative chimeric sequences were detected and re-
moved via the Chimera Uchime algorithm contained within mothur [51]. The taxonomic clas-
sification was performed using mothur’s version of the RDP Bayesian classifier, using
EzTaxon-e database for each sequence at 80% Naive Bayesian bootstrap cutoff with 1000 itera-
tions. The sequences used in this study have been deposited in the NCBI Sequence Read Ar-
chive under accession number SRP043977.

Statistical analysis

To perform the statistical analysis, all samples were standardized by random subsampling to
4,073 sequences per sample, using the sub.sample command (http://www.mothur.org/wiki/
Sub.sample) in mothur. To assess the relationship between soil bacteria richness/diversity and
MWCNTSs concentration, as well as with time incubation, the richness of OTUs and other di-
versity indices were calculated using the mothur platform [47].

We calculated weighted UniFrac which measures sequence difference between samples
based on phylogenetic information to analyze the bacterial community similarity. We used a
non-metric multidimensional scaling plot (NMDS) using the weighted UniFrac distance in
Primer 6 to visualize the clustering of bacterial community composition over time. We then
performed an analysis of similarity (ANOSIM) with pairwise weighted UniFrac distance as the
response variable and MWCNT's concentration, time incubation and form as factors. We
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performed multiple regression analysis in R software package 2.15.2 using linear model (LM)
for normal data, and a generalized linear model (GLM) for non-normal data to evaluate the ef-
fects of raw and functionalized MWCNT's concentrations, incubation time, and their interac-
tions on bacterial richness and diversity, as well as on the relative abundance of dominant
bacterial phyla. There were four different concentration treatments of raw and functionalized
MWCNTs i.e. 0, 50, 500, and 5000 pg/g soil, and each treatment had three replicates. Aliquots
of soil from each treatment were collected at different time points (0, 2, and 8 weeks). To test
whether bacterial abundance (QPCR) was correlated with fMWCNTs and raw MWCNTs
across different sampling time, we performed regression analysis using linear functions in Sig-
maPlot. We used analysis of variance (ANOVA) to test the effect of IMWCNTSs and raw
MWCNTSs on organic matter content of the soils.

Results

A total of 2,568,331 quality bacterial sequences were obtained from the 63 samples, with an av-
erage of 40,767 sequences per soil sample and with coverage ranging from 4,760 to 219,775
reads per sample (S1 Table).

MWCNTSs characterization

The characterization of MWCNT's based on FE-SEM (Fig. 1A) and EF-TEM (Fig. 1B, 1C) im-
ages showed that the average diameter was around 13.4 nm and the number of walls was 11 in
average. The size of CNTs is an important factor in toxicological studies [11,52]. In fact, the in-
teractions between carbon nanotubes and living cells decreased with the size increase [11].

Raman spectrum showed that the D-band/G-band ratio was approximately 1.305 and this
result showed that defects have been generated from pristine MWCNT which D-band/G-band
ratio is 1.087 (Fig. 1D).

Effect of MWCNTSs on bacterial community diversity

The effects of raw and functionalized MWCNTSs concentrations, incubation time, and their in-
teractions on bacterial richness and diversity were evaluated using multiple regression analyses.
The results showed that the concentration of both fMWCNTs and raw MWCNTs did not
show any correlation with OTUs richness and Chao index (All P > 0.05). In contrast, time was
significantly correlated with OTUs richness and diversity for the two MWCNTSs forms (All

P < 0.05). Considering time and MWCNT's concentration together, there was an important
correlation for OTUs richness and diversity indices (All P < 0.05), but only for functionalized
carbon nanotubes (fMWCNTs) (Table 1).

Effect of MWCNTSs on bacterial community composition

OTU community composition did however differ between different concentrations of
fMWCNTs, (fMWCNTSs, R = 0.24, P = 0.001) but not with different concentrations of raw
MWCNTs for Bray-Curtis dissimilarities. NMDS plots showed a clustering of soil samples ac-
cording to MWCNT concentrations; nevertheless samples from soil with highest concentration
of IMWCNTs showed a greater dissimilarity in their bacterial community composition com-
pared to soil treated with raw MWCNTs (Fig. 2).

