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Abstract

We study a class of games which models the competition among agents to access some
service provided by distributed service units and which exhibits congestion and frustration
phenomena when service units have limited capacity. We propose a technique, based on
the cavity method of statistical physics, to characterize the full spectrum of Nash equilibria
of the game. The analysis reveals a large variety of equilibria, with very different statistical
properties. Natural selfish dynamics, such as best-response, usually tend to large-utility
equilibria, even though those of smaller utility are exponentially more numerous. Interesting-
ly, the latter actually can be reached by selecting the initial conditions of the best-response
dynamics close to the saturation limit of the service unit capacities. We also study a more re-
alistic stochastic variant of the game by means of a simple and effective approximation of
the average over the random parameters, showing that the properties of the average-case
Nash equilibria are qualitatively similar to the deterministic ones.

Introduction

Health care, education and communications are public sectors in which administrations face
the problem of organizing distributed service systems. Service provision is distributed because
a (possibly large) number of post-offices, hospitals, or libraries are maintained over the territo-
ry in order to allow all citizens to access the service. Moving from public economics to informa-
tion technology and computer networks, one can easily find other examples of distributed
service provision: file-storage and file-sharing systems maintain servers (or mirrors) arranged
all around the world to offer faster download to clients, while large wireless networks in air-
ports and university campuses count dozens of access points ensuring connection to thousands
of potential users.

Public service can be provided by a unique central administrator, such as the government or
a monopolist, as well as by multiple competing providers. Although it is known that public
goods such as education [1], infrastructures [2] and healthcare [3] can be supplied by a market
system, government policy interventions may be necessary in order to guarantee equity and
quality of service, and to promote competitive conditions. Instabilities and inefficient outcomes
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are natural consequences of the awkward non-exclusive ownership nature of public goods, a
feature that has made public goods provision an active field of study in economics for decades.
Users tend in fact to take advantage of public goods without contributing sufficiently to their
creation and supply. Without a mechanism of contribution, either voluntary or based on taxa-
tion, public service provision cannot be sustained, leading to the collapse of the system (tragedy
of the commons) [4]. Although central in public service provision, this free-riding behavior is
not the only source of inefficiency. Another relevant problem afflicting systems of non-exclud-
able goods is congestion due to limited resources, a situation in which the service is not provid-
ed to all users or it does not give them equal satisfaction. When the service provision is free, or
indirectly funded by some general taxation system, the system is not affected by free-riding
phenomena, but inefficiency due to congestion effects can still be present.

In this paper we will consider this simplified scenario, in which users have free access,
through one of a set of distributed service units, to a limited amount of resources that is man-
aged by a unique central authority, i.e. the service provider. In this respect the problem looks
like a standard optimization problem, with the administrator seeking the optimal resource allo-
cation, in which all users are served and the load on the units is balanced minimizing the costs.
On the other hand, the strategic, non-cooperative character of the problem is evident from the
fact that users are self-interested agents. Every user wants to be served from the service unit
that is most convenient to her, because of a smaller load, geographical proximity or a higher
quality of service. Since resources are limited, the individual utilities of the users depend, direct-
ly or indirectly on the usage that others do of the same service unit. Service units have typically
different quality of service, and the latter may also depend on the workload of the unit at the
time of service. For instance, when waiting lists become too large, choosing the best hospital or
the most efficient public office could become inconvenient. In file-sharing systems the time re-
quired to download files depends on the number of requests to the same server. When too
many users download from the same server, the quality of service deteriorates. Wireless access
points serve users according to a round robin, providing one opportunity to transmit at each
user during a cyclic time frame of finite duration. This physical constraint imposes a limitation
on the number of users that can be connected to a single access point at the same time. Similar
phenomena of “congestion” occur in every distributed service provision system and make the
organizational problem a game theoretic one, in which the non-cooperative behavior of the
users causes degradation with respect to a centralized optimal solution.

The outcome of any strategic interaction among rational agents can be predicted and classi-
fied using the concept of Nash equilibrium, which describes a situation in which no player has
incentive to unilaterally deviate from the chosen strategy profile. As a result of the simulta-
neous maximization of all individual utilities, a game can admit more than one Nash equilibri-
um. The existence of multiple Nash equilibria is particularly common in strategic decision
problems in disordered and networked systems, where the number of different Nash equilibria
can even scale exponentially with the number of players. As many other systems in computer
science [5] and network economics [6], distributed service provision systems can admit a large
multiplicity of Nash equilibria.

Whenever multiple equilibria exist, all of them are equally rational and there is no a priori
way to state which one would be chosen by the agents. This lack of predictive power is usually
resolved by introducing some refinement of the concept of Nash equilibrium or some criterion
of equilibrium selection. A reasonable assumption is that the selected Nash equilibrium should
be the outcome of a dynamical process in which agents may interact several times. However,
no dynamical rule is universal and different ones lead to equilibria with possibly very different
properties. A detailed knowledge of the equilibrium landscape is crucial to devise reasonable
criteria of equilibrium selection and to discriminate between the outcomes of different
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dynamical rules. Such information can be then exploited to design effective self-enforcing
mechanisms, for example by means of incentives, to move the system away from bad equilibria
towards the most efficient ones.

It was recently proved possible to investigate the whole landscape of Nash equilibria in
multi-agent games, such as public goods games on networks [7-9], by mapping the equilibrium
condition on a constraint-satisfaction problem and then analyzing it using efficient message-
passing algorithms based on the cavity method from statistical physics [10-12]. Here we adopt
this approach to study the equilibrium properties in a simple model of distributed service pro-
vision. We use such information to understand how efficient (i.e. with large aggregate utility)
Nash equilibria obtained from best-response are compared to those obtained using different
dynamical rules and how much the answer depends on the initial conditions. Moreover, the
real self-organization processes of the agents are not exactly best-response processes and their
details are normally not known, therefore a complete analysis cannot be restricted to a single
dynamics. We bring evidence of the richness of the equilibrium landscape by describing the
full set of Nash equilibria using a statistical mechanics analysis and comparing it with the typi-
cal fixed-points of different dynamics. We also study the effects of correlating the users’ utilities
with the loads they bring to the system. Finally we generalize the analysis to a stochastic case,
in which the agents are present with a given probability. To do this, we introduce a new algo-
rithmic approximation technique to perform the required average over the realizations of the
stochastic parameters on single instances.

Related Work

Congestion effects have been isolated and studied by means of game-theoretic models intro-
duced by Rosenthal [13] and called congestion games. These are games in which players use re-
sources from a common pool, and the payoff of each player depends on the total load present
on the resources she chooses. The load on each resource is thus the relevant quantity defining
congestion effects and it is function only of the number of agents using that resource. Rosenthal
showed that pure Nash equilibria always exist for such games [13]. Weighted congestion
games, with player-specific utility functions, were introduced by Milchtaich [14], and recently
studied in several contexts [15-19]. In particular, a class of congestion games with capacitated
resources, where each resource is associated with a capacity level, representing the maximum
number of users that such a resource may simultaneously accommodate, was recently investi-
gated in [19].

There are innumerable examples of congestion games in relevant socio-economic and tech-
nological systems, including network routing [20-23], bandwidth and spectrum sharing in
communication networks [24, 25] and market-entry problems [26, 27]. Minority games [28]
can also be interpreted as a special class of congestion games. In some of these applications, the
game is non-atomic or continuous, namely it is defined on an infinitely large population of
agents, and the load function depends of the density of agents that use that resource in
the population.

Since the typical setup of a congestion game corresponds to the selfish, autonomous, gener-
alization of a traditional resource allocation problem, it is thus important to quantify how
much the efficiency of a system degrades due to the selfish behavior of its agents, i.e. the differ-
ence between optimal centralized solution of the allocation problem and the selfish ones. To
this purpose, computer scientists introduced the concepts of Price of Anarchy [20] and Price of
Stability [29]. The Price of Anarchy is the ratio between the utility of the social optimum and
the utility of the worst equilibrium, while the Price of Stability is the ratio between the utility of
the social optimum and that of the best equilibrium. In fact, these quantities only give bounds
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on the equilibrium landscape, providing no further information on its structure. In the contin-
uous game setup, Roughgarden and Tardos proved that, for linear load functions, the price of
anarchy of systems is bounded and not large, demonstrating that selfish behavior does not nec-
essarily lead to very inefficient outcomes [21, 22]. Similar bounds were obtained for atomic
congestion games by Suri et al. [30]. For non-atomic congestion games, Correa et al. [31]
showed that in capacitated systems, the price of anarchy is not bounded anymore, although the
best Nash equilibrium can be as efficient as for the model without capacity constraints.
Rosenthal’s proof that pure strategy Nash equilibria always exist in congestion games was
based on the construction of a potential function. Potential games [32] are games that admit a
potential function with the property that an improvement of an individual player decreases the
potential by exactly the same amount as the player’s cost. Nash equilibria are thus the local
minima of such a potential and it is possible to show that the optimal assignment is also a Nash
equilibrium. As the set of strategies is finite and the potential function increases during the
best-response dynamics, the latter always converges to a Nash equilibrium. Monderer and
Shapley [32] showed that any potential game can be represented in form of a congestion game.

