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Abstract
Failure to suppress antagonist muscles can lead to movement dysfunction, such as the ab-

normal muscle synergies often seen in the upper limb after stroke. A neurophysiological sur-

rogate of upper limb synergies, the selectivity ratio (SR), can be determined from the ratio of

biceps brachii (BB) motor evoked potentials to transcranial magnetic stimulation prior to

forearm pronation versus elbow flexion. Surprisingly, cathodal transcranial direct current

stimulation (c-TDCS) over ipsilateral primary motor cortex (M1) reduces (i.e. improves) the

SR in healthy adults, and chronic stroke patients. The ability to suppress antagonist mus-

cles may be exacerbated at high movement rates. The aim of the present study was to in-

vestigate whether the selective muscle activation of the biceps brachii (BB) is dependent on

altering frequency demands, and whether the c-tDCS improvement of SR is dependent on

task frequency. Seventeen healthy participants performed repetitive isometric elbow flexion

and forearm pronation at three rates, before and after c-tDCS or sham delivered to ipsilater-

al left M1. Ipsilateral c-tDCS improved the SR in a frequency dependent manner by selec-

tively suppressing BB antagonist excitability. Our findings confirm that c-tDCS is an

effective tool for improving selective muscle activation, and provide novel evidence for its ef-

ficacy at rates of movement where it is most likely to benefit task performance.

Introduction
Selective activation of agonist muscles is necessary for producing skilled and coordinated
upper limb movements in daily life. For many reaching and grasping movements, activation of
the prime mover (agonist) is associated with simultaneous relaxation of the antagonist [1–3].
Reciprocal inhibition is the neurophysiological mechanism that underlies this functional
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architecture [4–6]. After central nervous system insult such as after stroke affecting the motor
system, selective muscle activation of the paretic limb is often degraded [7–9]. This degradation
is noted as impairment and associated with the clinical symptoms of spasticity and hypertonia,
and abnormal synergies, such as the flexor synergy involving the stereotypical movement pat-
tern of elbow flexion coupled with forearm pronation and shoulder abduction [7,10].

Transcranial magnetic stimulation (TMS) has been used to investigate the neurophysiologi-
cal mechanisms of selective muscle recruitment and synergies of the upper limb. Motor evoked
potentials (MEPs) elicited in biceps brachii (BB) are suppressed before pronation in healthy in-
dividuals but this antagonist suppression is not observed in the most severely impaired stroke
patients [11,12]. The relationship between antagonist and agonist function of BB can be ex-
pressed as a selectivity ratio (SR) by proportionally representing the size of BB MEPs during
forearm pronation to those during elbow flexion [13]. A low SR (e.g., SR = 0.3) supports selec-
tive muscle activation. Conversely, a high SR (e.g., S.R. = 0.8) may lead to poor selectivity be-
cause BB is not sufficiently suppressed to permit efficient forearm pronation. Overall, stroke
patients exhibit higher SRs than healthy controls [11,12] and SR has been shown to correlate
with measures of upper limb impairment, and spasticity [12]. Therefore, SR appears to be a
neurophysiological surrogate for upper limb synergies.

Both crossed and uncrossed descending pathways innervate the proximal muscles making it
likely that pathways originating in the ipsilateral motor cortex influence flexor synergies [14–
16]. This assertion is supported by evidence that cathodal tDCS (c-tDCS) applied to ipsilateral
M1 reduces the SR measured from the contralateral limb of healthy subjects [17] and in pa-
tients with upper limb impairment due to stroke [12]. The ipsilateral primary motor cortex
(M1) is thought to contribute to movements of increasing complexity [18,19] and is also mod-
ulated by frequency during unilateral rhythmic finger movement [20,21]. In the present study
we used c-tDCS to determine if ipsilateral M1 excitability contributes to SR in a frequency
dependent manner.

We hypothesized that SR would be worsened at higher rates of contraction where the ability
to suppress antagonist activation would be less pronounced. Secondly, given that ipsilateral M1
excitability is modulated by movement frequency [20,21] and c-tDCS of ipsilateral M1 im-
proves SR [12,17], we predicted that SR improvement due to ipsilateral c-tDCS would be more
pronounced at higher task frequencies.