Considering the variation in the bacterial community over time, the NMDS plot showed a
clustering of the soils sampled at different sampling times according to different MWCNT con-
centrations used in this experiment for IMWCNTs, but not for raw MWCNTs (Fig. 3). An
ANOSIM test confirmed this result as indicated by the test results (Table 2).
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Fig 1. Characterization of multi-walled carbon nanotubes (MWCNTSs) used in the study. (A) Field-
emission scanning electron microscope (FE-SEM) image of the MWCNTSs. (B,C) Energy-filtering
transmission electron microscope (EF-TEM) images of the MWCNTSs. (D) Raman spectrum of the MWCNTSs.

doi:10.1371/journal.pone.0123042.g001

T
500

Effect of MWCNTSs on bacterial community abundance

Overall, the most abundant bacterial phyla were Proteobacteria with 29% of the sequences, fol-
lowed by Acidobacteria (20%), Actinobacteria (15%), Chloroflexi (9%), and Bacteroidetes (7%);
around 4% of the sequences were unclassified.
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Table 1. Multiple regression between richness (OTUs) and diversity indices with CNTs concentrations and incubation time for both acid treated

(FMWCNTs) and raw MWCNTSs.

fMWCNTSs
Intercept
Time
CNTs conc
Time*CNTs conc
Raw MWCNTs
Intercept
Time
CNTs conc
Time*CNTs conc

Significance level is shown at
***P < 0.001,

** P <0.01, and

* P <0.05.

doi:10.1371/journal.pone.0123042.t001
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Simpson (R? = 0.58***)
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3.330e%3#*

7.721€%7

1.460e0%**

Simpson (R? = 0.76%**)
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1.283e70"***
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6086.9%**
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-0.1159

-0.0195

Chao (R® = 0.75%**)
6.390e 03 * *
-3.197e*02x *x
-1.071e™®"

-6.929¢ %%

Of the most abundant phyla, we found significant differences in relative abundance between
different concentrations of  MWCNT's except for Proteobacteria, Actinobacteria, Chloroflexi,
and Bacteriodetes (Fig. 4). The multiple regression analyses showed that time and fMWCNTs
together have an effect on soil bacteria (Table 3). However, the samples treated with raw
MWCNTSs showed less correlation with both time and concentration for some phyla (Table 3

A 20 Stress: 0.15 B 20 Stress: 0.17
¢ CNTs concentration
0 uglg
¢ v 50 uglg Y
\ 500 uglg v
v 4 5000 ug/g ¢
v
¢+ &
A\ ¢ ]
' ’
Y ¢
v
\j L .
v
¢ v v oo !
¢+
\j
L ¢
¢
]
v
¢ \j

Fig 2. NMDS of Bray-Curtis Index of bacterial community composition in relation to (A) fMWCNTSs and (B) raw MWCNTSs concentrations applied to
soil among the different treatments.

doi:10.1371/journal.pone.0123042.9002
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Fig 3. NMDS of weighted UniFrac indices of bacterial community composition in relation to MWCNTSs concentrations applied to soil over time (at

T = 0 weeks, 2 weeks, and 8 weeks).

doi:10.1371/journal.pone.0123042.9003

and Fig. 4). Consequently, the IMWCNTSs showed a more highly significant change in the rela-
tive abundance of the dominant detected phyla.

Changes in the relative abundance of the predominant bacterial genera in response to expo-
sure to IMWCNTSs and raw MWCNTs are illustrated in Fig. 5 using a heat map. The most

Table 2. ANOSIM results for weighted UniFrac dissimilarity over time.

Form of MWCNTs 0 weeks 2 weeks 8 weeks

R value P value R value P value R value P value
fMWCNTSs 0.21 0.015 0.66 0.006 0.72 0.003
Raw MWCNTs 0.10 0.07 -0.015 0.63 0.27 0.3

doi:10.1371/journal.pone.0123042.1002
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doi:10.1371/journal.pone.0123042.9004

abundant OTU across the various soil replicates/treatments was classified under the genus
Blastocatella (Acidobacteria) represented by 5.6% of the total reads. This genus significantly de-
creased in abundance in the highest treatments with IMWCNTSs at 2 weeks, but later in the ex-
periment its abundance increased by the final time of sampling at 8 weeks. However, raw
MWCNTs did not have any detectable effect on OTU relative abundances. Overall, even
fMWCNTs did not have profound effects on the soil bacterial community, even though effects
were detectable. Shifts in bacterial abundance were observed only for  (MWCNTs with the
greatest changes observed at highest concentrations (5000 pg/g).