The model
1 The service provision game

In the service provision game, there are two types of entities: users and service units. Each user
benefits from being serviced by one service unit, with each service unit providing her a different
utility. A user would prefer being serviced by the unit that provides her the largest utility. How-
ever, service units have finite capacity, so in certain cases the first choice for a given user can be
unavailable. An instance of the service provision game is represented by a bipartite graph G =
(U,S;E) asin Fig. 1, where U = {1,..., N} is the set of users, S = {1, ..., M} is the set of
service units, and an edge (ua) is present in E if and only if the service unit a is accessible (but
not necessarily available) to the user u. We associate to each edge (ua) € E a positive weight
W, Which represents the load placed on service unit a by user u, and a positive quantity v,,,

/

Fig 1. Bipartite graph representing an instance of the service provision game, with weights w,,, between users « € U and service units a € S.

doi:10.1371/journal.pone.0119286.9001

PLOS ONE | DOI:10.1371/journal.pone.0119286 July 15,2015 4/29



@’PLOS ‘ ONE

Statics and Dynamics in Service Provision Games

representing the (utility) value that u gives to the service provided by a. We also associate a ca-
pacity C, to each service unit g, representing the maximum load it can serve. In a general setup,
values and weights are heterogeneous, as the same user « may provide a different load w,,, to
different service units a and obtain different levels of satisfaction v,,,. The two quantities on the
same edge (ua) can be correlated (either positively or negatively) or uncorrelated; all cases are
of interest.

The action of a user u corresponds to the choice among the M, service units accessible to
user u. For each edge (ua), we introduce a binary variable x,,, € {0, 1}, such that x,,, = 1 iff user
u is served by service unit a. The action of user u is given by the binary vector x,, = (x,,1, X,2,

- X,pr,) in which at most one component can be equal to 1, i.e. it satisfies the condition

> x,<1 (Vu € U), (1a)

acdu

where Ou C S denotes the neighbors of u on the graph. The capacity constraints can be written
as

> %W, <C (Va € S). (1b)

The utility for user u is simply

ZaEOuxua Via if ( 1 ) are SatiSﬁCCL
v o)
—00 otherwise.

An action profile x = {x,},., is a (pure) Nash equilibrium of the service provision game if
no user can increase her utility by unilaterally switching to a different service unit, i.e. for each
user u

UM(X) Z mgx Uu (Xluﬂ X\u) (3)

where U, (X, Xu) = Uu(X1s « s Xye 1> X 1 Xy 1 - - » XN)-
Let us call X" the action space. A game is an exact potential game if there exists a potential
function V: X" — R, such that for each user u

Uu (Xu7x\u) - Uu (x/tﬂx\u) = V(Xuv X\u) - V(X,w X\u) (4)

The service provision game is a potential game that admits the aggregate utility U=%,, U, as an
exact potential V. This statement is easy to prove because the benefit that a user receives for
being connected to a service unit does not directly depend on the actions of the others but only
on the availability of the unit itself. It follows that when a user moves to a different service unit,
her action does not affect the utilities of all the other users, even of those that are disconnected
from the system. In this respect, a better measure of social welfare should take into account
both the aggregate utility U and the number D of disconnected users, e.g. in a linear combina-
tion U — aD. The two definitions of utility Uand U = U — aD can be reconciled by considering
a slightly modified game, in which we add a virtual service unit for each user with unlimited ca-
pacity and negative utility —a, in a game in which each user is forced to be connected to exactly
one unit (i.e. there is an equal sign in Equation 1a). Because of the negative contribution to the
utility, this new “unservice unit” will be chosen only as a last resort, when all real units are satu-
rated and the user would be otherwise disconnected. In this modified game, users are always
connected (but connection to the unservice unit represents disconnection in the original game)

PLOS ONE | DOI:10.1371/journal.pone.0119286 July 15,2015 5/29



el e
@ : PLOS ‘ ONE Statics and Dynamics in Service Provision Games

and the total utility is U' = U — aD. We do not use this interpretation in the equations, but it
can be useful to keep in mind. In any case, if a user can improve her utility with a feasible
move, this will not affect the social welfare enjoyed by other users, and the total social welfare
will necessarily improve, which means that a configuration which is not a Nash equilibrium
cannot be the social optimum. The Nash equilibria of the service provision game are in one-to-
one relation with the local maxima of the potential V, i.e. of the aggregate utility U. This can be
verified by defining the best response relations. For a user u, the best response to the actions of
the other users consists in choosing the action that maximizes her own utility given the choice
of the others, that is x,, is the best response for u to the remaining action profile x,,, if

x, = arg max U, (X', x,,)- (5)
In a potential game with discrete actions and finite strategy space, the potential does not de-
crease during the iteration of best-response reactions, and the latter always converge to a pure
Nash equilibrium in a finite number of steps [32]. Because of this property, the path in the ac-
tion space generated by the iteration of the best response relations is often called the improve-
ment path.

2 Example

Let us review all these properties in a simple example of service provision game composed of
three users U = {1, 2, 3} and two service units S = {a, b}. The weights are w;, =3, wy, = 1,

2a =1, Wy = 2, and w3, = 1, w3, = 2, while the values given to the service are v, =2, v, = 1,
Vaq = 3, Vo5 = 0, and v3, = 0, v3;, = 1. Service units have capacities C, = 3, Cp = 4. In this example,
the values of weights and capacities are defined in such a way that users can always be con-
nected to one of the two service units. In this case, for each user u either x,,, or x,,;, will be equal
to 1 and the action profile simplifies considerably. Since x,,;, = 1 — x,,,, the aggregate utility can
be written as

U Z Z Vuaxua + V 1 ua)) = 2 + xla + 3x2a - 'x3a7 (6)

and the capacity constraints on the loads of the service units are

g - Z Wuu ua 3'x1a + x2a + x3a S 3 (7a)

éb = Z WopXuy = 5 — Xig = Xoq = X3y S 4. (7b)

In the reduced action space (x14, X24, X34), the feasible action profiles are (1, 0, 0), (0, 1, 0), (0, 0,
1), (0, 1, 1), and the Nash equilibria are (0, 1, 0) and (1, 0, 0) (see Fig. 2). Suppose the system is
in the feasible configuration (0, 0, 1), with aggregate utility U = 1 and let the users perform best
response. User 1 will not move from unit b to unit 4, although the latter could provide a better
service, because of the capacity constraint on a; user 3 will not move from a to b for the same
reason. For user 2, it is instead convenient to leave service unit b and connect to a, because

V22 = 3 > v, = 0 and the weight w,;, = 1 will not cause any capacity violation on a. The new
configuration (0, 1, 1) has aggregate utility U = 4 but it is not a Nash equilibrium. Indeed, user
3 can now increase her own utility by switching from unit a to unit b, which has now sufficient
spare capacity. The action profile (0, 1, 0) is a fixed-point for the best response dynamics and a
pure Nash equilibrium of the game. Notice that the Nash equilibrium is also a local maximum

PLOS ONE | DOI:10.1371/journal.pone.0119286 July 15,2015 6/29



el e
@ : PLOS ‘ ONE Statics and Dynamics in Service Provision Games

\ 4

X1a

X2a

Fig 2. Binary representation (x,,, X2a, X35) of the action space for the example presented in Section 1
with 3 users and 2 service units. Each vertex corresponds to a possible configuration: non-feasible
configurations, that violate capacity constraints, are marked in red, Nash equilibria are marked in blue. The
value of the aggregate utility is also reported for each configuration. The blue arrows indicate an improvement
path obtained by best response from (0, O, 1) to the Nash equilibrium (O, 1, 0).

doi:10.1371/journal.pone.0119286.9002

for the aggregate utility (U = 5). There is another Nash equilibrium in which user 1 is con-
nected to unit 4, while both 2 and 3 use unit b. This Nash equilibrium has a low aggregate utili-
ty U= 2 but it saturates the capacities of both units (loads €, = 3 and £, = 4). Interestingly, the
best Nash equilibrium induces loads €, = 1 on unit a and £, = 3 on unit b, that are instead far
below the capacity limits. We will see that this phenomenology is a general feature of equilibria
in the service provision game.