Materials and Methods

Participants
Twenty healthy adults (mean: 27.0 years, range: 20–34 years, eight female) without history of
upper limb neurologic and musculoskeletal disorder participated in this study. Nineteen partic-
ipants were right-handed (+84.4 ± 16.7, mean ± standard deviation) and one was left-handed
(-100), as confirmed by the Edinburgh Handedness Inventory [22]. They were screened for
contraindications to TMS and tDCS by a neurologist. The University of Auckland Human Par-
ticipant Ethics Committee approved this study in accordance with the guidelines established in
the Declaration of Helsinki, and written informed consent was obtained from all participants.

Electromyography recording
Surface electromyography (EMG) was recorded from left BB, left pronator teres (PT) and right
first dorsal interosseous (FDI) using disposable Ag/AgCl electrodes (10 mm diameter for left
PT and right FDI, Blue Sensor N, Ambu, Denmark, 20 mm diameter for left BB, Red Dot, 3M,
United States), following standard skin preparation. For BB and PT, the electrodes were placed
over the muscle belly in a bipolar montage. The FDI electrodes were placed in a belly-tendon
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montage. EMG signals were amplified (CED 1902; Cambridge Electronic Design, Cambridge,
United Kingdom), band-pass filtered (10–1000 Hz), sampled at 2 kHz (CED 1401), and stored
to computer for offline analysis using Signal software (Signal V4.09).

Experimental design and protocol
Participants completed two experimental sessions (c-tDCS or sham tDCS) separated by at least
5-days in a randomized double-blind crossover design (Fig. 1A). MEPs were recorded from left
BB during three different frequencies of rhythmic elbow flexion or forearm pronation before
and after each tDCS session. In order to confirm the efficacy of tDCS over left M1, MEPs in
right FDI (i.e., contralateral) were also recorded. The experiment session order was randomized
across participants.

Motor task: elbow flexion and forearm pronation task
Participants were seated on a custom-made chair with their left elbow flexed approximately 90
degrees, the forearm and wrist in a neutral position, and the left hand gripping a vertical bar.
The left forearm was restrained using velcro straps to provide resistance when producing brief
flexor muscle contraction. The right hand was rested on a custom-made armrest. We asked
participants to perform repetitive and brief isometric elbow flexion or forearm pronation,
paced at three different frequencies (0.75, 1.0, and 1.25 Hz). Hereafter, we refer to these fre-
quencies as “slow”, “middle”, and “fast”, respectively. Participants were instructed to complete-
ly relax their left upper limb between each muscle contraction. Each trial consisted of 50
repetitive muscle contractions at a given frequency. For each task (elbow flexion or forearm
pronation), three trials were performed at each frequency both before and after the c-tDCS or
sham tDCS intervention (900 per block, 1800 per session). Data collection of each session took
around 30 min including around 1 min break between each trial. Visual feedback representing
left BB and PT EMG waveforms was displayed on a 24-inch personal computer monitor ap-
proximately 1.5 m in front of the participant throughout all experimental sessions. A familiari-
zation trial was performed for each task before the data collection in order to ensure that
subjects could perform at each frequency. Single-pulse TMS was delivered over the right M1
while performing each task (see, TMS section).

TMS
Single-pulse TMS was delivered with a figure-of-eight shaped coil (70-mm wing diameter) con-
nected to a Magstim 200 stimulator (Magstim Company, Dyfed, United kingdom). The coil
was held tangentially to the scalp with the handle pointing backwards at a 45-degree angle
from the sagittal plane, inducing a posterior to anterior current direction within M1 [23,24].
The optimal sites for producing MEPs in left BB and right FDI were determined and marked
on a tDCS cap covering the participant’s scalp. Active motor threshold (AMT) for left BB was
defined as the minimum intensity that elicited� 100 μVMEPs in four out of eight trials during
a weak sustained muscle contraction (around 10% maximum voluntary contraction) of the left
BB. The TMS intensity during elbow flexion and forearm pronation was set at 130% of AMT
and where necessary, increased to ensure MEPs of sufficient amplitude [11,17]. During the
task conditions, single-pulse TMS was delivered over the right M1, either 150 or 200 ms prior
to every fifth metronome beat [13] (Fig. 1B). Thirty left BB MEPs were elicited in each task at
each frequency (i.e., slow, middle, fast) before and after each tDCS session.

