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Abstract
Community detection is a fundamental problem in the analysis of complex networks. Re-

cently, many researchers have concentrated on the detection of overlapping communities,

where a vertex may belong to more than one community. However, most current methods

require the number (or the size) of the communities as a priori information, which is usually

unavailable in real-world networks. Thus, a practical algorithm should not only find the over-

lapping community structure, but also automatically determine the number of communities.

Furthermore, it is preferable if this method is able to reveal the hierarchical structure of net-

works as well. In this work, we firstly propose a generative model that employs a nonnega-

tive matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced

by a resolution parameter. The NMF has the nature that provides overlapping community

structure by assigning soft membership variables to each vertex; the l2,1 regularization term

is a technique of group sparsity which can automatically determine the number of communi-

ties by penalizing too many nonempty communities; and hence the resolution parameter

enables us to explore the hierarchical structure of networks. Thereafter, we derive the multi-

plicative update rule to learn the model parameters, and offer the proof of its correctness. Fi-

nally, we test our approach on a variety of synthetic and real-world networks, and compare

it with some state-of-the-art algorithms. The results validate the superior performance of our

new method.

Introduction
Many real-world systems can be represented as complex networks, where the vertices represent
the components of the systems and the links represent the interactions between them. In com-
plex networks, they share some common properties such as the small-world property [1] and
power-law degree distributions [2]. Recently, community structure, one of the most important
inherent properties in complex networks, attracts a lot of attentions. It is regarded as groups of
vertices with denser connections within groups but sparser connections between them [3]. It is
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believed that communities play important roles in different real-world systems. It reveals the
meaningful topological structure in a wide variety of real-world networks, e.g. friendship com-
munities in a social network or protein functional structures in a protein interaction network.
Therefore, discovering communities is very crucial for us to understand how different units in
a complex system communicate with each other and work together. Furthermore, it provides a
valuable insight to the organization and behavior of the network, and offers clues for further in-
vestigations. It is thus not surprising that community detection in networks is essential and has
been widely investigated over the last few years.

An important problem in community detection is finding overlapping communities, i.e.,
vertices may belong to more than one community [4]. Overlapping communities exist compre-
hensively in the real-world networks. For example, in a social network, an individual may par-
ticipate in several social communities, depending on personal professions, friends, etc. In last
decades, a number of approaches for overlapping community detection have been proposed
[5–7]. Among these algorithms, stochastic blockmodel, instead of directly detecting communi-
ties, is a form of statistical inference for networks and describes how community structures are
generated [7]. Here we give a simple example of stochastic blockmodel to formulate communi-
ty structure. In the blockmodel, we can specify a set of probabilities pck’s, where pck represents
the probability of a link between any two vertices in communities c and k, respectively. Then
pck can be specified a large value when c = k, and a small value otherwise. In the generative pro-
cess, we can create a network that has many links within communities and few between them.
We fit the model to the observed network, and then its community structure can be inferred by
parameters learning. Thus, stochastic blockmodel seems to be theoretically solid by using sta-
tistical inference. Besides, the model generates the expected network similar with the original
network, which can help us better understand the structure of the network, and hence it often
gets some interpretable and more trustworthy results. Because of the above property, if the
model fits a network well, we can further apply it to predict the missing links from the view-
point of generating the network. More widely, this property also means that the model is not
limited to detecting traditional community structure (i.e., a set of communities with dense in-
ternal connections and sparse external ones), but any type of community structures (such as hi-
erarchical, bipartite, or k-partite structures and many others [8]), which can be formulated as a
model [7]. Therefore, stochastic model has been becoming a type of promising method for
overlapping community detection. Specifically, this method requires to explicitly model the
network and then infers the community memberships of vertices. Along this line, some recent
methods are based on blockmodel or its variations, and employ nonnegative matrix factoriza-
tion (NMF) to learn their models [9–14]. For example, Zarei et al. [9] introduced a vertex-ver-
tex correlation matrix to represent the relationship between vertices, instead of adjacency
matrix. Then they applied NMF to analysis this feature matrix and got the overlapping com-
munities. Psorakis et al. [10] generated the expectation network by using two nonnegative ma-
trices. Then they utilized a Bayesian NMF which combines the Kullback-Leibler (KL)
divergence with the prior model on the two nonnegative matrices to infer overlapping commu-
nities from a network, while determining the number of communities. Wang et al. [11] pro-
posed three NMF techniques (Symmetric NMF, Asymmetric NMF, and Joint NMF) to detect
communities in undirected, directed, and compound networks, respectively. Zhang et al. [12]
modeled the expectation network by two nonnegative matrices in three factors form. In this
way, they could learn the community membership of each vertex as well as the interaction
among communities. Zhang et al. [13] developed a symmetric binary matrix factorization
model to identify overlapping communities. Besides, they could distinguish outliers from over-
lapping vertices. Cao et al. [14] proposed a model consisting of the centrality matrix of vertices
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and degree matrix of communities. Then based on NMF, they inferred the two types of param-
eters to identify overlapping communities, hubs, and outliers simultaneously.

However, for a model-based method, one often has to solve the model selection problem,
i.e. inferring the correct number of communities in a network automatically. In some cases,
one can obtain the number of communities in advance. But in most situations, we do not know
how many communities in a network because we are often lack of background or domain
knowledge. As a result, it is very difficult for us to properly determine the number of communi-
ties. Model selection and scalability are two common drawbacks suffered by almost all methods
based on stochastic blockmodel. The traditional statistical model selection strategy (e.g. mini-
mum description length [15, 16] or consensus clustering [17]) applied to stochastic models
may, in principle, be able to find the number of communities K in a consistent and satisfactory
manner. But it needs to scan K in a large range which makes it too computationally expensive
to be applied to real large networks. We find out that, Bayesian model selection [10, 18] uses
priors that penalize their model for including too many nonzero parameter values and hence
achieves a balance between the number of communities and goodness of fitting the network
data, which avoids scanning K. However, the priors themselves contain undetermined parame-
ters whose values can influence the number of communities and hence the problem is not
completely solved by this approach. Besides, they did not consider the detection of hierarchical
structure, which often appears in real networks.

