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Abstract

Degarelix is a gonadrotropin-releasing hormone (GnRH) receptor (GnRHR) antagonist
used in patients with prostate cancer who need androgen deprivation therapy. GnRHRs
have been found in extra-pituitary tissues, including prostate, which may be affected by the
GnRH and GnRH analogues used in therapy. The direct effect of degarelix on human pros-
tate cell growth was evaluated. Normal prostate myofibroblast WPMY-1 and epithelial
WPE1-NA22 cells, benign prostatic hyperplasia (BPH)-1 cells, androgen-independent PC-3
and androgen-dependent LNCaP prostate cancer cells, as well as VCaP cells derived from
a patient with castration-resistant prostate cancer were used. Discriminatory protein and
lipid fingerprints of normal, hyperplastic, and cancer cells were generated by matrix-assis-
ted laser desorption/ionization (MALDI) mass spectrometry (MS). The investigated cell lines
express GNRHR1 and GNRHRZ2 and their endogenous ligands. Degarelix treatment re-
duced cell viability in all prostate cell lines tested, with the exception of the PC-3 cells; this
can be attributed to increased apoptosis, as indicated by increased caspase 3/7, 8 and 9
levels. WPE1-NA22, BPH-1, LNCaP, and VCaP cell viability was not affected by treatment
with the GnRH agonists leuprolide and goserelin. Using MALDI MS, we detected changes
in m/z signals that were robust enough to create a complete discriminatory profile induced
by degarelix. Transcriptomic analysis of BPH-1 cells provided a global map of genes affect-
ed by degarelix and indicated that the biological processes affected were related to cell
growth, G-coupled receptors, the mitogen-activated protein kinase (MAPK) pathway, angio-
genesis and cell adhesion. Taken together, these data demonstrate that (i) the GnRH an-
tagonist degarelix exerts a direct effect on prostate cell growth through apoptosis; (ii)
MALDI MS analysis provided a basis to fingerprint degarelix-treated prostate cells; and iii)
the clusters of genes affected by degarelix suggest that this compound, in addition to its
known use in the treatment of prostate cancer, may be efficacious in BPH.
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Introduction

Gonadotropin-releasing hormone (GnRH) antagonists are a new class of pharmacological
treatment with many potential applications [1-4]. They are currently approved to treat and
manage prostate cancer (PCa) that requires androgen deprivation therapy (ADT). Low or cas-
trated levels of circulating testosterone are desirable since testosterone promotes prostate
growth [1,3,5,6]. Those low levels can be induced by using GnRH antagonists or agonists.

GnRH antagonists (such as degarelix) compete with the endogenous hypothalamic ligand
GnRH to bind to the GnRH receptor (GnRHR). In men, this blockage leads to a decrease in
both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release from the pitui-
tary, and subsequently testosterone production from testes is suppressed. GnRH antagonists
will act promptly in the hypothalamus—pituitary—gonadal (HPG) axis, blocking steroid syn-
thesis. Meanwhile, before inducing low testosterone levels, GnRH agonists promote an initial
stimulation of the HPG axis, causing an undesirable surge of testosterone that risks enhance-
ment of steroid-dependent disease symptoms, or it may result in a clinical flare [7-11]. Antago-
nists indeed provide an immediate onset of action; in addition, no testosterone levels surge and
efficient action can be reversed or sustained upon repeated dosing [4,12].

Degarelix is a synthetic decapeptide-inhibiting GnRH receptor located in the pituitary. Clin-
ical data available on the therapeutic application of degarelix and other antagonists broadened
the perspective for its use not only for PCa patients, but also for the treatment of symptomatic
benign prostate hyperplasia (BPH) [13-17]. These studies using GnRH antagonists showed sig-
nificant improvement of lower urinary tract symptoms (LUTS) in patients with BPH; specifi-
cally, they exhibited changes in the International Prostate Symptom Score (IPSS) and urinary
flow (Qmax) [18]. Moreover, degarelix induced relief of LUTS in patients with PCa, and this
improvement was more effective and occurred over a longer period in a higher percentage of
patients than goserelin, a GnRH agonist [11,17,19]. LUTS is somehow considered unspecific
because of its diverse etiopathology, but a reduction in prostate volume is still a possible, and
there is reasonable cause for the observed relief, especially in the case of PCa and BPH patients.

Although it is unclear how GnRH agonists or antagonists suppress testosterone levels tran-
siently (1 week or less), LUTS relief is long lasting (12-28 weeks). Many studies already proved
that prostate growth is dependent on steroids; but this indirect mechanism of GnRH analogues
might not be the sole reason for the observed improvement. Alternative mechanisms of action
have been proposed, and an interest over the role of GnRH and GnRHR in extra-pituitary tis-
sues (and in prostate tissues) has being raised.

GnRHR are found outside the pituitary in a variety of human tissues such as the ovaries, en-
dometrium, placenta, breast, and prostate [20-23]. It is suggested that GnRH and its receptors
could be involved in a paracrine/autocrine regulation, since ligands and receptors co-exist in
normal and cancerous tissues [24]. Indeed, GnRHR is presently expressed in peripheral tissues,
and it is also a binding site for GnRH analogues [25-29]; thus, these organs and cells could be a
direct target for the non-central action of synthetic GnRH analogues. In vitro studies on the
mechanisms of GnRHR showed that there are differences between pituitary cells and other cell
types regarding intracellular signaling [22,23,28,30,31]. In vivo evidence of the non-pituitary-
mediated effect on prostate is demonstrated by the inhibition of the growth of androgen-
independent PCa xenografts (DU145 cells) in nude mice treated with a GnRH agonist, Zoladex
[20]. In fact, some other agonists and antagonists were also shown to have an effect on prostate
cells [32-34].