When there are many users and service units, with different weights, service values and ca-
pacities, the number of Nash equilibria grows exponentially with the size of the instance and
they will show a wide spectrum of properties. In Section 1 and Section 3, we will put forward a
method, based on statistical mechanics techniques, to study the properties of all Nash equilib-
ria, classifying them depending on different quantities. In many realistic situations, however,
the instance of the game theoretic problem changes over time, because the agents could follow
very complex temporal activity patterns. An example is given by wireless service provision: a
provider can have information of all users potentially connected to the network, but it will not
be able to anticipate the exact time at which they will be connected and the duration of the con-
nections. One can imagine that agents could leave the system and come back, using different
service units depending on their preference and the current availability. In the absence of any
precise information on the dynamics of the agents, one could be tempted to use a standard ap-
proach in games with incomplete information: the lack of information about the complexity of
agents’ activity is summarized into a set of stochastic parameters {t,} . If t, = 0 the user u is
inactive (meaning that u doesn’t participate to the game), whereas ¢, = 1 if she is active (mean-
ing that u participates to the game). The probability that user u is active (t, = 1) is p,,, which we
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assume to be known, and it is independent on the state of other users. However, under the stan-
dard assumptions of incomplete information, agents do not know the exact realization of the
stochastic parameters, but only their probability distribution. Agents maximize an expected
utility and the notion of Nash equilibrium is replaced by that of Bayesian Nash equilibrium [6].
In the present setup, the major drawback of the formulation with incomplete information is
that it does not describe correctly the behavior of the users. In realistic situations, users connect
to the system and possibly rearrange their decisions on the base of the current instance of the
problem, until they reach an equilibrium. In other words, we expect that users play a game of
complete information on the deterministic instance corresponding to a single realization of the
stochastic parameters {t,}, < u. The knowledge of the probabilities p,, is instead relevant in
order to sample over many realizations of the stochastic parameters and evaluate the average
properties of the Nash equilibria of the game. In Section 4, we will show that our methods can
be generalized in order to average the properties of the Nash equilibria over the realization of
the stochastic parameters without resorting to sampling techniques.

Methods
1 Representation as a constraint-satisfaction problem

The deterministic case. The topology of the graph together with the values of the parame-
ters {w,,, (ua) € E}, {v,,, (ua) € E} and {C,, a € S} completely define an instance of the
game. In the following, we shall assume that all the weights, utilities and capacities are positive
integers. In the following we will show that the Nash equilibrium conditions can be mapped on
the solutions of a constraint-satisfaction problem. In order to do that, we introduce a conve-
nient set of variables y,,, € {U, A, S} associated to the edges (ua) € E of the graph, representing
both the choice of user u and the availability of service unit a as follows:

ua’

U if a is unavailable to u,
¥.. =< A if a is available to u, but u is not served by a, (8)
S if u is served by a.

In order for a configuration of the constraint satisfaction problem to be a valid configuration in
the service provision game, it must satisfy the following constraints. First, each user can be
served by at most one service unit

> iy, =8]<1 (Vu € V) (9a)

aciu

where 1 [proposition] is the indicator function for proposition, which is equal to 1 if proposition
is true and 0 otherwise. Second, the total load on each service unit cannot exceed its capacity:

S w,ily,, =S| <C, (Vaes). (9b)

ucda

Third, a service unit a is available to a user u (not currently served by a) if and only if a has a
spare capacity sufficient to serve u:

D= A} & { W+ Lol = SIS CY A, #S) (Vua) €E). (%)

A valid configuration is a Nash equilibrium if it satisfies the further condition that each user is
served by the best available service unit, or equivalently that if a service unit a is available to
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user u but not used by u, then u must be served by some other service unit b with a utility at
least as large as a’s:

uw=Ar & {F€du: {y, =S} A {vy 2 v }} A 1 # U} (V(ub) €E). (9d)

The sets of conditions (9) are the hard constraints characterizing the solutions of the constraint-
satisfaction problem under study, that are the Nash equilibria of the service provision game.

The stochastic case. An instance of the stochastic service provision game is completely de-
termined by the topology of the graph and the values of the parameters {w,,, (ua) € E},
{Vus (ua) € E}, {C,, a € S} and {p,, u € U}. A configuration of the stochastic game is de-
scribed by the pair (¢, y) where t = {t,, u € U} represents the activity of users, and y =
{J.as (ua) € E} represents their actions. The conditions (9) for y to be a Nash equilibrium re-
main unchanged, except for the first one, which becomes

> 1y, =8l <, (VueU). (10)

acou

2 Probability measure over the Nash equilibria

In this constraint-satisfaction representation of the game-theoretic model, the set of Nash equi-
libria is in one-to-one correspondence with the configurations of discrete variables that satisfy
a set of local constraints. Although solving contraint satisfaction problems could in general be
computationally difficult, we have seen in the model description that this problem corresponds
to a Potential Game, and finding a solution is computationally easy. We will show in the sub-
section 1 of Results some explicit examples of algorithms (e.g. the Greedy dynamics) that can
find a solution using a number of operations that scales polynomially with the number

of variables.

Still, at least two computational difficulties remain for the study of this game. The first is
that some of the equilibria could be hard to find, and it could be the case that only a subset of
“easy” equilibria are reachable by simple algorithms. Second, for our analysis, we aim at charac-
terizing aggregated properties of the space of equilibria. Even in the unlikely case in which all
equilibria are “easy”, enumerating all of them could be computationally unfeasible when the
number of variables is large. In the following we describe statistical physics methods to investi-
gate their statistical properties (without resorting to an explicit enumeration), following a gen-
eral approach to the study of constraint-satisfaction problems based on the cavity method
[10-12]. Interestingly, this method also provides very efficient algorithms to find Nash equilib-
ria with typical and non-typical properties.

Although all Nash equilibria are a priori equally rational, we expect that they could have dif-
ferent properties, therefore we shall be interested to compute the average value O of some ex-
tensive observable O(y) with a uniform measure over the Nash equilibria:

_ 1
0 = ,vgowm) (11)

where N is the total number of Nash equilibria and 4{y) is equal to 1 if the conditions (9) are
satisfied and 0 otherwise, so that A'= 3, 6(y). Some interesting observables will be the aggre-
gate utility

Up) = Y vl =S, (12)
(

ua)cE
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the total number of users who are disconnected (i.e. who are not served by any service unit)

by - 31 [zm . o] | 13

uel acou

or the aggregate unutilized (spare) capacity

C'ly) = Z{Ca—zwualb’ua =S]} => G L) (14)

aeS ucda aesS

where L(y) is the aggregate load.

The uniform measure assigns the same finite weight to all configurations of variables corre-
sponding to Nash equilibria and zero to all remaining ones (as they violates some of the best-
response constraints). In order to characterize the Nash equilibria which correspond to a given
value of some observable O(y), we can replace the uniform measure with an exponential family,
a Gibbs measure

1
(1)

where Z(u) = ¥, exp{uO(y)}6{y) and the parameter u controls the weight to be assigned to
Nash equilibria with different values of the the observable O(y). Notice that for 4 = 0 we recover
the uniform distribution over all Nash equilibria. Fixing the parameter y, the entropy

S(u) = —Y_ P(ylu) log P(y|u) (16)

P(ylu) = -5 exp {n0()} € () (15)

provides a measure of the number of Nash equilibria corresponding to the average value O(u)
of O(y), defined as

O(u) =Y _0()P(ylu). (17)

Moreover, in the following, all quantities averaged over the distribution P(y|y) will be denoted
using a calligraphic fonts, such as U4, D, c*.

When considering the average properties of an instance of stochastic service provision
game, for example the average value (O) of an observable O(y), we must perform a double aver-
age: over all the Nash equilibria corresponding to a given realization of the parameters
t = {t,, u € U}, and over the realization of t:

(0) = 3P0 5705 3 00 (19)

where A/(t) is the number of Nash equilibria corresponding to a given realization of ¢, and
where %y, t) is 1 if y is a Nash equilibrium for # and 0 otherwise.

3 Belief Propagation equations

The entropy, as well as the distribution over the Nash equilibria can be computed solving a set
of local self-consistent equations for probability marginals, that are known as Belief Propaga-
tion (BP) equations. In this context, the probability measure 15 is usually reinterpreted as a
graphical model (see e.g. [33]). We denote y,, = {,,, a € Ou} the set of variables y,,, on the
edges incident on u € U, and similarly for y, = {y,,, u € Oa}. We consider a factor graph with
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Pa

Fig 3. Factor graph representation. Left: For the deterministic case the set of constraints is €'(y) = [],.o¥. (V)] Les®.(V.)- Right: For the stochastic case,
the factor graph includes mirror nodes (black lozanges) and the corresponing messages Q,(t,). The set of constraints is €'(y, t) = [[,.o¥, Vy, t,)] Lacs @2 Va)-

doi:10.1371/journal.pone.0119286.9003

the same topology as the bipartite graph G = (U, S; E) representing the instance, with factor
nodes ,(y,) associated to the users u € U and enforcing the constraints (9a) and (9d), and fac-
tor nodes ¢,(y,) associated to the service units a € S and enforcing the constraints (9b) and
(9¢) (Fig. 3, left-hand panel).