For the measurement of MEPs in right FDI, the TMS intensity was adjusted to elicit an
MEP amplitude of 1.0–1.5 mV at rest at the beginning of the experimental session. Single-pulse

Frequency-Dependence of Selective Muscle Activation

PLOS ONE | DOI:10.1371/journal.pone.0122434 March 27, 2015 3 / 14



TMS was delivered over left M1 every 5–7 seconds while participants completely relaxed both
upper limbs. Sixteen MEPs were recorded before and immediately after each tDCS session.

tDCS administration
Cathodal tDCS or sham tDCS was applied over the left M1 (i.e., ipsilateral) using a dedicated
tDCS cap (MindCap, Newronika, Italy) and a battery-driven constant current stimulator

Fig 1. Experiment design, timeline and task. (A) Experiment schematic and tDCSmontage. All participants completed two experimental sessions,
separated by at least 5-days. Before c-tDCS or sham, right FDI MEPs at rest and left BB MEPs prior to muscle contraction were recorded using single-pulse
TMS to establish baseline values. c-tDCS (1 mA) or sham was delivered to the M1 ipsilateral to the muscle contraction side for 15 min. After c-tDCS, right FDI
MEPs and left BB MEPs measures were repeated. (B) An illustration of the motor task and timing of TMS. The participant was required to make discrete left
elbow flexion or forearm pronation contractions in time with an auditory stimulus paced at 0.75, 1.0 or 1.25 Hz.

doi:10.1371/journal.pone.0122434.g001
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(HDCstim, Newronika, Italy). For c-tDCS, a current intensity of 1 mA was applied for 15 min
through a pair of saline-soaked sponge electrodes (each 25 cm2) equating to a maximum cur-
rent density of 0.04 mA/cm2, within safety limits [25]. The electrode montage was such that
the cathode was positioned over left M1 and the anode above the right supra orbital area, ac-
cording to the international 10–20 system (Fig. 1A). For the sham tDCS session, the current
was ramped up over 30 seconds and then turned off.

Data analysis
For the task conditions, root mean squared EMG (rmsEMG) was determined for the 50 ms
immediately prior to each TMS stimulus. EMG burst onset in BB or PT was detected when
rmsEMG first exceeded 3 standard deviations (SD) above baseline. The TMS-EMG burst onset
interval was calculated and traces were discarded from each subject’s data analysis if this inter-
val was< 50 ms or> 250 ms or if left BB prestimulus rmsEMG was> 10μV.

Left BB peak-to-peak MEP amplitudes were obtained from the remaining data. SR was cal-
culated as: SR = mean MEPBB forearm pronation / mean MEPBB elbow flexion, and the tDCS
induced effect was determined as: ΔSR = SRPost—SRPre. Left BB peak-to-peak MEP amplitudes
during elbow flexion and forearm pronation were also analyzed independently.

Statistical analysis
To confirm the efficacy of c-tDCS, a two-way repeated measures analysis of variance
(RM-ANOVA) with factors TIME (pre, post) and STIM (c-tDCS, sham) was performed on
right FDI MEP amplitude.

For pre SR and ΔSR, two-way RM-ANOVAs with factors STIM and FREQUENCY (slow,
middle, fast) were performed. For pretrigger rmsEMG and TMS-EMG onset interval, three-way
RM-ANOVAs with factors STIM, TIME and FREQUENCY were performed. For percentage
change in BBMEP amplitude, a three-way RM-ANOVA with factors STIM, TASK (elbow
flexion and forearm pronation) and FREQUENCY was performed. Post hoc analyses were
employed when necessary and adjusted P values are reported using a modified Bonferroni pro-
cedure for multiple comparisons [26]. A paired t-test was employed to compare TMS test inten-
sity and AMT of the left BB between sessions. A linear regression analysis with Pearson
product-moment correlation coefficient was used to assess the correlation between ΔSR and pre
SR as well as between pretrigger rmsEMG and BBMEP. The statistical significance level was set
at p< 0.05 for all comparisons and all data are shown as group mean ± standard error (SE).

Results
None of the participants reported adverse effects from the procedures. Data from 3 participants
had to be discarded from the final analysis because they were not able to relax enough between
contractions to maintain an average pretrigger rmsEMG below 10μV, and thus there MEP data
could not be interpreted.