These diverse studies reveal the possibility that extra-pituitary tissues can be affected by
GnRH analogues, and they offer a basis for direct mechanisms; however, to our knowledge,
there is no investigation using degarelix specifically on prostate cells. Other reasons for the
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specific interest in degarelix is due the fact that this drug is currently approved to treat patients
with PCa that need ADT, offering faster and more effective blockage, as well as similar cost-
effectiveness and better tolerance compared to GnRH agonists [7,8,35,36]. Patients receiving
degarelix over the past 5 years have tolerated the treatment well, and they have exhibited signif-
icant improvement in terms of prostate-specific antigen (PSA) levels; moreover, there is a pro-
gression-free survival (PFS) benefit for degarelix over leuprolide (including after cross-over
from leuprolide to degarelix) [37]. A recent study showed that PCa patients treated with degar-
elix presented significant improvement in levels of PSA, PES, and overall survival when com-
pared to patients treated with goserelin (agonist) [38].

It is likely that the extra-pituitary GnRHR is quite versatile, and that prostate tissues are a
direct target for the GnRH antagonists. Clinical investigations with GnRH antagonists and
prostrate diseases are progressively showing favorable and encouraging results, but non-clinical
investigations are still necessary to develop a complete comprehension of the mechanism of ac-
tion. BPH and PCa patients share a common goal, which is to slow down prostate cell growth
and improve LUTS. We want to evaluate the direct effect of degarelix on prostate cell growth,
looking specifically for a common biological response and the pathways affected that could
have an impact in the context of prostate diseases. These insights could shed light onto the mo-
lecular control of GnRHR in prostate, triggered by the use of a synthetic GnRH
antagonist, degarelix.

This present work showed that prostate cell lines express both GNRH and GNRHR. Degare-
lix-treated (but not goserelin- or leuprolide-treated) prostate cells have decreased cell viability,
which was attributed to decreased proliferation and increased apoptosis. A gene array and ma-
trix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) analysis of prostate
cells provided a global map of the genes, proteins, and lipids that are affected following degare-
lix exposure. The biological processes affected were not only related to cell growth, G-coupled
protein receptors, and the mitogen-activated protein kinase (MAPK) pathway, but intriguingly
to angiogenesis and cell adhesion as well. Changes found through MALDI analysis, as well as
the profiling of proteins and lipids, provided a basis to fingerprint degarelix-treated cells.

Material and Methods
Cell lines

This study was conducted using six different established prostate human cell lines. Normal epi-
thelial prostate cells (WPE1-NA22) were cultured in keratinocyte-SFM supplemented with
0.05 mg/mL of bovine pituitary extract and 5 ng/mL of epidermal growth factor (EGF). Normal
stromal prostate cells (WPMY-1) were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) + 5% fetal bovine serum (FBS). Prostate benign hyperplasia cells (BPH-1 cells) were
cultured in Roswell Park Memorial Institute (RPMI) 1640 media supplemented with 5% FBS.
LNCaP androgen-dependent PCa cells were cultured in RPMI 1640 + 10% FBS. VCaP cells de-
rived from a patient with hormone-refractory PCa were cultured in DMEM + 10% FBS. PC-3
androgen-independent PCa cells were cultured in F12K media + 10% FBS. The BPH-1 cell line,
a generous gift from Dr. Simon Hayward, is a well-established and characterized cell line [39].
The other prostate cell lines were directly obtained from the ATCC (American Type Culture
Collection, Manassas, VA, USA) under the following catalog numbers: ATCC CRL-2849
(WPE1-NA22 cells), ATCC CRL-2854 (WPMY-1 cells), ATCC CRL-1435 (PC-3 cells), ATCC
CRL-1740 (LNCaP clone FGC cells) and ATCC CRL-2876 (VCaP cells).—. They were cultivat-
ed following the supplier’s recommendations. All cells were kept in 5% CO, and at 37°C; they
were passaged approximately at 80% confluence and the media was replaced every 2 or 3 days.
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All media and supplements were provided by Invitrogen (Thermo Fisher Scientific, Waltham,
MA, USA).

Quantitative RT-polymerase chain reaction (Q-PCR)

Specific gene expression in WPE1-NA22, WPMY-1, BPH-1, LNCaP, and PC-3 cells was mea-
sured by Q-PCR. Cell pellets were snap-frozen, and the total messenger RNA (mRNA) was ex-
tracted using the RNeasy Plus kit (Qiagen) that included an in-column DNAase step.
Complementary DNA (cDNA) was prepared from 1 pg of total RNA using the QuantiTect Re-
verse Transcription Kit (Qiagen), according to the manufacturer’s instructions. Q-PCR was
carried out on an LC480 machine (Hoffman-La Roche Ltd., Basel, Switzerland). Multiplex
Q-PCR mix consisted of 10 pL of TagMan Universal PCR Master Mix (Applied Biosystems,
Thermo Fisher Scientific), 2 puL of cDNA, 0.7 pL of VIC-labeled GAPDH for cell lines, and 1 pL
of FAM-labeled gene target TagMan probes in a final volume of 20 uL. A SYBRG Q-PCR mix
was used for GNRHRI and consisted on 10 pL of SYBRG Master Mix (Hoffman-La Roche),

2 puL of cDNA, and 1 pL of 0.4 uM primer in a final volume of 20 uL. VIC-labeled GAPDH was
used as an endogenous control to normalize the FAM-labeled targets obtained in cell lines. Re-
sults are presented as a ratio between the target gene relative to and the reference gene normal-
ized to the levels of an expressing control. S1 and S2 Tables list the TacMan probes and primer
sequences used for measuring the gene expression levels.

Immunoblot analysis

Cells were lysed in RIPA buffer 1X [20mM Tris-HCl (pH 7.5), 150mM NaCl, ImM Na,EDTA,
1ImM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5mM sodium pyrophosphate, ImM -
glycerophosphate, ImM Na3;VOy,, 1ug/ml leupeptin] (Cell Signaling, Beverly, MA, USA) sup-
plemented with protease inhibitor cocktail (cOmplete; Roche Diagnostics, Indianapolis, IN,
USA). Protein levels were measured by the Bradford method using the Bio-Rad Protein Assay
kit (Bio-Rad Laboratories, Hercules, CA, USA), with Bovine Serum Albumin as a standard.