We introduce the BP messages P,,,,(y,,) traveling on the edge (ua) € E from the service unit
ato the user u, and P, (y,,) traveling in the opposite direction. Notice that since all the vari-
ables have connectivity 2 there is no difference between variable-to-factor and factor-to-
variable messages. In the following we derive the BP equations for the uniform distribution
over all Nash equilibria, i.e. setting p = 0 in (15). It is straightforward to introduce a bias related
to the value of any extensive observable O(x) as in (15). Formally, the BP equations can be writ-
ten as

) =~ S 6,00 T Pl (19)

a {y,,, v€da\u} veda\u

P =~ 3 00 I Puliw) (19)

¥ {y,, bedu\a) bedu\a

where z, and z, are normalization constants, which we shall omit in the following writing the
updates up to a multiplicative constant. The number of terms in the sums grows exponentially
with the connectivity of the nodes, and we need to derive some update equations which can be
computed efficiently.

Let us begin with the update equation for the users nodes. The constraint (9a) requires that
either 0 or 1 of the ¥’s can be equal to S, all the other y’s being equal to U or A. Moreover, the
constraint (9d) requires that the y’s associated to edges with a higher utility values than the
edge with y equal to S have y equal to U. We shall consider separately the three cases y,,, = U, A
and S. When y,,, = U, it is possible that all the y’s are U. Otherwise, exactly one of them must
be equal to S, and we must sum over the possible choices for this y. The remaining y’s must be
U if they correspond to a larger value than the one with y = S and otherwise they can be either
U or A. We obtain

P, (U) = =< [[P.0)+ > P8 [[ P.(U) I [Pu(U)+P, (A (20a)
ua | bedu\a bedu\a cedu\a: dedu\{a,b}:

Vue>Vub Vud =Vub
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When y,, = A, one of the other y’s must be equal to S, and it must have a value at least as large as v,,,, and
we obtain

PuA) =3 p(8) [ Pu0) [ [PulU)+Pu(A). (20b)

ua bedu\a: cedu\a: dedu\{a,b}:

>
Vub="ua Vuc>Vub Vud=Vub

Finally, when y,,, = S, all the other y’s must be either U or A, and they can be A only if their
value is not larger than v,,, giving

A 1
Pu(S) == [1 Pu(©) ] [Pu(V)+ (A (200)
ua bedu\a: c€du\{a,b}:
Vub>Vua VueSVua

All these products can be computed efficiently, providing an efficient update. The normaliza-
tion constant z,,, can be fixed afterwards to ensure P, (U) + P, (A) + P, (S) = 1.

In order to compute the update for service unit nodes, we introduce, for any subset K € da
of the edges incident on service unit g, the convolution

PUsT) = 3 nlzmm:mﬂ] 10, -0}

{Vua> ueK} uecK ucK

& {w, +8>Cr A {y, #SHP,0) (21)

which can be computed efficiently thanks to the relation

Pe(S,T) = Z 1[T, + T, = T]Px(S, T,)P.(S, T,) (22)

T,Ty

valid for any disjoint subsets K and L of the incident edges, starting from the single edge quan-

tities
P,(S) if T=w, (for any S)
P (A) if T=0and S<C,—w,
P.(ST) =< (u € Oa). (23)
P,U) i T=0and S>C,—w,
0 otherwise
In terms of Ppy,\,(S, T) we have:
1
P, (U) = —Z 1[C, - w,, <S< CJP,.(8,9) (242)
P (A) = L
w(A) = Z—zsj 1[0 < S < C, = W P8, S) (24b)
P (S) = L
““( ) - Z_Wg 1 [0 S S S Ca - Wua]PE)a\u(S + Wua7 S) (24C)
from which it is clear that we need to compute Py, (S, T) forany T€ {0, 1, ..., C,} and
§e{0,1,...,C,}. Again, the normalization constant z,,, can be fixed afterwards to ensure

Pa(U) + Pau(A) + Pu(S) = 1.
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4 The “mirror message” approximation for the stochastic case

In the stochastic case, the average value of the observables (18) is computed as a double aver-
age: first over the distribution of Nash equilibria for fixed stochastic parameters ¢ (i.e. over the
dynamical variables y), and then over the realization of t. In statistical physics two different
kinds of averages over the stochastic parameters ¢ and the dynamical variables y are considered.
The first is called quenched average, and it assumes that the random parameters ¢ are kept fixed
(i.e. they are “quenched” or “frozen”) as the dynamical variables y evolve in time. The second
kind of average is called annealed average, and it assumes that the random parameters ¢ are al-
lowed to evolve over timescales comparable with those of the dynamical variables y. In most
cases (including ours), the correct values of the observables are provided by quenched averages,
which unfortunately are difficult to compute, and annealed averages are often used as easily
computed (but uncontrolled) approximations.

The distribution P(y, t) corresponding to the quenched average is

PO = POIR() = 20 25)

where 61y, t) is the indicator function of the constraints (9), N(t) = ¥, 6(y, t) is the number of
Nash equilibria as a function of , and P(t) = I1,, P,(t,) is the distribution of the stochastic pa-
rameters t. The annealed approximation of this quenched distribution is given by

1

= CnP(1) (26)

P (y, 1)
where Z*™ is a partition function independent of t. P*""(y, t) can be viewed as an approxima-
tion to P(y, ), and it is typically a rather poor one. Perhaps the most striking evidence of their
difference is that the marginal for t of P(y, t) is by construction the disorder distribution P(¢),
while the marginal for ¢ of P*"(y, t) will be in general different. However, the approximation
can be improved drastically in a simple and systematic way (and eventually made exact) with a
method already employed by Morita [34, 35], that can be reinterpreted in a natural way in
terms of the cavity equations we are employing. Formally, the quenched distribution can be re-
written as

P(y,t) =€ (y,t)P(t)e’ (27)

with ¢(t) = — log M(¥). Since the £’s are N binary variables, the function ¢(f) can be parame-
trized uniquely as

Bt) =24 Y Vit + D Putit,+ D Ottt o (28)

u<v u<y<w

where the sum is over the 2" possible subsets of users. By truncating the sum (28), keeping
only the constant term 4, we obtain the annealed approximation (26), where 4 = —logZ,,,,, is
the free energy of the system. We will employ instead the next order approximation, that corre-
sponds to keeping up to the linear terms:

0, 0) = o [T, 0w Pt [[ 4,0 (29)

ueclU acsS

The value v, can be thought of as a parameter of a prior distribution of ¢,; but its value is
not really known a priori and will be found self-consistently. Note that (29) has the same
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factorization we had in the deterministic case, and which can be represented by the factor
graph of Fig. 3 (right-hand panel), that has the same topology as the graph G = (U, S; E) rep-
resenting the instance. In order to determine coefficients v,, we will impose the constraints the
average value of f,, is the same as in the exact expression (25), i.e. the distribution of our disor-

der variables P(t,). The marginal of t, is proportional to Q,(t,)Q,(t,), where the message
Q,(t,) is determined by the constraint ,(y,, t,) and by the messages entering the factor node

representing it, and we obtain

These equations have a simple intuitive interpretation: the effect of the message Q, « P,/Q, is
to counterbalance the bias on t, induced by Q,, i.e. by the rest of the system, to restore the cor-
rect marginal P,. We therefore refer to the factor node which determines Q,, as a mirror node,
and to Q,, as a mirror message.

Higher order terms in (28) could in principle be retained. For instance, for the next order,
one can expect that the correlation between ¢, and ¢, will be strongest if # and v are close in the
graph. One could use a generalized Belief Propagation scheme [33, 36] to perform the compu-
tation by defining appropriate regions on the factor graph (at the cost of a larger computational
effort), and imposing that pairwise correlations are identical to the ones of the distribution of
the quenched disorder (in our case, connected correlations are zero). In the following we shall
only consider the linear approximation (29) because, as we shall verify ex-post, the results it
gives are sufficiently accurate.

The BP equation (24) for P,,(y,,) remains unchanged, while the BP equation (20) remains
the same only if t, = 1. If £, = 0 the constraint on the local configuration of y,, is that y,,, can be
either 0 or 1 for all a € Ju. We therefore obtain:

P,,(U) xQ,(0) [T [P.(U) + Py, (A)] +

bedu\a

+Q,M)3 [T P.(U)+ > Pu(S) I] Pu(U) ] [Pu(U)+P,(A)] ), (1)

bedu\a bedu\a c€du\a: dedu\{a,b}:
Vue>Vub Vud SVub

P (A) «Q0) [] [P.(U) + P, (A)] +

bedu\a

+Q,(1) Y P,(S) [] Pu(U) T [Pu(U) +P,(A)], (31b)

bedu\a: c€u\a: dedu\{a,b}:
Vub>Vua Yue>Vub Vud <Vub
P, (8) xQ,) ] P.(U) [ [P.(U)+P,(A). (31¢)
bedu\a: c€0u<\{u,b}:
Vub>Vua Vuc=Vua

These updates can be computed as efficiently as their deterministic counterparts (20). One
more message exits the factor node u: the message to the variable t,, which we denote by
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Q,(t,). The corresponding update equation is easily seen to be

Q,(0)  [[ [P..(U) + P, (A)], (32)

acdu

Q1) o [ Pu(U) + > P (S) [] P(U) [T [P.(U) + P, (A)]. (33)

acu acdu bedu: cedu\a:
Vub>Vua Vue<Vua

Finally, the update equation for the fields Q,(#) are obtained by requiring that the marginal for
t,isequal to P,(t,) = p,t, + (1 —p,)(1 —t,):

Q,(0)Q,(0) o L —p, Q,(1Q,(1) e p, (34)

from which we obtain

_ (1 _Pu)Qu(l)A ’ (3521)
£.Q,(0) + (1 —p,)Q,(1)

Q,(0)

o p.Qu.(0)
W O+ (- D) (350)

Results
1 Results on deterministic instances

Definition of the ensemble. We consider a random ensemble of deterministic instances
with N users and M service units, all with capacity C. For any user u and any service unit g, the
edge (ua) is present with probability g, and the parameters w,,, and v,,, are integers extracted
from the maximum entropy distribution over the range {Wmin> - - > Wmax} X {Vmin> - - - Vmax}
conditioned on a given value of Pearson’s correlation coefficient

WoaVia) = W) Vi)

o) — ) — Gy o)

(the reason for this choice will be clear shortly). Such an ensemble is fully specified by the pa-
rameters N, M, C, ¢, Wmin> Wmax> Ymin> Vmax aid ¢. These parameters will determine the qualita-

tive features of the phenomenology as follows.

