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Abstract
The existing DTI studies have suggested that white matter damage constitutes an important

part of the neurodegenerative changes in Alzheimer’s disease (AD). The present study

aimed to identify the regional covariance patterns of microstructural white matter changes

associated with AD. In this study, we applied a multivariate analysis approach, independent

component analysis (ICA), to identify covariance patterns of microstructural white matter

damage based on fractional anisotropy (FA) skeletonised images from DTI data in 39 AD

patients and 41 healthy controls (HCs) from the Alzheimer’s Disease Neuroimaging Initia-

tive database. The multivariate ICA decomposed the subject-dimension concatenated FA

data into a mixing coefficient matrix and a source matrix. Twenty-eight independent compo-

nents (ICs) were extracted, and a two sample t-test on each column of the corresponding

mixing coefficient matrix revealed significant AD/HC differences in ICA weights for 7 ICs.

The covariant FA changes primarily involved the bilateral corona radiata, the superior longi-

tudinal fasciculus, the cingulum, the hippocampal commissure, and the corpus callosum in

AD patients compared to HCs. Our findings identified covariant white matter damage asso-

ciated with AD based on DTI in combination with multivariate ICA, potentially expanding our

understanding of the neuropathological mechanisms of AD.

Introduction
Alzheimer’s disease (AD) is a common progressive neurodegenerative disease among the elder-
ly. The prominent morphological alterations in AD involve not only grey matter atrophy but
also white matter damage; for review, see [1,2]. DTI, an advanced non-invasive MRI technique,
can quantitatively detect the diffusion characteristics that represent the microstructure of white
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matter in the brain in vivo. The existing DTI studies have suggested that white matter damage
constitutes an important part of the neurodegenerative changes associated with AD [3–5].
Multiple DTI indices, such as fractional anisotropy (FA), radial diffusivity (RD), axial diffusivi-
ty (AD) and mean diffusivity (MD), can detect the abnormalities in white matter in AD [6–10].
Among these indices, FA, which represents the degree of anisotropy of water diffusion, is one
of the most common and important parameters used to characterise the microstructural char-
acteristics of white matter [3,8,11,12].

Earlier DTI studies applied regions of interest (ROI)-based method [13–15]. However, the
definition of ROIs requires a priori hypothesis, and this approach is subject to the partial volume
effect, especially with respect to small or thin white fibre tracts [3,8]. More recently, some DTI
studies performed automated voxel-based style analysis across the entire brain [3,11,16], al-
though misregistration and smoothness-related problems may yield unreliable findings. Then
Smith et al. proposed a tract-based spatial statistics (TBSS) method, which utilises intermediate
non-linear registration and projection onto the mean FA skeleton image to improve the sensitiv-
ity, objectivity and interpretability of voxel-wise analysis of multi-subject DTI studies [17,18].

The above DTI studies applied univariate measures and solely focused on the differences be-
tween two groups. However, multivariate approaches, such as independent component analysis
(ICA), can elucidate the covariance information hidden in imaging data, revealing the relation-
ships between morphological characteristics and providing a representation of the identified
network patterns [19,20]. An ICA model is based on a basic assumption that the unobservable
source signals are statistical independent and non-Gaussian. The observed or measured signals,
such as brain imaging data, can be considered as linear mixtures of independent components.
Therefore, ICA is an unsupervised data-driven statistical method that decomposes linearly
mixed signals into maximally independent components carrying similar inter-subject covari-
ance information. Moreover, the mixing coefficients can be used to perform statistical analysis
to examine the between-group difference. Determining the alterations in the microstructural
connections of white matter associated with AD could play a vital role in understanding the
fundamental pathology of AD.

The purpose of the present study was to identify the regional covariance patterns of micro-
structural white matter changes associated with AD. We performed multivariate ICA on skele-
tonised FA images from patients with AD and healthy controls (HCs). Moreover, we assessed
the discrimination ability between the AD and HC groups using the subject-specific mixing co-
efficients for each independent component.

Materials and Methods
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical com-
panies and non-profit organizations, as a $60 million, 5-year public-private partnership. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VAMedical Center
and University of California—San Francisco. ADNI is the result of efforts of many co-
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investigators from a broad range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To
date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people with early or late MCI, and
people with early AD. The follow up duration of each group is specified in the protocols for
ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org/.