Protein extracts (40-50pg) were solubilized in sample buffer [30 mM Tris—HCI (pH 6.8),
2% SDS, 40mM DTT, 1 mM EDTA, 4% glycerol, and 0.01% bromophenol blue], heated for 5
min at 95°C, loaded onto a 4-20% (GnRHR immunoblots) or 10-20% (Caspase immunoblots)
Tris—Glycine gels (Invitrogen, Carlsbad, CA, USA), and transferred to nitrocellulose mem-
branes. Non-specific staining was blocked with 10% non-fat milk in TTBS [20mM Tris—HCI
(pH 7.5), 0.5 M NaCl, and 0.04% Tween 20]. Membranes were incubated with primary anti-
bodies overnight at 4°C. The primary antibodies used (dilution and catalog numbers) were
anti-GnRHR (1:100, MA5-11538, Thermo Fisher Scientific), and anti-cleaved Caspase-3
(1:1000, CS9661), anti-Caspase-7 (1:1000, CS 9494), anti-cleaved Caspase 9 (1:1000, CS 9501)
obtained from Cell Signaling.

Specific protein bands were detected using the Immobilon Western kit (Millipore Corpora-
tion, Billerica, MA, USA), and images were captured using the ImageQuant LAS4000 imaging
system (FujiFilm & GE Healthcare Life Sciences, Baie d’Urfe, QC, Canada). Equal protein load-
ing was verified by re-probing the blots with anti-B-actin (1:1000, CS4967, Cell Signaling).
Densitometric analysis of the immunoreactive protein bands was performed using Multi-
Gauge Software version 3.1 (FujiFilm Corporation Life Sciences, Mississauga, ONT, Canada).

Cell culture treatments

Cell lines were seeded at a density of 2-3x10° cells/well/100 uL in a 96-well cell culture plate,
with the exception of VCaP, which was seeded at 2x10* cells/well/100 pL.
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Cells were allowed to attach for 24-48 hours (h). After that, they were treated with different
concentrations of degarelix, a GnRH antagonist (0.1 to 10 uM); in its pure peptide form
(FE200486) kindly provided by Ferring Pharmaceuticals (Saint-Prex, Switzerland). Leuprolide
acetate and goserelin acetate (GnRH agonists) were used as well (1 nM to 100 uM) from
Sigma-Aldrich Co. (St. Louis, MO, USA). All of them were diluted in distilled water that was
then used as a control in an appropriate concentration.

Cell viability (MTT assay) was accessed at different time points (24, 48, and 72h) after
degarelix, leuprolide or goserelin individual treatments. Caspase studies were performed on
prostate cells treated with degarelix. Caspase 3/7 activation was accessed at different time
points after treatment (24, 48, and 72h), caspase 8 and 9 activation were accessed specifically at
48h in BPH-1 cells and 72h in LNCaP cells.

For experiments where treatments consisted of a combination of degarelix and leuprolide,
BPH-1 cells were allowed to attach for 24h. Cells were either pre-treated with leuprolide
(10puM) one hour prior to the addition of various concentrations (0.001 to 10 uM) of degarelix
or they were pre-treated with degarelix (10uM) one hour prior to the addition of various con-
centrations (0.001 to 100 uM) of leuprolide. Cell viability was accessed at (24, 48, and 72h after
last treatment.

MTT cell viability assay

The kit used was the Cell Proliferation Kit I (MTT) from Hoffman-La Roche Ltd. Briefly, 10 uL
of MTT labeling reagent was added to each well and the plates were incubated at 37°C for 4h.
Then, 100 uL of solubilization solution was added, and the plates were incubated at 37°C, over-
night, in a humidified atmosphere. The final reaction was measured using the Victor automat-
ed plate reader at 550-600 nm. The obtained absorbance directly correlates to the number of
live and metabolically active cells, providing an indication of cell viability.

Caspase 3/7, Caspase 8, Caspase 9 activation

The kit used was the ApoTox-Glo Assay from Promega Corporation (Fitchburg, WI, USA).
This assay measures caspase activation 3/7 within a single assay well using the Caspase-Glo
Assay Technology. The luminogenic caspase 3/7 substrate is added (100 pL) and plates are in-
cubated at room temperature for 30-60 minutes. The caspase cleavage of the substrate gener-
ates a “glow-type” luminescent signal produced by luciferase. The same principle and protocol
apply to the kits Caspase-Glo 8 and 9 (Promega Corporation) used to determine caspase 8 and
9 activities. Luminescence (RLU) reading is proportional to the amount of caspases 3/7, 8 and
9 activity present in each well.

Global gene expression studies

BPH-1 cells were seeded in 100 mm dishes (2x10°/10 mL). Cells were allowed to attach and
they were treated with degarelix (10 uM). BPH-1 cells were harvested 6 and 24h after the treat-
ment. These time points were chosen because we wanted to identify the effect of degarelix on
gene expression changes when the MTT assay started to indicate a decrease in cell viability fol-
lowing degarelix treatment. Cell pellets were washed in phosphate buffered saline (PBS) and all
of the supernatant was removed. These dry pellets were flash-frozen in liquid nitrogen and
kept in -80°C for the RNA extraction. Total mRNA was extracted using the RNeasy Plus kit
(Qiagen). The total RNA was submitted to McGill University and the Genome Quebec Innova-
tion Centre for RNA quality control and hybridization to Affymetrix U133 Plus gene chip.
Quality control, normalization, and analysis of the differential expression were sent to GenexA-
nalysis Service and were carried out as previously described [40].
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Statistical analysis of gene expression, MTT, caspase assays and
immunoblots