The total available capacity C = MC can be compared to a lower and an upper bound for
the total capacity required to service all users, defined as
c = min w,, , Ct = max w,, . (37)

- acdu - acou

When the total available capacity C is large compared to C* the system is under-constrained
and the solution is trivial: every user can be served by the service unit with the highest utility,
and every service unit has some spare capacity, so that suboptimal configurations in which
some users are not fully satisfied are not Nash equilibria. At the opposite end of the spectrum,
when C is small compared to C~, many users receive no service at all, and the users who are
served typically enjoy a low utility. As C goes to zero the number of equilibria decreases, and it

reaches 1 when C is smaller than the smallest weight and all the users are unserved, which is
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again a trivial regime. The interesting regime corresponds to intermediate values C~ < C < C*,
when some of the capacity constraints are saturated and some other are not.

For any value of the total capacity C, the level of tightness of the constraints depends on two
more parameters. The first is the average connectivity of users, determined by g: for larger val-
ues of g, users will have more alternative service units to chose from, and the system will be less
constrained. The second is the minimum value of the weights w,,,;,,: spare capacity on individu-
al service units smaller than w,;, cannot be used, so that for larger values of wy,;, typical con-
figurations will be more inefficient and the system will be more constrained.

Finally, the correlation ¢ between weight and utility is a measure of the degree of competi-
tion among users: when c is close to —1, users prefer to be served by those service units over
which they place a low burden, minimizing the capacity they subtract to other users, and the
competition is mild; when c is close to 0, users’ preferences are independent of the load they
place on service units, and on the impact this has on the capacity available to other users; final-
ly, when c is close to +1, weights and utility values tend to coincide (up to an affinity transfor-
mation), and users try to subtract as much capacity as possible to other users, so that the
competition is harsh.

Average values of the observables: I/, D and C*. We study the average values of the rele-
vant observables (i.e. the total utility, the total number of disconnected users, and the total
spare capacity) as a function of the capacity C of individual service units and of the correlation
¢ between the weight w,,, and the values v,, on each edge (ua) € E, keeping fixed the remain-
ing parameters. The range of values for C corresponds to a total capacity C between 8 000 and
12 000, spanning the relevant range of values defined by the bounds (37) with expected values
C~ = 6581 and C* = 14 418. Results of numerical simulations are shown in Fig. 4.

For small values of C, the total utility 2/ decreases with c as expected. However, for larger val-
ues there is a surprising inversion of this dependency: larger values of ¢, which give rise to harsher
competition between users, correspond to higher values of the average total utility. In particular,
when the individual capacity is C = 60, the average total utility for ¢ = -1 is 4 306 + 12, while for
c=+1itis 6 190 + 9, with a 43.8% increase. It is also surprising that, for values of ¢ close to -1,
the average total utility does not increase monotonically with the capacity C: on the contrary, for

Total utility U Total number of disconnected users D Total spare capacity C*
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Fig 4. Average values U4, D and C* of the observables as a function of the capacity C, of service units and the correlation c between weight and
utility on individual edges. The other parameters are N =1 000, M = 200, q = 0.04, Win = 6, Wmax = 15, Vimin = 1 and viax = 10. Each data point,
corresponding to a vertical line, is an average over 115 instances, and the standard deviations are of the order of the width of the lines.

doi:10.1371/journal.pone.0119286.9004
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¢ = —1 it reaches a maximum value 4 896 + 35 for C = 47 (not plotted in Fig. 4), well above the
value corresponding to C = 60, which is 4 306 + 12.

The average total number of disconnected users D shows, as expected, a strong dependency
on the capacity C, but surprisingly it is almost independent on the correlation c. Since the social
welfare depends on both I/ and D, we obtain the striking result that, provided the capacity Cis
large enough, a harsher competition between users, in which each user prefers to subtract to
other users as many of the available resources as possible, gives rise on average to a higher so-
cial welfare than a milder form of competition, in which users prefer to minimize the amount
of resources they subtract to other users.

Finally, the average total spare capacity C* increases monotonically with C, which could be
easily expected, and also with c: as the average weight placed on service units by individual
users increases, it becomes more difficult to use the capacity efficiently, and a larger fraction of
capacity is wasted (even though a sizable number of users are disconnected!).

Comparison with explicit dynamics. We compare the average values of the observables
obtained by averaging uniformly over all Nash equilibria with Belief Propagation with the re-
sults of the explicit simulation of three interesting dynamics which converge to Nash
equilibria:

o Greedy (G)—The first dynamics consists in extracting a random permutation of the users
and assigning to each one in turn the service unit with the highest utility among the available
ones. Obviously, at the end of the assignment we have a Nash equilibrium, in which some
users (who came early in the permutation) enjoy a very high utility while some other users
(who came late) are either disconnected or with very low utility.

Best response (BR)—The second dynamics starts from a random initial condition, extracted
by forming again a random permutation of the users and assigning to each one in turn a ser-
vice unit extracted uniformly at random among the available ones. The dynamics then pro-
ceeds in rounds. In each round, a random permutation of the users is extracted, and each
user in turn attempts to improve their utility (possibly freeing some capacity at the service
unit previously serving them, and allowing other users to use it). The dynamics stops when
no user can improve their utility (and therefore the configuration is a Nash equilibrium).

Best response from “bad” initial condition (BRB)—The third dynamics is identical to the sec-
ond one, except for the choice of the initial condition: instead of selecting uniformly at ran-
dom their service unit among the available ones, each user initially selects the worst one
among the available ones (i.e. the one with the lowest utility), in turn and according to a ran-
dom permutation of the users. Then, they follow the best response dynamics.

Numerical results for the average values of the observables I/, D and C* as a function of the cor-
relation ¢ (for fixed values of the remaining parameters) are shown in Fig. 5 for BP and for the
three dynamics (see caption for simulation details).

The most striking feature of these plots is that the uniform average over Nash equilibria
computed by BP is very far from the averages computed by sampling over the three dynamics,
even in the region where the three dynamics give very similar results (i.e. for —0.5 < ¢ <0.5). It
appears very clearly that the three dynamics we considered are strongly biased towards “good”
equilibria. In particular, when —0.5 < ¢ < 0.25 all the dynamics converge to equilibria which
are nearly optimal, with values of U very close to the expected value (U") ~ 9 843 of the theo-
retical upper bound U" = ¥, max, ¢ g, Vu.e» While BP finds values which grow almost linearly
with ¢ (again, indicating that harsher competition leads on average to higher total utility) in the
range from 4 817 + 22 (where the error is the standard deviation of the average of the
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Fig 5. Average values U/, D and C* of the observables as a function of the correlation c between weight and utility on individual edges. The other
parameters are N =1 000, M =100, C =120, q = 0.2, Wpin = 6, Wnmax = 15, Vmin = 1 and vax = 10. Each data point is an average over 40 instances, and for
each instance, each dynamics is realized 10 000 times. The average value of each observable is computed over the instances and over the realizations. The
standard deviations (of the averages over the realizations of the dynamics across different instances) are much smaller than symbol sizes.

doi:10.1371/journal.pone.0119286.g005

observable across different instances) obtained for ¢ = —0.5 to 5 775 + 19 obtained for ¢ = 0.25,
which is between 41.3% and 51.8% less than the optimum.

When ¢ = -1, BRB actually finds equilibria with much lower average total utility than BP: in
the initial condition of BRB users are connected to service units with low utility values, which
for ¢ = -1 correspond to high weights, so that service units are saturated (as confirmed by the
low value of the average total spare capacity C* = 635 + 70), and the configuration is close to an
equilibrium, which the best response part of the dynamics reaches without improving much
the value of U. The average total utility of BRB increases very sharply as ¢ passes from —1 to
—0.5, where it is already very close to the optimum, indicating that when the anticorrelation be-
tween weights and values is imperfect, the initial configuration is no longer close to an equilib-
rium (as confirmed by the much larger values of C*), and during the best response part of the
dynamics the configuration can “escape” and reach a good equilibrium. As ¢ increases further,
all the dynamics find near optimal equilibria up to ¢ = 0.25 and then the value of I/ starts to de-
crease significantly (as one would normally expect). When ¢ = 1 BP finds results that are similar
to the two best response dynamics, but still far from greedy. In the full range of ¢ the average
total utility found by BP increases almost linearly with c.