Ethics statement
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study was approved by Institutional
Review Board (IRB) of each participating site including University of Southern California and
Banner Alzheimer’s Institute and was conducted in accordance with federal regulations and
the Internal Conference on Harmonisation (ICH) guidelines of Good Clinical Practice (GCP).
The study subjects provided their written informed consent at the time of enrolment regarding
imaging data and completed questionnaires approved by each participating site’s IRB.

Subjects
According to the ADNI protocol, the diagnosis of probable AD met the National Institute of
Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Dis-
orders Association (NINCDS/ADRDA) criteria, and the severity of cognitive impairment was
determined based on the Mini-Mental State Examination (MMSE) and Clinical Dementia Rat-
ing (CDR) scores. In this investigation, the participants included 39 AD patients (23 males and
16 females, mean age: 74.91±8.13 years, range: 60–90 years; mean Mini-Mental State Examina-
tion (MMSE) score: 22.87±2.32, range: 18–27; CDR score: 0.5 or 1) and 41 HCs (20 males and
21 females, mean age: 73.97±6.34 years, range: 60–90 years; MMSE score: 29.07±0.96, range:
27–30; CDR: 0). The AD group did not significantly differ from the HC group with respect to
gender ratio (w2

ð1Þ ¼ 0:836; p ¼ 0:361) or age (t(78) = 0.575,p = 0.567) but exhibited significant-

ly lower MMSE scores (t(78) = -15.768,p = 5.693e-026).

DTI data acquisition
All DTI scans were acquired using 3T GEMEDICAL SYSTEM scanners at the various ADNI
sites. All scans were collected using the standard ADNI MRI protocol. For each subject, the
scans were collected using the following parameters: pulse sequence = EP/SE; matrix size =
256 mm × 256 mm; flip angle = 90°; slice thickness = 2.7 mm; gradient directions = 41
(b = 1000 s/mm2) and 5 acquisitions without diffusion weighting (b = 0 s/mm2).

DTI data pre-processing
The DTI data were pre-processed using the FMRIB Software Library (FSL) version 5.0 (http://
www.fmrib.ox.ac.uk/fsl). Using FMRIB’s Diffusion Toolbox (FDT) version 2.0, the eddy cur-
rent correction and the head motion correction were applied via affine registration of each sub-
ject’s diffusion-weighted image to the non-diffusion-weighted image. The non-brain structures
were removed using the Brain Extraction Tool, and the FA maps were generated based on the
diffusion tensor reconstructed using the DTIfit program. Then, all subjects’ FA images were
processed using TBSS analysis [17,18]: first, each subject’s FA image was nonlinear registrated
to the MNI space; second, the mean FA image was calculated and thinned to generate the
mean FA skeleton image (FA> 0.2), which represents the centre of white matter tract; third,
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each subject’s transformed FA image was projected to the mean FA skeleton image by calculat-
ing the maximum FA values from the nearest tract centre and filling the corresponding posi-
tion in the skeleton. Lastly, all subjects’ skeletonised FA images were utilised for multivariate
ICA.

Multivariate ICA
ICA was performed using the Fusion ICA toolbox (FIT) version 2.0c (http://icatb.sourceforge.
net/). FIT toolbox is used to examine the shared information between the features and it can
also be used to analyze one modality data. In the current study, we did not apply fusion theory
and just analyzed DTI data using single modality ICA.

The ICA model can be written as

X ¼ AS;

where X is an observed data matrix, A is an unknown mixing matrix and S is a source matrix
that refers to the statistically independent source signals. The ICAmodel assumes that X is gen-
erated by linearly mixing A and S.

In this study, the skeletonised FA image of each subject was arrayed into a one-dimensional
vector, and the input data matrix X (size: subject number by voxel number) was generated by
concatenating the skeletonised FA data (a row vector) of all subjects from the two groups, AD
patients and HCs. The initial data matrix X was decomposed using ICA based on the Infomax
algorithm to obtain the mixing coefficient matrix A (size: subject number by source number)
and the source matrix S (size: source number by voxel number) [21]. Each column of the mix-
ing matrix A (ICA weights) indicates the degree to which each subject expresses the source or
network differences between two groups. Each row of the source matrix S represents the source
maps exhibiting the inter-subject covariance information.