Statistical analysis was performed using Prism version 5.0 (GraphPad Software, Inc., La Jolla,
CA, USA). Data were analyzed using Student’s ¢ test and one- or two-way analysis of variance
(ANOVA), followed by post-hoc Tukey multiple comparison or Bonferroni tests when appro-
priated. Data are presented as means + standard error, and p<0.05 was considered significant.
Experiments were performed in triplicate and repeated at least three times independently. De-
tails are displayed in the description of the results

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry
(MS) and data analysis

WPE1-NA22, BPH-1, and LNCaP cells were seeded at a density of 2-4.5x10° cells/10 mL in
100 mm dishes. Cells were allowed to attach for 24-48h. After that, they were treated with
degarelix, a GnRH antagonist (10 uM) in its pure peptide form, diluted in distilled water for
24h. Cells were harvested and washed in cold PBS. The supernatant was removed and the pel-
lets were snap-frozen in liquid nitrogen. Samples were kept at -80°C in a freezer until the
MALDI analysis. For each cell type and condition (control or degarelix-treated), three indepen-
dent cultures were made. From each of these, three separate MALDI spots were prepared (see
below). From each spot, 5-7 independent spectra were manually acquired, depending on the
MS signal quality. Each spectrum was the average of 1,000 consecutive laser shots.

On the day of the analysis, cells pellets were thawed on ice and numerous 0.5 pL aliquots of
the cell pellet were suspended in a solution of MALDI matrix and deposited on a 384-well
MALDI target plate. For the protein analysis, 0.5 pL of a 20 mg/mL sinapinic acid matrix solu-
tion prepared in acetonitrile (ACN):trifluoroacetic acid (TFA) 0.2%- 50:50 was immediately
added in the wells; then, a second spot of matrix was re-applied upon dryness. For the lipid
analysis, 0.5 pL of 20 mg/mL of a 2,6-dihydroxyacetophenone matrix solution in ACN:TFA
0.2%- 50:50 was added and re-applied upon dryness.

MS measurements were performed on a Bruker Daltonics Ultrafextreme MALDI TOF/TOF
mass spectrometer (Bruker Corporation, Billerica, MA, USA). Protein MS measurements were
performed in the linear mode geometry under +25 keV of energy and under optimized delayed
extraction conditions. MS data were collected in the 2,000-20,000 mass-to-charge (m/z) range.
Lipid MS measurements were performed in the reflectron mode geometry under +25 keV or
-20 keV of energy and under optimized delayed extraction conditions. MS data were collected
in the 600-2,000 #/z range.

Statistical analyses of the MS data were performed using Bruker’s ClinProTools 3.0 software
(Bruker Corporation). Preprocessing consisted of noise and background subtraction, total ion
current intensity normalization, and MS data realignment. After preprocessing, peaks were
picked using an s/n ratio of 5.0 on the average mass spectrum. The peak list matrix was then
submitted for principal components analysis (PCA) within ClinProTools 3.0.

Results
Cell lines—MALDI MS

To assess the degree of molecular differentiation between the WPE1-NA22, BPH-1, and
LNCaP cells, their protein composition was screened by MALDI MS. Fig. 1A presents the rep-
resentative protein MS spectra for each cell type. A significant number of protein signals were
observed to be differentially expressed between these three prostate cell types, and multivariate

PLOS ONE | DOI:10.1371/journal.pone.0120670 March 26, 2015 6/23



" ®
@ ' PLOS ‘ ONE Degarelix Inhibits Human Prostate Cell Growth

>

111214d_WPE P29B_SA_200Dshots_low mass_laser 75 D14 MS

2000{ WPE1-NA22 cells o
1500 e A

a s
g S :

1000 o] F L WPE1-NA22
5 0 0 l f I } 50 si
0 W@L‘JLUJALA_»LN&\JJ«W.UAJ u\..,.)blv'l I\iu_._ﬂ.&._._a'l\"llk—u.._._aﬂ—._ 51BPH-1

4000 1112196_BPH P21_SA_2000shats_low mass_laser75 0E13 MS

BPH-1 cells A

3000 .

2000

Intens [a.u.]

1000

- LNCaP cells | 1112199_LNCaP P14_SA_2000shots_low mass_laser?5 (K13 MS “ LNCaP
2000 : BPH-1
1500 :

1000 ‘ | | WPE1-NA22
500 | ' -

1
¥

.~._._.__A..,.....a.,..|.|—\. l...twl-.al;uw_, (TR TR BN VYT PR B TS

4000 6000 8000 10000 12000 14000

ot

16000 18000
m/z

Fig 1. Protein spectra of human prostate cells. (A) MALDI MS protein mass spectra, (B) principal component analysis (PCA) score plot, and (C)
comparison of the two most discriminant peaks across samples.

doi:10.1371/journal.pone.0120670.g001

PCA clearly differentiates the cell cultures (Fig. 1B-C). Together, these results identify unique
protein signatures of each cell line.

Changes in the expression of genes important for the action of degarelix

Considering the interest of the work on the mechanism of action of degarelix in vitro, we inves-
tigated the expression of GNRH endogenous ligands, GNRHR, and their isoforms. Fig. 2A-D
show that the GNRH1 and GNRH2 peptides and receptor mRNAs were present in the cell lines
studied at different expression levels. Of interest, GNRHRI was present at low levels in BPH-1
cells, whereas it was expressed at high levels in WPE1-NA22 cells (Fig. 2B). GNRHR?2 is present

A) GNRH1 B) GNRH2 C) GNRHR1 D) GNRHR2
3 60- 15- 8-
s S s s 8
§ § 404 § § 61
g 24 = 5 104 g
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Fig 2. Gene expression of prostate human cell lines for GNRH and its receptor subtypes 1 and 2. (A) GNRH1, (B) GNRHR1, (C) GNRH2, and (D)
GNRHR2. The white bars show normal cells and the black bars show hyperplasia or cancer cells. Results are presented as a ratio between the target gene
relative to the reference gene normalized to the levels of the control. Results shown are means + standard error from 3 independent experiments performed
in triplicates.