Effect of c-tDCS on right FDI MEP amplitude
Typical EMG traces from right FDI of a representative participant are shown in Fig. 2A. There
was a main effect of TIME (F1,16 = 8.27, p< 0.05), no main effect of STIM (F1,16 = 0.53,
p = 0.47) and a TIME × STIM interaction (F1,16 = 7.91, p< 0.05). Post hoc analyses revealed
that right FDI MEP amplitude decreased from pre to post for the c-tDCS session (t16 = 3.30,
p< 0.01), but not the sham session (t16 = -0.54, p = 0.59). This indicates that c-tDCS robustly
suppressed the stimulated M1 ipsilateral to the task arm (Fig. 2B).
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c-tDCS effects on left BB SR are frequency dependent
The baseline (i.e., pre) SR values were similar in the c-tDCS and sham sessions (c-tDCS: Slow
0.28 ± 0.05,Middle 0.32 ± 0.06, Fast 0.32 ± 0.06; Sham: Slow 0.27 ± 0.05,Middle 0.27 ± 0.05,
Fast 0.28 ± 0.06). There were no main effects of FREQUENCY (F2,32 = 0.37, p = 0.69), STIM
(F1,16 = 0.47, p = 0.50) or FREQUENCY × STIM interaction (F2,32 = 0.70, p = 0.50). Thus, baseline
SR did not differ for the c-tDCS and sham session at the muscle contraction frequencies tested.

The ΔSR (post-pre) values following c-tDCS and sham are shown in Fig. 3A. There was a
main effect of STIM (F1,16 = 9.41, p< 0.01), no main effect of FREQUENCY (F2,32 = 1.85,
p = 0.17), and a STIM × FREQUENCY interaction (F2,32 = 4.44, p< 0.05). Post hoc analyses
revealed that ΔSR improved after c-tDCS for the fast compared with the slow frequency
(p< 0.01). There was a nonsignificant trend for ΔSR in the middle frequency to improve rela-
tive to the slow frequency (p = 0.058). There were no effects of frequency for ΔSR in the sham
session (all p> 0.80). Furthermore, there were differences in ΔSR between c-tDCS and sham
sessions for the middle (t16 = -1.79, p< 0.01) and fast (t16 = -3.38, p< 0.05) frequencies, but
not the slow frequency (t16 = -2.31, p = 0.09). These results confirm that c-tDCS over ipsilateral
M1 can reduce (i.e., improve) SR, and that the extent of improvement increases alongside the
rate at which the task is performed.

Baseline SR values were predictors of ΔSR after c-tDCS (Fig. 3B) but not sham sessions
(Fig. 3C), irrespective of frequency demand. The Pearson product-moment correlation coefficient
showed a moderate negative association between ΔSR and baseline SR for the c-tDCS session
(r = -0.40, p< 0.01) but there was no association after the sham session (r = -0.007, p = 0.95).

Fig 2. Manipulation check for cathodal transcranial direct current stimulation. (A)MEPwaveforms (each trace is an average of 16 trials) from right FDI
of a representative participant. The gray and black traces indicate pre and post c-tDCS or sham sessions, respectively. (B)Mean right FDI MEP amplitude in
the c-tDCS (closed circle) and sham (gray circle) sessions (n = 17). MEP amplitude decreased after c-tDCS and was unchanged in the sham session. Error
bars indicate SE. * p< 0.05; ** p< 0.01.

doi:10.1371/journal.pone.0122434.g002
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c-tDCS effects on left BB MEP amplitude
Averaged rectified EMG traces with MEPs of a representative participant are shown in Fig. 4. Raw
MEP amplitudes are shown in Table 1. For % change of BBMEP amplitude there was a main
effect of TASK (F1,16 = 5.03, p<0.05), an interaction between STIM and TASK (F1,16 = 14.4,
p<0.01) and a TASK × STIM × FREQUENCY interaction (F2,32 = 3.6, p<0.05), with no other ef-
fects (FREQUENCY F2,32 = 0.93, p = 0.41, STIM F1,16 = 4.18, p = 0.058, STIM × FREQUENCY
F2,32 = 1.49, p = 0.24,TASK × FREQUENCY F2,32 = 0.64, p = 0.53). Post hoc tests indicated that
BBMEP amplitude during elbow flexion did not differ between c-tDCS and sham (all frequencies
p> 0.17) (Fig. 5A), whereas BBMEP amplitude was smaller after c-tDCS compared to sham dur-
ing forearm pronation (Fig. 5B). Correction for multiple comparisons, statistical significance was
retained at the middle frequency (p = 0.009), while the fast frequency indicated a nonsignificant
trend (p = 0.068). BBMEP size during pronation did not differ between STIM sessions for the
slow frequency (p = 0.092). These confirm a frequency dependent effect of c-tDCS on the motor
system to suppress the ipsilateral BB when it is a task antagonist.