Statistical analysis
A two-sample t-test was performed on each column of the mixing coefficient matrix (ICA
weights) to examine the between-group differences (p<0.05, false discovery rate (FDR) cor-
rected for multiple comparisons). Each significant source (the row of source matrix) was con-
verted to zero mean and unit standard deviation (Z-scores), and then transferred to a three-
dimensional brain map with a threshold of Z�3 to reflect the significant white matter
covariant pattern.

Receiver operating curve (ROC) analysis was implemented to assess the discrimination abil-
ity of the mixing coefficients for each IC. The sensitivity is defined as a/(a+c) in which a is the
number of AD subjects that are correctly identified and c is the number of AD subjects that are
not correctly identified. The specificity is defined as d/(b+d), in which d is the number of HCs
that are correctly identified and b is the number of HCs that are not correctly identified. Be-
sides, a multivariate ROC (multiV-ROC) was applied to combine the ICA weights (i.e., the col-
umn of the mixing matrix which showed significant between-group differences in the two-
sample t-test) [22].

Results
Twenty-eight ICs were extracted, of which ICA weights of 7 ICs displayed significant differ-
ences between the AD and HC groups. Table 1 presents the locations of the predominant FA
changes in each IC spatial map of AD patients compared to HCs.

Figs. 1–3 illustrate the spatial maps of the covariant changes in the FA value in AD patients
compared to HCs (Fig. 1 (A1, B1, C1), Fig. 2(A1, B1), Fig. 3(A1, B1)) for 7 ICs, and the right
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panels display their corresponding ROC curves (Fig. 1 (A2, B2, C2), Fig. 2(A2, B2), Fig. 3(A2,
B2)) and the boxplot of the between-group differences in their ICA weights (Fig. 1 (A3, B3,
C3), Fig. 2 (A3, B3), Fig. 3 (A3, B3)). The positively weighted coefficients in the IC spatial maps
displayed the covariant changes in the FA value in AD patients compared to HCs. In addition,
the IC spatial maps with negatively weighted value (with a threshold of Z� -3) are presented
in S1 Fig.

For IC 1, the source primarily consisted of the bilateral anterior and superior corona radiata
(Fig. 1 (A1)). IC 2 included the bilateral posterior thalamic radiation (Fig. 1 (B1)), and IC 3
(Fig. 1 (C1)) consisted primarily of the bilateral retrolenticular part of the internal capsule. The
above three ICs represent components of the projection fibres. As for the association fibres IC
4 and IC 5, they primarily involved the bilateral superior longitudinal fasciculus (Fig. 2 (A1))
and the bilateral cingulum (Fig. 2 (B1)), respectively. IC 6 predominantly encompassed the hip-
pocampal commissure (Fig. 3 (A1)), and IC 7 included the genu and the anterior body of the
corpus callosum (Fig. 3 (B1)), which are identified as components of the commissural fibres.

Regarding the between-group differences and the ROC results measured by ICA weights,
ICA weights for IC 1, IC 4 and IC 6 had the highest statistical power (t(78) = 6.272, p = 1.85E-8
for IC 1; t(78) = 4.592, p = 1.66E-5 for IC 4; and t(78) = -3.021, p = 0.0034 for IC 6). The ROC
analysis revealed discrimination ability with 74.4%, 71.8% and 56.4% sensitivity for IC 1, 4 and
6, respectively; 90.2%, 78.0% and 85.4% specificity for IC 1, 4 and 6, respectively. In addition,
the result of multiV-ROC revealed the discrimination ability with 89.7% sensitivity and
90.2% specificity.

Discussion
In the present study, we performed ICA, a multivariate analysis method, on DTI data from
both AD patients and HCs to identify covariance patterns of microstructural white matter
damage associated with AD. Twenty-eight ICs were extracted and two-sample t-test on the
ICA weights for seven ICs revealed that the between-group differences were significant in AD
patients compared to HCs.

For IC 1 to IC 3, the covariant FA changes primarily consisted the projection fibres, includ-
ing the anterior and superior corona radiata, the posterior thalamic radiation and the retrolen-
ticular part of the internal capsule, generally corresponding with previous studies [8–10,12,14].
Kincses et al. performed linked ICA analysis on four DTI indices to investigate the pattern of
changes in diffusion parameters in AD and found that the decreased FA primarily involved the
forceps major, the corona radiata and the superior longitudinal fasciculus, partially in accor-
dance with our results [9]. In contrast to the study by Kincses et al., our analyses detected more
significant FA abnormalities in more ICs of white matter regions.