The results found by different dynamics for the average total number of disconnected users
D is even more heterogeneous. With BR, all users are always connected provided ¢ < 0.75, and
for larger values of ¢ the value of D is never larger than 6.2 x 10™°. This is in sharp contrast
with the results of BRB, which finds a relatively high number of disconnected users when ¢ is
small (with D =163 + 3 for ¢ = —1), and with the results of greedy, which finds a relatively large
number of disconnected users when c is large (with D = 177 + 2 for ¢ = 1). By contrast, BP
finds a value of D = 7.4 + 0.2 which is constant for —1 < ¢ < 0.5, and then decreases to D =
4.6 £0.2 for ¢ = 1. In the region —0.5 < ¢ < 0.25 the three dynamics find negligible values of D,
again indicating a strong bias towards high utilities in the equilibria they reach.

Finally, the average value of the total spare capacity C* found by BP is almost constant and
very low across the range of values of ¢, with C* = 302 + 1 for ¢ < 0.5 and increasing slightly for
larger values of ¢ to 393 * 2 for ¢ = 1. It appears very clearly that the uniform average over Nash
equilibria is dominated by configurations with utilities that are much smaller than the optimal
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one, but which are “locked” by a lack of spare capacity. The same thing seems to happen to
BRB for ¢ < -0.75, and to other dynamics (but to a much lesser extent) for ¢ > 0.5.

Analysis of the entropy vs. utility curve for individual instances. In order clarify the
(sometimes counterintuitive) phenomena discussed in the previous paragraphs, we analyzed in
detail individual instances with different values of the correlation ¢ € {-1, — 0.5, 0, 0.5, 1} (with
the other parameters taking the same values as in the previous paragraph). Specifically, we
computed with BP the thermodynamic entropy S(u) and the average total utility U(u) for a
large number of values of the parameter g, both positive and negative. This allows to plot S(u)
vs. U(u), providing a measure of the number of Nash equilibria corresponding to a given value
of the total utility. We compared this to a sampling of the equilibria obtained with the three dy-
namics previously introduced: greedy (G), best response from random initial condition (BR)
and best response from “bad” initial conditions (BRB). The results are shown in Fig. 6.

For ¢ = —1 a first order transition is present: the free energy uF(u) = u U(u) + S(u) has a dis-
continuous derivative at y* = 0.3453, and the entropy vs. utility curve consists of two branches
separated by a wide gap. The thermodynamically stable branch is the low-utility one for y < y*
and the high-utility one for g > y*. In the high utility branch, both () and S(¢) converge to a
constant limit as y — +00, varying very little between p = 1 (with &/ = 9 867.23 and S = 681.33)
and p = 10/3 (with ¢/ = 9 867.97 and S = 680.20). The limit value for ¢ coincides with the
upperbound for the utility U = ¥, max, ¢ g, v, = 9 868, and the limit value of S gives the loga-
rithm of the number of Nash equilibria with &/ = U, indicating that this upperbound is feasible
and that the number of optimal equilibria is exponentially large. In fact, the three dynamics G,
BR and BRB are all capable of finding equilibria with &/ = U*. We also found optimal equilibria
with & = U" with the reinforced BP [37, 38] or Max-Sum algorithms [39, 40], the zero tempera-
ture (or infinite y, in this case) version of BP (see Table 1 for the full results of Max-Sum). For
¢ > 10/3, BP converges to a fixed point with unphysical properties ( > U" and S < 0). The
high utility branch continues for y < y*, and it is possible to explore it with BP starting with
¢ > p"" =0.7812 and decreasing it in small steps, allowing BP to converge between each step
(and keeping the messages when y changes). Notice that for u* < y < u"" the stable branch is
the high utility one, but BP converges to (unstable) solutions in the low utility branch. The val-
ues of I/ and S tend to a constant limit as 4 — 0", with &/ = 9 863.67 and S = 682.82 for y = 0.1
which become U/ = 9 862.67 and S = 682.87 for u = 107°, The results obtained with greedy show
that Nash equilibria can be found with utilities as small as 9 857, which is smaller than the limit
value found by BP.

The low utility branch has much larger values of the entropy, and therefore it dominates the
statistics. When y = 0 the distribution is unbiased (i.e. uniform over all Nash equilibria) and &/
=4 182.40 is the average utility over all Nash equilibria while § = 2 598.23 is the logarithm of
the total number of equilibria. When y* < u the low utility branch is unstable, but it can be
studied with BP as explained above, starting with a small value of ¢ and increasing it gradually
up to 4 = 4", where the solution found by BP jumps discontinuously to the high utility branch.
For negative values of 4, the distribution is biased towards Nash equilibria with lower-than-
average utilities. As y — —oo both I/ and S tend to a constant limit, with I/ = 800.16 and
§=580.09 at 4 = —10 which become ¢/ = 800.00 and S = 578.34 at y = —200/3, after which BP
starts to converge to an unphysical fixed point with zero utility and negative entropy. The aver-
age spare capacity for y < —10 is exactly zero, indicating that an exponential number of config-
urations exist with 2/ = 800 and which use all the available capacity. In fact, when c = -1 the
edges with the lowest utility, v,,;, = 1, also have the highest weight, wy,.x = 15, so that if 800
users are using edges with v = 1 and w = 15 the total utility will be 800 and the total capacity
used will be 12 000, with no spare capacity. Such a configuration can be easily found with Max-
Sum, and we have verified that it exists. Equilibria with very low utilities can also be found by
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Fig 6. Computation of the average utility ./ and of the entropy S as a function of the parameter u for single instances with correlation c equal to -1,
-0.5, 0, 0.5 and 1 (from top to bottom). The other parameters are N =1 000, M = 100, C = 120, g = 0.2, Wijn = 6, Wmax = 15, Vmin = 1 and vjax = 10. The
values of U/ and S vs. p are shown on the right-hand column of plots, together with the Bethe free energy uF = u U+S. The values of U/ and uF are read on the
left-hand scale, the values of S on the right-hand one. For ¢ < -0.5 a first order transition, corresponding to a discontinuity in the first derivative of the free
energy, is clearly visible. The critical value p* is marked by a vertical grey line, and the thermodynamically unstable branches of the free energy are dotted.
The entropy is plotted as a function of the average utility on the left-hand column of plots. For ¢ < —0.5 the entropy curve has two branches, separated by a
wide gap (the high utility branches, which cover a small interval of utilities, are shown in detail in the insets, and they are highlighted by a black circle in the
main plots). Dotted lines correspond to the thermodynamically unstable branches of the free energy. For ¢ > 0 the entropy curve is uninterrupted. The blue
crosses at the top of each curve represent the values obtained with u = 0, i.e. the uniform average over all Nash equilibria, and they always coincide with the
maximum of the entropy. The histograms represent the distribution of the total utilities found by the dynamics G, BR and BRB. The number of runs for each
dynamics is always 10°, except for BRB with ¢ = —1 where it is 10°. The frequency of each value of utility can be read on the right-hand scale of the insets.
The gray vertical lines are upper bounds to the total utility defined as U* = ¥, max, ¢ oy Vua-

doi:10.1371/journal.pone.0119286.g006
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Table 1. Comparison of the minimum and maximum utilities found by Belief Propagation as y — * oo with the values found by Max-Sum, which al-
lows to explicitly find an equilibrium configuration of extreme utility, and with the upper bound U* defined in the main text. The last column shows
the price of anarchy computed from the MS values.

c BP

-1 800.00
-0.5 856.89
0 1064.44
0.5 1763.94
1 6 169.17

doi:10.1371/journal.pone.0119286.t001

MS BP MS ur PoA
800 9 867.97 9 868 9 868 12.34
857 9 839.98 9 840 9 840 11.48

1057 9 837.02 9 858 9 858 9.33

1782 9 851.02 9 853 9 855 5.53

6 139 7 962.71 7 965 9874 1.30

dynamics: in 93.2% of 10° runs BRB converges to equilibria with utilities between 1 135 and 1
734. In the remaining cases it manages to “escape” from the low utility branch and to reach op-
timal or nearly optimal equilibria.