Fig 3. Selectivity ratio analyses. (A) %ΔSR (n = 17) across the three different frequencies in the c-tDCS (closed bar) and sham (gray bar) sessions.
Correlations between ΔSR and baseline SR in the c-tDCS (B) and sham (C) sessions. Negative numbers indicate improvements of selective muscle
activation. Error bars indicate SE. * p< 0.05; **p< 0.01. Slow, middle and fast indicate 0.75, 1.0 and 1.25 Hz, respectively.

doi:10.1371/journal.pone.0122434.g003
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Control Measures
For left BB, AMT and test intensity for TMS were stable across the c-tDCS and sham sessions.
AMT was 47.4 ± 11.7% and 46.0 ± 7.54% of maximum stimulator output (MSO), respectively
(t16 = 0.71, p = 0.48). TMS intensity was 64.9 ± 8.82% and 65.0 ± 10.2% MSO, respectively
(t16 = -0.08, p = 0.93).

The mean prestimulus rmsEMG values in left BB are summarized in Table 2. For the flexion
task, there was a main effect of FREQUENCY (F1,16 = 25.3, p< 0.01) but no main effects of
STIM (F1,16 = 3.94, p = 0.64), TIME (F1,16 = 0.23, p = 0.63) or any interactions (all F< 1,
p> 0.50). For the forearm pronation task, there were no main effects of STIM (F1,16 = 3.53,
p = 0.07, TIME (F1,16 = 0.49, p = 0.42), FREQUENCY (F2,32 = 1.47, p = 0.24) or any interac-
tions (all others F< 1, p> 0.50). Linear regressions indicated there were no correlations be-
tween pretrigger rmsEMG and MEP amplitude (all p> 0.07).

The mean TMS-EMG burst onset interval ranged between 113 and 133 ms across the experi-
mental sessions and is summarized in Table 3. For the elbow flexion task, there were no main

Fig 4. Examples of motor evoked potentials in left biceps brachii. Averaged rectified typical MEP waveforms (10 trials of each) recording from left BB
prior to elbow flexion or forearm pronation in c-tDCS or sham sessions of a representative participant. The gray and black traces indicate pre and post c-tDCS
or sham, respectively. Slow, middle and fast indicate 0.75, 1.0 and 1.25 Hz, respectively.

doi:10.1371/journal.pone.0122434.g004
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effects of STIM (F1,16 = 0.52, p = 0.48), TIME (F1,16 = 3.29, p = 0.88) or FREQUENCY
(F2,32 = 0.39, p = 0.67) and no interactions (all p> 0.055). For the forearm pronation task, there
was a main effect of FREQUENCY (F2,32 = 5.56, p< 0.01) but no effects of STIM (F1,16 = 0.13,
p = 0.91) or TIME (F1,16 = 0.15, p = 0.69) and no interactions (all p> 0.33).

Table 1. Mean BBMEP amplitude (mV; ± SE) during elbow flexion and forearm pronation before and after c-tDCS and sham.

c-tDCS session

pre post

slow middle fast slow middle fast

Elbow flexion

0.67 ± 0.08 0.82 ± 0.12 1.07 ± 0.14 0.64 ± 0.09 0.80 ± 0.11 1.09 ± 0.16

Forearm pronation

0.16 ± 0.02 0.19 ± 0.03 0.30 ± 0.06 0.17 ± 0.03 0.15 ± 0.03 0.21 ± 0.04

sham session

pre post

slow middle fast slow middle fast

Elbow flexion

0.47 ± 0.07 0.59 ± 0.13 0.75 ± 0.15 0.43 ± 0.06 0.44 ± 0.05 0.61 ± 0.09

Forearm pronation

0.10 ± 0.01 0.11 ± 0.02 0.15 ± 0.02 0.14 ± 0.02 0.15 ± 0.02 0.18 ± 0.03

Slow, middle and fast indicate 0.75, 1.0 and 1.25 Hz, respectively.