doi:10.1371/journal.pone.0120670.g002
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in all cell lines as well (Fig. 2D). Experiments were performed in triplicate and repeated at least
three times independently. The results are expressed as the mean + standard error of the mean.
One-way ANOVA revealed differences among GNRH1 means (p<0.05) and Tukey’s multiple
comparison test revealed significant difference between WPMY-1 and BPH-1 (p<0.05). For
GNRH2, One-way ANOVA revealed differences among means (p<0.01) and Tukey’s multiple
comparison test revealed significant difference between WPMY-1 vs LNCaP (p<0.05),
WPE1-NA22 vs LNCaP (p<0.01), BPH-1 vs LNCaP (p<0.01) and PC-3 vs LNCaP (p<0.05),
while all other comparison showed p>0.05. For GNRHRI, One-way ANOV A revealed differ-
ences among means (p<0.001) and Tukey’s multiple comparison test revealed significant dif-
ference between WPMY-1 vs WPE1-NA22 (p<0.01), WPMY-1 vs BC-3 (p<0.01),
WPE1-NA22 vs BPH-1 (p<0.001), WPE1-NA22 vs LNCAP (p<0.001), BPH-1 vs PC-3
(p<0.01) and PC-3 vs LNCaP (p<0.01). For GNRHR2, One-way ANOV A revealed no differ-
ences among means (p>0.05).

GnRHR protein levels

Immunoblot analysis of GnRHR expression showed a clear band of estimated size of 65-kDa
(as expected) present in both BPH-1 and LNCaP cells (Fig. 3). Each lane shown is representa-
tive of an independent cell passage; beta actin was used as a loading control.

Cell viability after degarelix treatment

In order to analyze the direct effect of degarelix (a GnRH antagonist) on prostate cell growth,
cells were treated in vitro in a time course experiment. Experiments were performed in tripli-
cate and repeated at least three times independently. The results are expressed as the

mean + standard error of the mean. Fig. 4A-E show the cell viability of different prostate cells
after 24, 48, or 72h of treatment. Viability is decreased in four out of five of the tested cell lines
(normal, hyperplasia, and cancer), with the exception of androgen-independent PC-3 cells.
Two-way ANOVA revealed that treatment with degarelix and exposure time are significant
sources of variation (p<0.0001) and post-hoc Bonferroni comparison test revealed significant
differences between control and degarelix (10uM). The overall differences found for degarelix
treatment include: 4A) WPMY-1 cells at 48 and 72h (p<0.001); 4B) WPE1-NA22 cells at 72
hours (p<0.001); 4C) BPH-1 cells at 48 and 72h (p<0.001); and 4E) LNCaP cells at 48 and 72h
(p<0.001). When the treated groups were individually compared with controls, we observed
that 10 uM of degarelix reduces cell viability at various time points, as indicated individually in
each graph (***p<0.001). For PC-3 cells (Fig. 4D), Two-way ANOV A revealed that only time
is a significant source of variation (p<0.0001) and post-hoc Bonferroni comparison test re-
vealed no significant difference between control and degarelix at various concentrations ana-
lyzed (p>0.05).

BPH-1 cells LNCaP cells

L 1
I 1 Ll 1

B65-kDa > W s o w— — .\ GcoDUR

46-KDa 3 s s s s s Anti-B-actin

Fig 3. GnRHR levels in BPH-1 and LNCaP cells. Representative immunoblots of BPH-1 and LNCaP cell
extracts. Each lane represents an independent cell passage (n = 3).

doi:10.1371/journal.pone.0120670.g003
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Fig 4. MTT assay showing the viability of prostate cell lines following treatment with the GnRH antagonist, degarelix. (A) WPMY-1, (B) WPE1-NA22,
(C) BPH-1, (D) PC-3, and (E) LNCaP. Data are expressed as the percentage of the respective controls and the average + standard error. Each assay was
done in triplicate in at least 3 independent experiments for each cell line. Two-way ANOVA indicated there was a significant difference overall for degarelix
treatment (p<0.001), and the posttest indicated that there were differences against each control, as displayed in each graph (***p<0.001).

doi:10.1371/journal.pone.0120670.9004

Cell viability after goserelin and leuprolide treatment

After treatment with the GnRH agonists leuprolide (Fig. 5A-C) or goserelin (Fig. 5D-F), cell vi-
ability remained the same in those three cell lines analyzed: WPE1-NA22, BPH-1, and LNCaP.
Concentrations of the agonists were used at concentrations as high as 100 pM; however, treated
cells displayed similar growth to the control cells

Specifically, for WPE1-NA22 cells (Fig. 5A and D), BPH-1 (Fig. 5B and E) and LNCaP
(Fig. 5C and F), Two-way ANOV A revealed that only time was a significant source of variation
(p<0.0001) and post-hoc Bonferroni comparison test revealed no significant difference be-
tween control and degarelix at various concentrations tested (p>>0.05). Also, BPH-1 cells pre-
treated with leuprolide (10 pM) before the addition of increasing concentrations of degarelix
showed drug response in the viability curves obtained at 24, 48 and 72h (S3 Fig.) similar to that
seen with degarelix alone (Fig. 4). Pre-treatment with degarelix (10 uM) followed by treatment
with increasing concentrations of leuprolide did not affect the inhibitory effect of degarelix on
BPH-1 cell viability over time (S3 Fig.).