The most striking feature of the S vs. U curve for ¢ = -1 is the presence of a very wide gap,
covering the range U € [4 463.88, 9 862.78]. This gap can be intuitively explained with the fol-
lowing argument. When ¢ = -1, two type of equilibria exist: in “good” equilibria, users are
served by service units with high utility, and therefore low weight, which ensures that the ca-
pacity is sufficient for (almost) all users; in “bad” equilibria, users are served by service units
with low utility, and therefore high weight, so that there is no spare capacity to permit a dy-
namical transition to a good equilibrium. The maximum spare capacity in bad equilibria is ap-
proximately M(wp,;, — 1), which in our case is 500, because if the spare capacity were larger
than that, at least one of the service units would have enough spare capacity to serve a user
with the minimum weight, i.e. with the maximum utility, and this user would switch to it. (The
spare capacity can be larger than 500 only if there are some service units connected only to
edges with weight larger than w,;,, which is very unlikely in our case given that the average
connectivity of service units is 200, and that the probability that an edge has minimum weight
is 0.1). If all the users are served, the total load L, that is the sum of the used weights, is related
to the total utility U by the simple relation U + L = N(Vpin + Winayx) = 16 000, so the maximum
utility corresponds to the minimum weight (i.e. 11 500, given that the spare capacity cannot be
larger than 500) which gives 4 500. If instead there are D users who are disconnected (i.e. who
are not being served), the relation between U and L becomes U + L = (N — D)(Vimin + Wmax)>
and the utility can only decrease. So, in bad equilibria utilities must be smaller than 4 500. On
the other hand, in optimal equilibria, nearly all users have the maximum utility v,,.x = 10,
which corresponds to the minimum weight wy,;,, = 6, so the total weight is approximately
6 000, which is half the available capacity. In order for an equilibrium to be good but not opti-
mal, some service unit s must be saturated, so that its spare capacity is smaller than wy,;,, and
some of the users who would prefer to be served by s are forced to accept a lower utility with
some other service unit. Even in the extreme case in which half the service units are saturated
and the other half are empty, it is very likely that a frustrated user will be able to be served by a
service unit with v;;,,, — 1, so the maximum utility loss (relative to the optimum) is of the order
of 1 000. This gives a lower bound for the utility in good equilibria which is approximately
9 000. Therefore, in the range of utilities between (approximately) 4 500 and 9 000, we expect
to find no equilibria.

For ¢ = —0.5 the phenomenology and its interpretation are very similar to the case ¢ = -1
discussed above. However, the size of the gap in utilities is much reduced (it now covers the
range [7 621.00, 9 687.20]), the fraction of runs of BRB which find equilibria with low utilities
is much smaller (2.0%), and the entropy corresponding to the minimum utility is now zero, in-
dicating that the number of minima is subexponential. For large utilities the entropy curve
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ends at U = U" = 9 840 with a large value (S = 682.16), and both BR and BRB succeed in finding
optimal equilibria. For ¢ = 0 and ¢ = 0.5 the gap in utilities disappears, and all of the three dy-
namics we tested always find equilibria with large utilities, but they never achieve the upper
bound U", which coincides with the end of the entropy curve (with finite values of S). Finally,
for ¢ = 1 there is one more significant change in the phenomenology: the entropy curve now
covers a much smaller range of utilities, from 6 169.17 to 7 962.71. In particular, optimal equi-
libria (in which every user enjoys the maximum utility) seem no longer achievable. All the
three dynamics find equilibria with utilities in a narrow range, which is very different for G
compared to the two best response dynamics (BR and BRB), but which fall in the range of utili-
ties found by BP. We can estimate the range of utilities of equilibria with a simple mean-field
argument. For ¢ = 1, and with Wax = Wimin = Vmax — Vmin» the relation between utility and
weight on any edge is w = v + &, where § = Wpax — Vimax- If We denote by v the average value of
the service utilities and by D the number of disconnected users, the total utility and weight will
be givenby U = (N — D)v and W = (N — D)(¥ + 0). The maximum utility is obtained by
maximizing U with respect to ¥ and D subject to the capacity constraint L < MC, which gives
U= 8000 with D=0and ¥ = 8. The minimum utility is obtained by minimizing U subject to
the constraint that the average spare capacity does not exceed the average weight (because oth-
erwise the “average user” could improve their utility by switching a service unit with excessive
spare capacity), i.e. that C — L/M < ¥ + ¢, which gives U= 65 000/11 ~ 5 909 with D = 0 and
¥ = 65/11. The extrema of the range of values found by BP are very close to these bounds.

In summary, this analysis of individual instances allows us to understand in detail the phe-
nomenology we observed, and to draw some general conclusions. First, we find that each one
of the three dynamics we tested samples equilibria within a very narrow range of utilities (or
possibly two very narrow ranges of utilities, for BRB at ¢ < —0.5), while the full range of possi-
ble equilibria is extremely wide. Second, we clarify the reason for the increase of the average
total utility when c increases (i.e. when the competition becomes harsher): in the most numer-
ous equilibria most service units are saturated, which requires the total load L to be close to the
capacity, i.e. the maximum possible value for L. As the correlation between weight and utility
increases, it becomes more and more difficult to find equilibria with very low utilities, and the
average utility increases. And third, our characterization also allows us to estimate the price of
anarchy (i.e. the ratio between the utilities of the social optimum, which in the service provision
game is always a Nash equilibrium itself, and of the worst possible equilibrium), which de-
creases smoothly from 12.34 for ¢ = -1 to 1.30 for c =1 (see 1).

Finding Nash equilibria with general values of utility. The results presented in the last
two sections have shown that the best-response dynamics tend to converge towards Nash equi-
libria with large aggregate utility even when the initial condition is a configuration with the
worst possible values of utility (see BRB results in Fig. 5), unless the dynamical process gets
stuck because of capacity constraints. This is possibly due to the fact that the aggregate utility is
a potential function for the game that always increases during the best response dynamics. If
the available capacity is large, the rearrangement path due to best response (usually called “im-
provement path” in potential games [32]) is long and reaches Nash equilibria with very high
utility. In a low capacity regime, instead, the improvement paths is much shorter and the best
response dynamics converge after very little utility gain. If so, it should be possible to get stuck
at any value of the aggregate utility in the interval of existence indicated by the BP analysis.

This idea was tested by introducing a modified best response dynamics in which the initial
conditions could span the whole spectrum of utilities, generalizing the BR and BRB dynamics
studied in the Section 1. The initialization process works as follows: in random order, each user
with ¥ € (—00, + 00). When all
users have attempted to connect to the service system, the configuration is used as the initial

u selects an available service unit a with probability p,, o< u?

ua’
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condition for the best response dynamics. The standard BR algorithm is obtained for y =0,
while the BRB one corresponds to the limit y — —oco. For y € (—o00, +00), we can generate con-
figurations with intermediate utility values between the worst and the best ones. Fig. 7 shows
some properties of the equilibria found performing best response from such configurations on
instances with the same parameters as in the previous section and no correlation between
weights and utilities (c = 0). For large capacities (C = 120 in Fig. 7a), the best-response dynam-
ics finds Nash equilibria with very high utility (black circles) independently of the utility of the
configuration found during the initialization process (black full line). When decreasing the ca-
pacity, the best response dynamics start getting trapped in local maxima (Nash equilibria)
close to the initial conditions. Fig. 7b shows the case C = 100, in which a coexistence of “bad”
and “good” equilibria is visible for negative values of ¥, that extends up to y smaller than 4. The
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Fig 7. Average aggregate utility of the initial configuration (black full line) and of the Nash equilibria found by best response (black circles) as a
function of the parameter y and for different values of the capacity C = 120 (panel A), 100 (B), 80 (C). The initial load of the units (red dashed line) and
the load in the Nash equilibria (red squares) is also reported. The inset displays a magnified plot of the loads, showing that efficient Nash equilibria also
induce a decrease in the load on the service units. In panel B we also report (on a different scale) the frequency of times we found good Nash equilibria in our
numerical simulations.

doi:10.1371/journal.pone.0119286.g007
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fraction of times the system finds “bad” Nash equilibria during the dynamical process increases
for lower values of ¥ (blue dashed curve in Fig. 7b). This phenomenon becomes dominant
when the capacity is further decreased, as shown in Fig. 7¢ for C = 80, in which all realizations
of the dynamics get stuck in the lower-utility Nash equilibria. The insets display the average ag-
gregate load on the service units after the initialization process (red full line) and in the Nash
equilibria (red squares). It is remarkable that, even though ¢ = 0, the more efficient equilibria
produce also a slightly lower aggregate load compared to “bad” equilibria.

We have shown that, at least in the low capacity regime, Nash equilibria with any value of
the total utility can be obtained using a simple generalization of the best-response dynamics. In
a more general case, “bad” equilibria still exist, but the system is not sufficiently constrained
and best response manages to find the way to the efficient ones. Interestingly, we checked that
instead a BP-guided decimation process (this is a process in which iteratively the action of
users are fixed following their computed marginals, conditioned to past choices) can be used to
find Nash equilibria at almost any value of the utility where they exist, even for large
capacity values.

2 Results on stochastic instances

Definition of the ensemble. The random ensemble of instances is defined as in the deter-
ministic case, with the addition of the probabilities {p,,, u € U} with which user u is active (i.e.
participates to the game), which are extracted uniformly at random in the interval] 0, 1 [. In
the stochastic case, the lower and upper bounds on the total capacity defined in (37) must be
modified as

C™ = Zpumin W Ct = Zpumax W, - (38)

acdu acdu

Apart from this (minor) modification, the instance parameters affect the phenomenology of
the problem in the same way as in the deterministic case discussed in Section 1.