doi:10.1371/journal.pone.0122434.t001

Fig 5. Analyses of left biceps brachi motor evoked potential amplitude.Group average BBMEP amplitude (post/pre) (n = 17) for the c-tDCS (filled bar)
and sham (gray bar) sessions during (A) elbow flexion and (B) forearm pronation tasks. Error bars indicate SE. # p = 0.068; **p< 0.01. Slow, middle and fast
indicate 0.75, 1.0 and 1.25 Hz, respectively.

doi:10.1371/journal.pone.0122434.g005
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Discussion
We designed this study to investigate whether the improvement of selective proximal upper
limb muscle activation following c-tDCS depends on the frequency of muscle contraction. The
findings were confirmatory and novel, and summarized as follows: 1) selective muscle activa-
tion at baseline was not dependent on frequency; 2) c-tDCS of ipsilateral M1 improved the se-
lectivity ratio; 3) the improvement was frequency dependent; and 4) c-tDCS can selectively
suppress the excitability of pathways which exert control over ipsilateral antagonist muscles.

Table 2. Mean prestimulus rmsEMG (μV; ± SE) in left BBmuscle before and after c-tDCS and sham.

c-tDCS session

pre post

slow middle fast slow middle fast

Elbow flexion

6.71 ± 0.21 6.82 ± 0.24 6.10 ± 0.23 6.66 ± 0.24 6.82 ± 0.24 7.47 ± 0.25

Forearm pronation

5.92 ± 0.28 6.18 ± 0.26 6.51 ± 0.25 5.91 ± 0.02 5.93 ± 0.32 6.08 ± 0.28

sham session

pre post

slow middle fast slow middle fast

Elbow flexion

6.10 ± 0.23 6.54 ± 0.35 6.88 ± 0.34 5.96 ± 0.21 6.28 ± 0.26 6.89 ± 0.34

Forearm pronation

5.38 ± 0.18 5.52 ± 0.18 5.85 ± 0.18 5.60 ± 0.70 5.74 ± 0.27 5.86 ± 0.84

Slow, middle and fast indicate 0.75, 1.0 and 1.25 Hz, respectively.

doi:10.1371/journal.pone.0122434.t002

Table 3. Mean TMS-EMG burst onset interval (ms; ± SE) during elbow flexion and forearm pronation before and after c-tDCS and sham.

c-tDCS session

pre post

slow middle fast slow middle fast

Elbow flexion

114.8 ± 4.47 116.5 ± 4.73 113.4 ± 5.49 113.5 ± 5.30 114.6 ± 5.23 116.6 ± 5.57

Forearm pronation

124.5 ± 6.01 127.5 ± 0.41 128.2 ± 7.34 124.6 ± 6.06 130.6 ± 6.83 132.9 ± 6.58

sham session

pre post

slow middle fast slow middle fast

Elbow flexion

116.0 ± 6.19 117.3 ± 7.02 120.0 ± 8.04 124.3 ± 7.11 121.7 ± 7.70 125.1 ± 9.95

Forearm pronation

125.5 ± 7.95 125.5 ± 8.90 130.5 ± 10.0 124.1 ± 8.48 127.2 ± 8.77 128.0 ± 8.50

Slow, middle and fast indicate 0.75, 1.0 and 1.25 Hz, respectively.

doi:10.1371/journal.pone.0122434.t003
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Effect of frequency on baseline selective muscle activation
The baseline SR values were consistent with previous studies [12,13,16,17]. Our hypothesis was
that selective muscle activation, indexed by SR, would degrade as task frequency increased. This
is because increased co-contraction is a feature of higher movement rates and has been de-
scribed for tasks such as reaching, playing the piano, and typing on a computer keyboard [27–
29]. Biomechanical analyses indicate that rapid pronation of the forearm is associated with in-
creases in elbow joint stiffness [30]. Taken together, these studies provide evidence that muscle
activation becomes less selective at higher rates of movement. However, baseline SR in the pres-
ent study did not modulate as a function of the frequency of muscle contraction. One possible
interpretation is that the range of frequencies employed in this study (0.75 Hz to 1.25 Hz) was
too narrow. We did not test frequencies above 1.25 Hz because our neurophysiological measure
of agonist-antagonist selectivity requires muscle quiescence at the time of stimulation in order
for MEP amplitudes to be interpreted in a valid manner. Although we could not explore SR dur-
ing very fast task rates with this paradigm, the SR results represent valid observations.