VCaP viability in response to GnRH analogue treatment

VCaP cells (derived from a patient with castration-resistant PCa) had a similar pattern of re-
sponse to GnRH analogues as the other cancer cells. Degarelix-treated cells exhibited decreased
viability (Fig. 6A), and cell viability remained the same after leuprolide or goserelin treatment
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Fig 5. MTT assay showing the viability of WPE1-NA22, BPH-1, and LNCaP cell lines following treatment with GnRH agonists. (A-C) Leuprolide and
(D-E) goserelin. Note that the different cell lines are displayed in each column. The data are expressed in terms of the percentage of the respective control
and the average + standard error. Each assay was done in triplicate with at least n = 3 independent experiments for each cell line. Two-way ANOVA
displayed p>0.05; there was no difference overall for the treatments.

doi:10.1371/journal.pone.0120670.9005

(Fig. 6B and C). For the degarelix-treated cells (Fig. 6A), Two-way ANOVA revealed that treat-
ment with degarelix and time are significant sources of variation (p<0.001 and p<0.01, respec-
tively) and post-hoc Bonferroni comparison test revealed significant difference between
control and degarelix 10uM at 24h and 48h (p<0.001) as well as at 72h (p<0.05). For the leu-
prolide- and goserelin-treated VCaP cells (Fig. 6B and C), Two-way ANOVA revealed that
only time was a significant source of variation (p<0.001) and post-hoc Bonferroni comparison
test revealed no significant difference between control and Degarelix at various concentrations
tested (p>0.05).

Apoptosis measurement after degarelix treatment

Fig. 7 shows the caspase 3/7 activation measurement in four different prostate cells. Degarelix
treatment induces a significant increase on caspase 3/7 activation compared to control in nor-
mal, hyperplasia, and cancer cells. The increase in this effector caspase indicates that cells are
undergoing cell death (specifically apoptosis) using the caspase cascade after degarelix treat-
ment; this could explain the decreased cell viability.

Caspase 3/7 activation statistical analysis revealed that for WPE1-NA22 cells (Fig. 7A),
Two-way ANOVA revealed that only treatment with degarelix was a significant source of vari-
ation (p<0.001) and post-hoc Bonferroni comparison test revealed significant difference be-
tween control and degarelix 10uM at 24h (p<0.05). For BPH-1 cells (Fig. 7B), Two-way
ANOVA revealed that treatment with degarelix and time are a significant source of variation
(p<0.001 and p<0.05) and post-hoc Bonferroni comparison test revealed significant difference
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Fig 6. MTT assay showing the viability of the VCaP cell line after treatment with the GnRH antagonist
or agonists. (A) Degarelix, (B) leuprolide, and (C) goserelin. The data are expressed in terms of the
percentage of the respective control and the average + standard error. Each assay was done in triplicate with
atleast n = 3 independent experiments for each cell line. Two-way ANOVA indicates that there was a
significant difference overall for degarelix treatment (p<0.001), and the posttest indicated that there were
differences against each control, as displayed in each graph (*p<0.05). ANOVA displayed p>0.05; for the
leuprolide and goserelin groups, there was no difference overall for the treatments.

doi:10.1371/journal.pone.0120670.g006
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doi:10.1371/journal.pone.0120670.g007
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between control and Degarelix 10uM at 24h and 48h (p<0.001) and 72h (p<0.05). For LNCaP

cells (Fig. 7C), Two-way ANOVA revealed that treatment with degarelix and time are not a sig-
nificant source of variation (p>0.05) and post-hoc Bonferroni comparison test revealed signifi-
cant difference between control and Degarelix 10uM at 72h (p<0.05). For VCaP cells

(Fig. 7D), Two-way ANOV A revealed that treatment with degarelix was a significant source of
variation (p<0.05) and post-hoc Bonferroni comparison test revealed significant no difference

between control and Degarelix 10uM (p>0.05).

Fig. 8 shows the caspase 8 and 9 activation measurement in BPH-1 cells and LNCaP cells at
two specific time points. For the statistical analysis, treated-groups were compared to their re-
spective control by using the Student’s ¢ test. Degarelix induced a significant increase in caspase
9 activation in BPH-1 cells (Fig. 8A, p<0.05), whereas caspase 8 remained unchanged (Fig. 8B,
p>0.05). LNCaP cells presented a significant increase not only in caspase 9 (Fig. 8C, p<0.05)
but as well in caspase 8 activation levels (Fig. 8D, p<0.05) after degarelix treatment. Experi-
ments were performed in triplicate and repeated at least three times.

Immunoblot analysis of caspase 3 and 7 in their cleaved forms confirmed the results previ-
ously described for BPH-1 and LNCaP cells (Fig. 9). Fig. 9A and C illustrate representative im-
munoblots for caspase 3, caspase 7 and beta actin incontrol and degarelix-treated BPH-1 and
LNCap cells, respectively. Fig. 9B and D shows the quantification of the immunoblots; while
cleaved caspase 3 was not significantly increased, cleaved caspase 7 was found in increased lev-
els in degarelix-treated BPH-1 cells (Fig. 9B, p>0.05). Interestingly both cleaved forms are in-
creased in degarelix-treated LNCaP cells (Fig. 9D, p<0.001 for caspase 3 and p<0.01 for
caspase 7). Experiments were performed in triplicate and repeated at least three times. For the
statistical analysis, treated-groups were compared to their respective control using Student’s ¢
test).

MALDI MS cell analyses

The raw MS data were plotted as two-dimensional (2D) density plots or gel views for a quick
visualization of the prostate cell molecular expression patterns for both proteins and lipids (S1
Fig.). Each gel view has two datasets: control and degarelix-treated. Each horizontal line repre-
sents an individual spectrum, and each vertical line represents a detected peak shown on a rain-
bow color scale according to its relative abundance. This visualization provides quality control
of the individual sample acquisitions, as well as an immediate comparison of the many spectra,
to detect changes in the spectral patterns. When comparing the protein or lipid MS profiles be-
tween control and degarelix-treated cells, a quick overview of the 2D gel views indicated that
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doi:10.1371/journal.pone.0120670.g009

across the three cell types, WPE1-NA22 cells seems to present more contrasting differences,
followed by the BPH-1 and LNCaP cells.

Like the 2D gel views, the corresponding PCA plots showed that the WPE1-NA22 cells pre-
sented clusters that featured a more discriminant profile of proteins and lipids, followed by the
BPH-1 and LNCaP cells (Fig. 10). An overlay of the sum MS spectra for each cell type illustrat-
ed some specific discriminant proteins or lipids of prostate cells (control or degarelix-treated).
Some of those lower or higher m/z signal intensities are highlighted by asterisks. Degarelix was
also observed at its expected mass of 1,630.75 g/mol in the different cell samples analyzed (S2
Fig.).