Table 1. Locations of the covariant FA changes for each IC spatial map in AD patients compared to HCs

Independent Components Primary White Matter Regions

Projection fibres IC 1 Left and right anterior corona radiata Left and right superior corona radiata

IC 2 Left and right posterior thalamic radiation (including the optic radiation)

IC 3 Left and right retrolenticular part of the internal capsule

Association fibres IC 4 Left and right superior longitudinal fasciculus

IC 5 Left and right cingulum

Commissural fibres IC 6 Hippocampal commissure

IC 7 Genu and anterior body of the corpus callosum

doi:10.1371/journal.pone.0119714.t001
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For IC 4 and IC 5, their corresponding between-group differences in AD and HCs were sig-
nificant and the covariant FA changes were found in the association fibres, especially the supe-
rior longitudinal fasciculus and the cingulum, in accordance with previous studies [8,9,12,14].
The superior longitudinal fasciculus connects the frontal, parietal, occipital and temporal lobes,
and the fibres in the cingulum connect the posterior cingulate cortex and the medial prefrontal
cortex. Guo et al. performed joint ICA on grey and white matter volume maps to construct the
covariant networks and found grey matter atrophy in the middle/inferior/superior frontal and
cingulate gyri, the hippocampus and the parahippocampal gyrus and joint reductions in white
matter volume in the related superior longitudinal fasciculus, the corpus callosum and the

Fig 1. IC spatial maps displaying the covariant FA changes in white matter in AD patients compared to HCs for ICs 1–3. The colour bar represents Z-
score. The middle panel displays their corresponding receiver operating characteristic (ROC) curves, and the right panel displays a boxplot of the between-
group differences in ICA weights.

doi:10.1371/journal.pone.0119714.g001
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corona radiata [23]. These results suggest that the underlying white matter connectivity may be
associated with grey matter atrophy in these brain areas. The damage to the cingulum fibres
may reflect axonal loss or demyelination that disconnects the posterior cingulate gyrus from
the hippocampus [24]. Moreover, the medial temporal lobe and the posterior cingulate gyrus
are essential to memory function [24,25]. These findings suggest that these association fibres
are associated with the memory deficit in AD.

FA value varies from zero to one and describes the degree of diffusion anisotropy. Zero
means that diffusion is equally restricted in all directions while one means diffusion is along
only one direction. Generally, decreased FA value is caused by a breakdown in white matter fi-
bers. However, fibers in crossing pathways have more than one direction and damaged white
matter in such regions may lead to reduced number of directions thus to higher FA values. It is
worth noting that, in our study, ICA weights for IC 1, IC 3 and IC 4 were higher in AD com-
pared to HCs. While it is possible that the elevated FA in IC1, IC3 and IC4 represents the effect
of reduced fiber crossing owing to degeneration of crossing pathways in AD, we note the indi-
vidual source map represents the contributions of the corresponding FA to the overall con-
nected system. They themselves are not FA values. Regardless the possible cause of the
observed higher ICA weights in AD patients, our findings should be further investigated with
additional studies designed to address the causes behind.

For IC 6 and IC 7, the majority of the reductions in the FA value in AD patients were de-
tected in the hippocampal commissure and the genu and the anterior body of the corpus

Fig 2. IC spatial maps displaying the covariant FA changes in white matter in AD patients compared to HCs for ICs 4 and 5. The colour bar
represents Z-score. The middle panel displays their corresponding receiver operating characteristic (ROC) curves, and the right panel displays a boxplot of
the between-group differences in ICA weights.

doi:10.1371/journal.pone.0119714.g002
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callosum, components of the commissural fibres; these results were similar to those of other
studies [8,13,14,23,26]. Previous studies demonstrated that the reduction in grey matter vol-
ume in the hippocampus was a valuable biomarker for diagnosis of AD [23]. Therefore, the
hippocampal commissure damage in this study was related to alterations in the hippocampus.
In addition, the genu, body, and splenium of the corpus callosum were detected as important
tracts connecting two resting-state networks, the bilateral prefrontal cortical regions and poste-
rior precuneus regions [27]. Frisoni et al. reported reductions in grey matter density involving
the frontal cortex and the precuneus, which indicates that disconnecting white matter fibres in
the corpus callosum may influence the above two grey matter regions and the function of rest-
ing-state networks in AD [28].