c-tDCS and selective muscle activation
Cathodal tDCS of M1 has once again been shown to be an effective tool for suppressing neuro-
nal excitability directed to the contralateral distal musculature (Fig. 2, c.f., [31–33]). This is
strong evidence that the stimulated M1 was suppressed by c-tDCS. Therefore, any changes in
the selectivity ratio (ΔSR) can be confidently attributed to brain polarization. Although it is dif-
ficult to ascertain the extent of neuronal suppression (and its spread), a conservative interpreta-
tion is that the effects on the ipsilateral hemisphere are unlikely to have been restricted to M1
and may also involve suppression of neurons within adjacent premotor cortical regions.

This study confirms earlier findings that c-tDCS of the ipsilateral M1 can improve selective
muscle activation in the proximal upper limb [17], and extends these earlier results by revealing
a novel frequency dependent effect. The effect was driven by BB in its role as an antagonist dur-
ing forearm pronation as previously in the McCambridge et al study. Whereas BB MEPs re-
mained unchanged before elbow flexion, across sessions, BB MEPs decreased at the middle and
fast tempos for the forearm pronation task.

What accounts for this frequency-dependent effect? It is possible that the ipsilateral M1 ac-
tivity as well as recruitment of ipsilateral descending motor pathways projecting to propriosp-
inal neurons might differ depending upon frequency demands of muscle contraction [34]. In
TMS studies, changes in ipsilateral M1 excitability have been noted when performing repetitive
rhythmic muscle contraction under varying frequency demands [20,21]. Functional magnetic
resonance imaging has revealed ipsilateral M1 deactivation at low (i.e., 0.25Hz) compared to
fast frequencies (i.e., up to 4Hz), and ipsilateral M1 activation scaled linearly with movement
frequency [35]. Further, the recruited brain networks may differ between discrete (i.e., relative-
ly slow) and rhythmic (i.e., relatively fast) manual movements [36]. In our task the slow tempo
may not have increased ipsilateral M1 excitability thus limiting the effects of c-tDCS of ipsilat-
eral M1 to the higher movement rates.

Perhaps surprisingly, ΔSR worsened over the course of the sham session. One possible inter-
pretation is that the task may have induced fatigue as participants performed 900 muscle con-
tractions in each session while keeping pace at the prescribed tempo. Although this idea was
not tested directly, it is worth noting that MEP size tends to increase in fatigued muscle per-
forming a sustained muscle contraction at a high muscle force output level [37,38]. Given that
BB MEP tended to increase in the forearm pronation task with sham stimulation, and this ef-
fect was attenuated with c-tDCS, it may indicate that the effects can be even greater in the pres-
ence of fatigue. This would require further investigation, as might other possibilities for the
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observed effect. In summary, there is a possibility that c-tDCS of the ipsilateral M1 might atten-
uate the worsening of SR between pre and post c-tDCS.

Our study did not examine interhemispheric interactions or their contribution to selective
muscle activation in the proximal upper limb. There is some evidence that the degree of inter-
hemispheric inhibition (IHI), is greater for distal muscles than BB or triceps brachii muscles
[39]. Previously it was shown that ipsilateral silent periods, a measure that reflects at least in
part, interhemipsheric inhibition was unchanged by c-tDCS of the ipsilateral M1 [15,17]. The
previous findings along with the current results suggest that improvements of selective muscle
activation after c-tDCS are due to effects on uncrossed ipsilateral pathways, as opposed to in-
terhemispheric cortical mechanisms.

Conclusions
We provide novel evidence that c-tDCS is an effective tool for improving selective muscle acti-
vation. Namely, its efficacy depends on the frequency demands of the imposed task, and is
greater when frequency demands are presumably high enough to recruit activation in the ipsi-
lateral M1. After stroke which results in upper limb impairment, some patients exhibit abnor-
mal synergies that worsen with increasing movement speed [40]. Given the speed-dependent
effects on the expression of abnormal muscle synergies, c-tDCS of the contralesional M1 may
be applicable in rehabilitation settings for improving movements of the paretic upper limb.
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