Global changes in gene expression

To investigate the early gene changes triggered by degarelix, BPH-1 cells were treated for 6 and
24h with 10 uM of degarelix. We found that at 6h of treatment, 70 genes were upregulated and
14 genes were downregulated. The data show discrete changes in gene expression that ranged
between a 1.3-fold decrease and a 1.5-fold increase. A cutoff of a +1.15-fold change was selected
for further gene analysis. Results obtained at 24h showed that 185 genes were upregulated (34
genes >2-fold) and 121 genes were downregulated (28 genes >2-fold) in BPH-1 cells. Fig. 11C
shows a Venn diagram that was used to compare significant gene expression changes at 6h (84
genes) and 24h (306 genes), which shows that five genes were commonly affected at both
time points.

To gain further insight into the gene changes, we submitted the 84 and 306 up-/downregu-
lated genes (from the 6 and 24h time points) to the DAVID (http://david.abce.nciferf.gov/)
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doi:10.1371/journal.pone.0120670.g010
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doi:10.1371/journal.pone.0120670.g011

bioinformatics website to obtain a list of the biological processes affected by degarelix (Fig. 11A
and B). The arrows point toward interesting processes and the number of genes deregulated
after degarelix treatment. We identified early changes (6h) in the regulation of transcription,
cell death, cell apoptosis, cell proliferation, and cytoskeleton organization (Fig. 11A). At 24
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hours (Fig. 11B), we identified significant changes in genes associated with transcription, phos-
phorylation, cell cycle, cell adhesion, and blood vessel development.

We conducted functional annotation clustering using the DAVID bioinformatics portal to
identify genes with similar functions after 24h of degarelix treatment. We identified that clus-
ters related to blood vessel development (Cluster 1), MAPK pathway (Cluster 2), apoptosis
(Cluster 3), cell receptors (Cluster 4), inflammatory response (Cluster 5), and EGF-like genes
(Cluster 6) were affected by degarelix. The complete list of genes associated with the clusters
mentioned above can be found in the supplemental material (S3 Table).

Discussion

Our current study shows that all of the tested human prostate cell lines express the GNRH pep-
tide and its receptors. Similar results were found with prostate specimens, regardless of whether
they were of normal, hyperplasia, or cancer origin (data not shown). While it has been de-
scribed that extra-pituitary cells and tissues express GnRH and GnRHR [41-43], we needed to
confirm these results to investigate the specific direct effects of degarelix on prostate cell lines.
In other studies, GnRHR was not found in all of the prostate samples analyzed; however, they
were still found in the majority of tissues and with binding sites for GnRH analogues [43]. We
report herein that GnRHR in both BPH-1 and LNCaP cells, widely used in our studies.

We found decreased cell viability following degarelix treatment at different time points, as
indicated by MTT assay. This indicates that degarelix acts directly on prostate cell growth, as
these cells express GNRHR, and it affects nontumorigenic (normal epithelial and stromal cells),
hyperplasia-type (BPH-1 cells), and tumorigenic cells (androgen-responsive LNCaP and cas-
tration-resistant VCaP cells). PC-3 androgen non-responsive cells are not sensitive to degare-
lix, but the reasons for this are unknown. It is unlikely that this could be androgen-mediated
since, similar to what was observed for the PC-3 cells, WPE1-NA22 cells do not express andro-
gen receptors (data not shown); however, they are sensitive to degarelix. It is possible that
degarelix inhibits a pathway whereby PC-3 cells do not rely on growth, or which does not con-
trol growth in PC-3 cells; different prostate cell lines have variable responses to androgens and
growth factors as their particular in vitro characteristics [44-46].

The MTT assay is very sensitive when measuring the cytotoxic effects of drugs in vitro as it
indicates the amount of viable cells; however, the results needed to be extended with other as-
says, and for that we measured apoptosis. We found that degarelix treatment induces an in-
crease of caspase 3/7 activation in all prostate cells analyzed. These data obtained using a
sensitive luminescent assay were further confirmed at the protein level with BPH-1 and
LNCaP cells. Indeed, BPH-1 presented a significant increase in caspase 7 (cleaved form) and
LNCaP cells presented a notable increase in caspase 3 and 7 (cleaved forms) following degarelix
treatment. This caspase activation can be triggered by the extrinsic death receptor pathway
(which is more related to the immune system) and the intrinsic mitochondrial pathway [47-
49]. To access that, activation of initiator caspases 8 and 9 were investigated. While BPH-1 cells
presented an increase only in caspase 9 activity, LNCaP presented an increase in both caspases
8 and 9 activities. Caspase 9 is recognized for being involved in apoptosis through the intrinsic
and caspase 8 through the extrinsic pathway. Of interest, apoptosis is the major cell death path-
way involved in removing unwanted cells, and most anti-cancer therapies rely on the activation
of this process [49-51].

In this respect, cetrorelix (another GnRH antagonist) is shown to have direct inhibitory ef-
fects over BPH-1 cell line growth; it decreases the expression of the proliferating cell nuclear
antigen (PCNA). In this same study, cetrorelix also inhibited the stimulatory effect of growth
factors IGF-I and -1I, and FGF-2 [33]. It was shown that part of the underlying mechanism
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involves cell cycle arrest, and that cetrorelix induced changes in the transcripts of pro-inflam-
matory cytokines [32,52,53]. We are currently demonstrating in this work that different pros-
tate cell lines (hyperplasia and cancer) are a direct target of another important GnRH
antagonist, degarelix, through a decrease in cell viability and an increase in apoptosis. More-
over, we also show that the GnRH agonists leuprolide and goserelin do not affect prostate cell
viability, even when tested at a concentration of 100 uM, indicating that the effect might be spe-
cific for the antagonists, at least in prostate cells. Also, there is no pharmacological interaction
between leuprolide and degarelix (antagonism or synergism), suggesting that the effect of
degarelix on prostate cells are specific to the antagonist and that the prostate GnRHR may dif-
fer from that present in pituitary. This finding could also complementarily explain the clinical
results obtained with degarelix, leuprolide, and goserelin, showing differences in the efficacy
and disease time free for PCa.