Validation of the mirror approximation. We validated the mirror approximation de-
scribed in Section 4 by comparing the average (over the realization of the #’s) of the marginals
of the variables y,,, computed with the mirror approach with the same average marginals com-
puted by sampling explicitly over the realization of the £’s. Specifically, we extracted one in-
stance for each value of the parameters we tested, and we converged BP with the mirror fields
to compute, for each edge (ua) € E, the marginal probability m,,, = P[y,, = 2] that user u is
served by service unit g, which is the relevant marginal for the computation of the observables
we are interested in. We then extracted, for the same instances, 1 000 realizations of the £’s, and
for each realization computed the same marginal m") = P[y,, = 2 | #] with an ordinary BP (i.e.
without mirror fields), and averaged them over the realizations of the #’s, obtaining the average
value of the marginal /11, and its standard deviation o,,,, representing the error on the estimate
of p,, due to the finite size of the sampling.

In Fig. 8 we show the distributions (over the edges (ua) € E) of both the absolute difference
A, = m,, — m, between the mirror and sampling estimates of the marginals, and of their
normalized error 8, = A,,/0,,,, for four instances with four different values of the capacity C
(which is the most relevant parameter). In all cases, we find that the absolute difference is small
compared to the typical value of the marginal m,, = >, .em,,/|E|, and that the differences

are mainly due to the sampling error.

Average values of U, D and C. As for the deterministic case, we study the average values
of the relevant observables as a function of the capacity C of individual service units and of the
correlation ¢ between the weight w,,, and the utility u,, on each edge (ua) € E. Once the range
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Fig 8. Distribution of the absolute difference A, between the mirror and sampling estimates of the marginals (top) and of their normalized error
Oua = Ayalo,, (bottom) for four individual instances with different capacities C, = C € {50, 70, 90, 110}. The other parameters of the instances are N = 1
000, M =50, q=0.1, Wnin =6, Wmax = 15, Vmin = 1 and vax = 10 and ¢ = 0, and each p,, is extracted uniformly and independently in] 0, 1 [(these are the values
of the parameters we shall consider also in the following Sections). The typical values of the absolute difference are ~ 2% of the typical values of the
marginals {m,,) for all values of C. The distribution of the normalized errors is in excellent agreement with a normal distribution with average 0 and standard
deviation 1 (green line in bottom plots), indicating that most of the differences can be attributed to the sampling error.

doi:10.1371/journal.pone.0119286.g008

of capacities is rescaled to take into account both the smaller number of service units (M = 50
vs. M =200 in the deterministic case) and the fact that the expected number of active users is
N = 500 (whereas all N = 1 000 users are active in the deterministic case), we recover exactly
the same phenomenology we observed in the deterministic case, and we refer the reader to Sec-
tion 1 for a discussion of the qualitative features of the numerical results shown in Fig. 9.

Comparison with explicit dynamics. As for the deterministic case, we compare the aver-
age values of the observables obtained by averaging uniformly over all Nash equilibria with Be-
lief Propagation with the results of the explicit simulation of three dynamics which converge to
Nash equilibria:

o Greedy (G)—A list of active users is extracted based on the probabilities {p,} that each user u
is active, and then we proceed as in the deterministic case for the active users

o Best Response (BR)—As for Greedy, we first extract a list of active users and then proceed as
in the deterministic case for the active users

o Arrivals/Departures (A/D)—We consider a discrete time dynamics in which at each time step
we extract a random permutation of all users, and then in the order of the permutation each
active user becomes inactive with probability (1 — p,,)/N while each inactive user becomes ac-
tive with probability p,/N and selects the best available service unit in a greedy way. At the
end of each time step, Best Response is run until convergence for all active users in order to
reach an equilibrium. The dynamics is repeated for a fixed number of time steps (100 N in
the numerical simulations).
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Fig 9. Average values U4, D and C* of the observables as a function of the capacity C, of service units and the correlation c between weight and
utility on individual edges. The other parameters are N =1 000, M = 50, @ = 0.1, Win = 6, Wmax = 15, Vmin = 1 @nd viax = 10. Each data point, corresponding
to a vertical line, is an average over 240 instances for C < 100, and over 40 to 120 instances for C > 110, and the standard deviations are of the order of the
width of the lines. For C = 120 a significant number of instances did not converge, and where therefore excluded from the dataset.

doi:10.1371/journal.pone.0119286.9009

Numerical results for the comparison are shown in Fig. 10. As in the deterministic case, BP
gives results that are very different from the three dynamics, which appear to be strongly biased
towards “good” equilibria. Whereas in the deterministic case the BRB dynamics gives results
that are significantly different from the other two (at least for some values of ¢), the A/D dy-
namics gives results which are quite similar to both G and BR, except for the number of discon-
nected users D when ¢ > —0.5. A detailed analysis on single instance following the steps of
Section 1 was not performed for the stochastic case.
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Fig 10. Average values I/, D and C* of the observables as a function of the correlation c between weight and utility on individual edges. The other
parameters are N =1 000, M =50, C =50, q = 0.1, Wiin = 6, Wmax = 15, Vmin = 1 and v,ax = 10. Each data point is an average over ~ 70 instances, and for
each instance, each dynamics is realized 30 000 times. The average value of each observable is computed over the instances and over the realizations. The
standard deviations (of the averages over the realizations of the dynamics across different instances) are much smaller than symbol sizes, while the standard
deviations (of the averages computed with Belief Propagation over the instances) is of the order of the symbol sizes.

doi:10.1371/journal.pone.0119286.g010
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Discussion

We proposed a simple game theoretic model of distributed service provision, in which users
want to be served by the service unit they prefer and they indirectly interact because of a capac-
ity constraint. The existence of at least one Nash equilibrium is guaranteed by the fact that the
game belongs to the class of potential games. The potential function is the total utility of the
users and, for construction, the best response dynamics always converge to a local maximum
of the potential, which is also a Nash equilibrium. The Nash equilibrium conditions can be re-
phrased as a set of hard constraints on configurations of binary variables (the choices of the
users) and analyzed using standard statistical mechanics methods, such as belief propagation
and message-passing algorithms. Moreover, a soft constraint in the form of an energetic term
can be included in the factor graph formulation in order to study the properties of Nash equi-
libria with given average total utility. We derived belief propagation equations for this problem
and studied the properties of the corresponding Nash equilibria on random instances of the
service provision game, in which the user connectivity to the service units follows a Poisson
distribution while the load weight provided by the users to the service units and the corre-
sponding payoffs are drawn from a uniform distribution. The analysis of the Nash equilibrium
landscape reveals a large variety of equilibria, with very different total utility. Best-response dy-
namics from random initial conditions usually tend to large-utility equilibria, even though
those of smaller utility are exponentially more numerous. In order to prove that these equilibria
can be actually reached by a simple dynamical process, we modified the best-response dynam-
ics initializing it to a set of non-random initial configurations. These configurations are selected
to be close to the saturation limit of the service unit capacities. In this regime, the rearrange-
ment induced by the best response is very limited and the Nash equilibria obtained have a total
utility close to the one of the initial configurations.

Other interesting phenomena appears when utility values and weights are correlated. The
average total utility increases when the correlation ¢ between weights and utility values in-
creases, that is when the competition between users becomes harsher, whereas the opposite is
observed in the low capacity regimes. Moreover, quite surprisingly the average spare capacity
of Nash equilibria seems to increase with the correlation in the large capacity region. This
means that, even if the users tend to choose the units on which they bring larger loads, they do
it in a very optimized way. Our characterization of the equilibria also makes possible to esti-
mate the price of anarchy of the game, which decreases smoothly from increasing
the correlation.

In many realistic situations, the instance of the game theoretic problem changes over time,
because the agents could follow very complex temporal activity patterns. In the absence of any
precise information on the dynamics of the agents, the complexity of agents’ activity is summa-
rized into a set of stochastic parameters {¢,}, that indicate whether user u participate or not to
the game. Users play a game on the deterministic instance corresponding to a single realization
of the stochastic parameters, then the equilibrium properties should be averaged over different
realizations of the parameters. Our results show that the average properties of the Nash equilib-
ria in the stochastic case are qualitatively similar to those observed in the case of deterministic
instances. However, our results are very relevant from a methodological viewpoint. Instead of
resorting to sampling techniques, we perform the average over fixed realizations of the stochas-
tic parameters (quenched average) by means of a systematic approximation scheme that, at
least at the first-order level, can be naturally incorporated in the belief propagation approach,
at the cost of introducing some additional messages, that we call “mirror messages”. In the case
under study, the method provides a very accurate estimate of all the average properties of inter-
est. We believe that this approach could be useful in several problems in which it is necessary
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to perform averages over fixed realizations of disordered parameters, whenever the correlations
between variables in the system are not too strong.
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