The default mode network (DMN), an important resting-state network, has been generally
studied, and it has been found to be altered in AD [29,30]. Previous studies indicated that un-
derstanding structural connectivity would facilitate the understanding of functional connectivi-
ty [29,31]. The superior longitudinal fasciculus, the cingulum and the corpus callosum are
essential for connecting the regions involved in the DMN [27,32]. Li Luo et al. also found that
anterior corona radiata and the anterior limb of the internal capsule were strongly associated
with the DMN [32]. Those tracts are similar to our findings, which may definitively demon-
strate that alterations in the projection fibres may reflect a disconnection of this functional net-
work in AD. Greicius et al. found that AD patients exhibited decreased resting-state activity in
the posterior cingulate and the hippocampus, regions which play important roles in the DMN

Fig 3. IC spatial maps displaying the covariant FA changes in white matter in AD patients compared to HCs for ICs 6 and 7. The colour bar
represents Z-score. The middle panel displays their corresponding receiver operating characteristic (ROC) curve, and the right panel displays a boxplot of
the between-group differences in ICA weights.

doi:10.1371/journal.pone.0119714.g003
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[29]. We hypothesise that the disconnection of the above-mentioned fibres actually affects the
activity of the DMN.

As for the ROC results and the between-group differences in the ICA weights, ICA weights
for IC 1, IC 4 and IC 6 displayed the highest statistical power for between-group significance.
Each IC may reflect a different aspect of the pathological changes in AD, and these ICs may
represent valuable AD pathology biomarkers for prediction and diagnosis. In addition, the re-
sult of multiV-ROC revealed the discrimination ability with 89.7% sensitivity and 90.2% speci-
ficity and suggested the increased statistical power of distinguishing AD patients from HCs
when using the combined ICA weights than each ICA separately.

Unlike univariate analysis methods (ROI, VBA, TBSS) which can only examine voxel by
voxel alterations, the multivariate ICA approach, without any priori knowledge, can successful-
ly identify the regional covariance patterns of microstructural white matter abnormalities asso-
ciated with AD. In brief, compared with univariate analysis methods, ICA has three
advantages, first, ICA decomposes the skeletonised FA maps into ICs and voxels of each IC
carry covariance information. Second, the mixing coefficients can clearly explain the subjects’
contribution to the corresponding source. Third, ICA establishes a global index (subject score)
free of multiple comparisons typically associated with univariate approaches. Other diffusion
tensor measures (such as RD, AD, and MD) can provide different information to explain the
nature of white matter changes and could be examined using ICA in future studies.

However, in this study, the multivariate ICA was applied on the subject-dimension
concatenated data from AD patients and HCs together. Such performance, based on the as-
sumption that subjects from the two groups have common ICs, could be biased. Such approach
has been reportedly used in some previous studies [33–35]. With this approach, the resultant
ICs should be interpreted with caution as the characteristics over which the group differences
can be expressed. Owing to the direction of ICs is arbitrary mathematically, we also examined
the negatively weighted values of the ICs (S1 Fig.). There were few significant findings in spatial
source maps for IC 1 and ICs 3–7 and no any findings for IC 2. However, we noticed that the
positively weighted results reported in this study are primarily consistent with the existing liter-
ature. Another limitation of this study is we did not test the discrimination ability using new in-
dependent dataset from AD patients and HCs. All the ROC curves were obtained based on the
original data. Besides, mild cognitive impairment (MCI) is a transitional stage between normal
aging and AD and it is valuable to apply the unearthed common ICs to MCI to see their
predictability for the progression to AD.

In summary, we used ICA to identify the microstructural white matter abnormalities associ-
ated with AD, and these findings may expand our understanding of the neuropathological
mechanisms of AD at a network level. In addition, multimodal fusion is an effective method to
better investigate brain networks. In a further study, we shall perform multivariate methods,
such as joint ICA, on both structural MRI and DTI data for joint analysis to comprehensively
investigate the anatomical changes in AD.

Supporting Information
S1 Fig. The IC spatial maps with negatively weighted value (with a threshold of Z� -3) for
IC 1 and ICs 3–7. The colour bar represents Z-score. Notice that IC 2 has no significant nega-
tive result and we did not include it in this figure.
(TIF)
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