We conducted a global gene analysis in the BPH-1 prostate cell line to identify early gene
changes that may indicate degarelix-responsive pathways. Our analysis showed that the effects
of degarelix at 6h were minimal. These differences in gene expression, although small, were
found to be statistically significant due to the low random variability in the samples. While the
discrete changes may be due to the short treatment time, another possibility is that the efficacy
of degarelix is cell cycle-dependent, and thus, early changes in gene expression were diluted by
non-affected cell populations. Despite the few changes detected, we identified biological pro-
cesses related to apoptosis and cell death, which were affected soon after degarelix treatment.
This, together with the MTT data, showed a decreased viability at 24h, suggesting that degarelix
acts rapidly to trigger apoptosis in a subpopulation of BPH-1 cells. The data also suggest that
the initial effects of degarelix were mediated in part by a non-genomic mechanism.

Interestingly, we found a few genes affected at 6 and 24h, and instead, we identified that the
biological processes related to cell adhesion, the cell cycle, and transcription were affected at
24h. GnRHR is known to be a Gi-coupled protein, and it is also possible that cross-talks with
the growth factor receptors resulted in protein and lipid changes that altered the growth rate of
BPH-1 cells [41,42,54,55]. Specifically, the gene-grouping analysis showed that, in addition to
affecting the G-couple receptor related genes, degarelix-deregulated gene clusters, which in-
cluded blood vessel development, apoptosis, cell proliferation, inflammation, and EGF-like
genes. These affected processes could be of interest for BPH and PCa. It is intriguing that
degarelix deregulated these genes; however, in the context of BPH, the sum of these gene
changes could result in tissue remodeling, which could have an impact on prostate size. Taken
together, the data suggest that degarelix has rapid non-genomic effects, followed by altered
gene expression of clusters of genes known to result in tissue remodeling. Whether the path-
ways identified in the BPH-1 cell line translate to the clinic remains to be studied. However, the
identified pathways are known to be involved in controlling the progression of BPH [56-58].

In addition, we found that the deregulation of genes related to the MAPK cascade. The
MAPK signaling cascade is one of the major networks of interacting proteins that regulates cell
growth and differentiation [59-62]. It involves distinct and specific downstream mediators
that could be related to the decreased cell viability observed. Also, degarelix could deregulate
MAPK directly through GnRHR or indirectly through the counteraction of growth factors and
hormones present on BPH. Each MAPK cascade is activated by a specific stimulus, although a
cross-talk between GnRH and growth factor signaling is also possible [41,42,54,55]. Comple-
mentary, steroidogenic, and cancerous tissues highly express translocator protein (TSPO), and
its expression can be controlled by the following pathway component: PKC-MEK-ERK [63]. In
fact, TSPO has been associated with various tissue- and disease-specific functions, and in our
context, this component could be used by GnRHR intracellular signaling.
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Previous studies conducted with a rat model of BPH showed differences in prostate gene ex-
pression after 42 days of exposure to cetrorelix-; these differences were found to be more relat-
ed to inflammatory cytokines and growth factors [53]. While it is possible, it is unknown if this
is the case for degarelix and prostate cells, since our main interest in this work is to
identify the starting points or early molecular events triggered by degarelix; to determine this,
we used 6 and 24h of exposure of cells to this antagonist and conducted a global gene
expression study.

MALDI MS is an innovative tool to rapidly investigate the molecular composition of biolog-
ical systems. A major benefit of MALDI MS is the capability to determine the distribution of
hundreds of unknown peptides, lipids, or compounds in a single measurement [64,65]. Chemi-
cal stains, immunohistochemical tags, and radiolabels are common methods used to monitor
molecular targets, but there are limits to the specificity and to the number of targets that can be
monitored in a single measurement. MALDI MS can analyze complex mixtures ranging from
small drug compounds to very large proteins, whether endogenous or exogenous. This tech-
nique requires very little sampling, and there is no need for the initial knowledge of target spe-
cies. MALDI MS is a fast and easy approach to rapidly profile and characterize the molecular
content (peptides, proteins, metabolites, drugs) of cultured cells [66-68]. This technique is
therefore of great interest for biological, biomedical, and clinical studies, as well as for drug dis-
covery and development. MALDI MS could provide the profiles to characterize normal, hyper-
plasia, and cancer cells, as well as to identify different protein and lipid mass spectra profiles as
a fingerprint for degarelix-treated human prostate cells.

Using MALDI MS, we identified specific changes in m/z signal intensities in prostate cells
induced by a GnRH antagonist (degarelix). Proteins and lipids were identified and found to be
either up- or downregulated. The changes were robust enough to create a discriminatory pro-
file induced by degarelix treatment. Interestingly, a more distinguished protein and lipid profile
in WPE1-NA22 cells was found for currently unknown reasons.—These data further demon-
strate that degarelix directly targets prostate cells, and this allowed us to obtain the first leads
on the biological processes regulated by degarelix.

In conclusion, we showed that different types of human prostate cell lines (normal, hyper-
plasia, and cancer) are sensitive to the antiproliferative effect of degarelix, a GnRHR antagonist.
Prostate cell growth was directly inhibited by degarelix, possibly involving a cell cycle-related
mechanism and leading to apoptosis. Gene array results indicate a few interesting early molec-
ular changes induced by degarelix that could have an impact in the prostate context, mainly
controlling BPH growth. A MALDI analysis provided the basis to discriminate between the
specific proteins and lipids found following degarelix treatment. Taken together, these findings
suggest that GnRHR signaling within the prostate environment should be taken into consider-
ation when designing therapies for the treatment of prostate diseases.
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