For all the qPCR assays, there was a linear relationship between the log of plasmid DNA
copy number and the calculated threshold cycle value across the different concentration range
(R? > 94 in all cases). The bacterial abundance, as determined using qPCR, did not show any
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Table 3. Multiple regression between the relative abundance of the dominant bacterial phyla and with the concentration and incubation time of

fMWCNTs and raw MWCNTSs.
fMWCNTs
Intercept
Time
CNTs conc

Raw MWCNTs

Time*CNTs conc

Intercept

Time

CNTs conc
Time*CNTs conc

Significance level is shown at

*¥**p < 0.001,

*¥* P <0.01, and

* P <0.05.

doi:10.1371/journal.pone.0123042.t003

Acidobacteria Proteobacteria Actinobacteria Bacteroidetes Chloroflexi
(R? = 0.51**¥) (R? = 0.46**¥) (R% = 0.20%) (R®=0.06) (R? = 0.55%*¥)
17.2028%** 34.8423*** 17.2211%** 5.0180%** 8.7270%**
1.1080%* -1.1033*** -0.6582 3.304e0'* 2.502¢70"*
-0.0005 -0.0019%** 0.0009 7.732e% -1.746e%*
-0.0003** 0.0001 0.0001 -5.961e%° -1.706e-04** *
Acidobacteria Proteobacteria Actinobacteria Bacteroidetes Chloroflexi
(R? = 0.58**¥*) (R® = 0.31*%) (R% = 0.40%**) (R? = 0.50***) (R®=0.01)
4.0410%** 3.093e*01*** 1.733e*01x % 5.1920%** 9.9320%**
1.802¢01*** -9.371e-01*** -9.190g 0T *** 6.627e01**x -2.775e
7.403¢% -5.010e%* -5.049¢%4 3.126e % -7.906e%°
-1.699e % 2.102e%4* 1.245¢ 0 -7.143e% -3.151e%

correlation with fMWCNTSs or raw MWCNT's across different concentrations, except with
fMWCNTSs at zero time where P < 0.005 and R* = 0.54 (Fig. 6).

Effect of MWCNTSs on soil organic matter

The ANOVA test results showed that the content of organic matter measured in the soil
among different treatments with MWCNTs were highly significant (F5 g = 58.08, P < 0.001).
High concentrations of both forms of MWCNTSs increased the organic matter content of
the soil.

Discussion
Effect of MWCNTSs on soil bacterial community

In our study, we had predicted that MWCNTs would significantly alter both the soil bacterial
community and its diversity. Yet during the two month-long experiment, we found no differ-
ences in diversity as a result of exposure to either raw or IMWCNTSs. Nevertheless, IMWCNTs
showed an effect on bacterial community composition. Raw MWCNTs did not show any effect
on community composition. Changes in the structure and abundance of the soil bacterial com-
munity in response to MWCNT exposure have been observed in previous studies [17,37]. Our
results showed that soils treated with fMWCNT's exhibited shifts in bacterial community com-
position for different MWCNT concentrations at both of the sampling times (2 weeks and 8
weeks).

The relative abundance of the most common bacterial phyla was affected by the presence of
fMWCNTs and showed differing responses to exposure to IMWCNTSs. The abundance of Pro-
teobacteria, and TM7 was comparatively higher in the highest IMWCNTs treatment, while
there was a decrease in Chloroflexi at the highest concentration of IMWCNTs. Acidobacteria,
Bacteriodetes and Gemmatimonadetes showed an initial decrease (2 weeks) at the highest con-
centration of IMWCNTs then increased over time (8 weeks), whereas Actinobacteria increased
at highest concentration of IMWCNTs, then later decreased. These findings suggest that the
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doi:10.1371/journal.pone.0123042.g005

exposure of soil to IMWCNTs could in fact have some impact on carbon cycling by altering
the microbial community [12]. For example, Actinobacteria (which undergo significant shifts
in abundance) are important in the biogeochemical cycle of carbon in soils [53,54]. In particu-
lar, they play a major role in the degradation of cellulolytic and hemicellulolytic compounds in
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Fig 6. Relationship between fMWCNTSs concentrations and bacterial copy numbers at T = 0 weeks.

doi:10.1371/journal.pone.0123042.9g006

soils [55,56]. Acidobacteria are ubiquitous and among the most abundant bacterial phyla in
soil [57]: their relative abundance is generally negatively correlated with soil carbon availability
[58]. The Chloroflexi are commonly found in soils, also playing an important role in the bio-
geochemical cycle of carbon and the CO, dynamics in soils [55,56,59]. Such changes in bacteri-
al abundance may be explained in terms of a shift of microbial community towards bacterial
species that are more tolerant of the effects of IMWCNTs and the decline of less tolerant spe-
cies [60-62].

Despite the evident effects of exposure to IMWCNTs, overall it appears from our experi-
ment that the soil bacterial community is quite resilient to the environmental perturbation
caused by high concentrations of MWCNTs. The community largely recovers from exposure
to IMWCNTs by 8 weeks. It also appears that the soil bacterial community is resistant to per-
turbation from raw MWCNTs, with almost no observed effects on bacterial community. The
observed lack of response to raw MWCNTs generally matches previous findings for untreated
nanotubes and other carbon-based new materials [63,64]. For instance, Khodakovskaya et al.
[65] observed no impact on soil bacterial diversity of MWCNTs added by watering into soil at
concentrations up to 200 pg/ml. Other studies on the impact of a carbon-based nanomaterial,
Cgo fullerene by Chung et al. [2] and Tong et al. [66] demonstrated no effect of toxicity on soil
bacterial diversity even at 1000 mg/kg concentration.

However, some studies have shown toxin-like effects of raw MWCNT's on bacteria. Rodri-
gues et al. [12] found that raw MWCNT's can negatively affect soil bacterial diversity. In fact,
they observed a major effect of single-walled carbon nanotubes on the soil bacterial community
after only 3 days of exposure, and then bacterial diversity recovered after 14 days’ exposure. If
this is the case, our observed lack of an effect from raw MWCNTs after 2 weeks may be due to
the system having already recovered from an initial perturbation. MWCNT's are chemically
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extremely inert, especially in relation to biological processes [42], and this could be one of the
possible reasons that we did not find any effect of MWCNT's on soil bacterial communities.

Why do fMWCNTSs cause a shift in the soil bacterial community?

fMWCNTs are acidic in nature: pure IMWCNTS, after thorough washing, have a pH around 3
due to carboxyl groups that cover their surface. Our measurements of soil pH showed that pH
was around 4 just after adding IMWCNTs to soil at 0 weeks for the highest  MWCNT's concen-
tration, two units lower than the control without nanotubes, around 4.8 at 2 weeks, and around
5.5 at 8 weeks. There is abundant evidence that pH is crucial to bacterial community structure
[67-69]; in fact, pH seems the strongest factor of all in structuring soil bacterial communities
on a global scale [70,71]. Thus, it is no surprise that MW CNTs—with associated lowering of
soil pH—caused significant changes in soil bacterial communities. One might hypothesize that
fMWCNTs effects would decrease or even disappear on a time scale of months as their acidity
becomes neutralized. Longer-term studies are warranted to confirm whether this is indeed the
case. Aside from following the overall bacterial community, it will also be important to examine
effects on biogeochemical processes, such as carbon and nitrogen cycling, in fIMWCNT-
contaminated soils.

Conclusion

The overall picture is of rather weak—but still detectable—effects from fMWCNT's on soil bac-
terial community structure, combined with the lack of any observable effects from raw
MWCNTs. This gives a generally reassuring picture in terms of the effects of MWCNT's on the
soil environment. Even at the high concentrations used here, IMWCNTs apparently do not
have profound effects on soil bacterial communities. The observed effects of IMWCNTs
would, however, warrant further experimental investigations for any changes in soil nutrient
cycling processes, using functional metagenomics or observations of fluxes.

Supporting Information

S1 Table. Relative abundances of bacterial phyla classified against the Ribosomal Database
Project (RDP) training dataset number 9 across all 63 soil replicates of different treatments
with raw and acid treated MWCNTs.
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