Another key problem in community detection is finding hierarchical communities, where
small communities are nested in larger ones. Different resolutions determine the average size
of communities [19], which enables us to explore the hierarchical levels of the network. If the
resolution is low, the whole network will be divided into several large communities. Extremely,
if the resolution is low enough, maybe the whole network will be considered as a largest com-
munity. On the contrary, if the resolution is high, the network will be divided into many small
communities. Taking the hierarchical structure of a school network as an example, at a low
scale, the whole school network can be considered as a community. On the other hand, at a
higher scale, each class may be represented as a community. And even each grade can be repre-
sented as a community between the two scales. The communities detected at different scales
may represent different functional units. Thus, hierarchy can not only show the macroscopical
view of the network, but also reveal more detailed community information. Furthermore, as
one usually has no knowledge about how large the communities are, so it is necessary to com-
pare the detected communities at different scales.

Recently, some researches have focused on hierarchical community detection. For instance,
Blondel et al. [20] proposed a heuristic method based on modularity optimization. Further-
more, they merged the small communities if merging these communities increases the modu-
larity. In this way, the hierarchical community structure was built. In [19], Lancichinetti et al.
introduced a fitness function with a resolution parameter. By tuning the parameter, they were
able to obtain the hierarchical communities. [21] defines a tightness function of local commu-
nity. Similarly, by adjusting a resolution parameter of this function, they obtained the commu-
nities at different scales. The hierarchical community detection methods mentioned above all
adopt the heuristic optimization of a quality function. Generally, the fact that many real net-
works have communities with pervasive groups leads to that a global hierarchy of vertices can-
not capture the relationships between overlapping vertices. In addition, these hierarchical
community detection methods can not reconcile the antagonistic organizing principles of over-
lapping communities and hierarchy [22]. The combination of soft community memberships
and hierarchy may be a visible solution.

To deal with the above problems, we present a novel model-based approach for overlapping
and hierarchical community detection. This approach is free to set the number of communities
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(specified by users or determined automatically), which is beneficial to real-world application
scenarios. The generative model contains two parts: the loss function and the l2,1 norm regular-
ization term, which are balanced by a resolution parameter. The loss function measures the dis-
tance between the real network and the expected generated network correlating with the
membership of vertices, and the regularization term controls the group sparsity of the model.
Thereafter, we derive an update rule of the model parameters to infer the membership matrix
of vertices. The resolution parameter balances the loss function and the regularization term. By
tuning the balance parameter, we can obtain communities at different scales. When we know
the number of communities K, it is easy to directly specify K. Otherwise, it is easy to specify a
large initial K0, and then the l2,1 norm regularization term penalizes some empty communities
where no vertices participate in. In this way, we get a more accurate number of communities
from the large K0 by abandoning the empty communities.

The rest of the paper is organized as follows. First, we formalize the problems as a generative
model and give the update rule of the model parameters. We then verify our approach on vari-
ous networks including artificial and real-world networks. At last, we summarize the discus-
sions and conclude with our future work.

Methods
In this section, we first describe our generative model, and then present an algorithm based on
nonnegative matrix factorization to learn the parameters of the model. Finally, we offer an il-
lustrative example to depict the main idea of our method.

Generative model
We consider an undirected and weighted network G = (V, E), where V denotes the set of verti-
ces and E denotes the set of links. Usually, we use the adjacency matrix A to represent G, where
Aij equals to the weight of a link between vertex i and j if they are connected, and otherwise, it
is 0. Thus, A is a N × Nmatrix, where N is the number of vertices. In our model, if we know the
number of communities K in advance, we can set K directly. Otherwise, we can set a relative
large initial K0, and then our model will automatically determine a suitable number
of communities.

The first step in the model is to generate an expected adjacency matrix Â, which has the

same size as A. The element Âij in Â denotes the expected weight of links between vertices i

and j. Here Âij is specified by a set of parameters Uik which represents the propensity of vertex i

belonging to community k. Therefore, we define the membership matrix, U 2 R
N×K, which

consists of all the elements Uik. To be specific, Uik Ujk denotes the expected weight of links be-
tween i and j in community k. Summing over the communities, the expected weight of links be-
tween vertices i and j in the network is:

Âij ¼
XK

k¼1

UikUjk; ð1Þ

Eq (1) can also be rewritten as

Â ¼ UUT : ð2Þ

Under this model, if vertices i and j belong to the same community k, which means Uik and

Ujk are both relatively large, the value of Âij will be large. This implies that vertices i and j have
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a high propensity of being connected in community k. Then, a set of such vertices tends to be

connected relatively densely in community k. Otherwise, Âij will be small.

Furthermore, when the number of communities K is unknown, it is preferable to determine
it automatically. But in practice, it is easy to set an initial maximum number K0. Then, what we
need is to determine K from K0. In the community structure of a network, assuming that a
community k is “redundant” or unnecessary, it means all the vertices do not participate in this
community. Accordingly, the entry Uik should be zero for all i, which implies all the values in
the kth column of membership matrix U will be zero. Finally, the problem becomes how to
make some “redundant” columns in the original matrix U zero, and select several non-zero col-
umns from U. Generally speaking, one usually uses l1 norm regularization to promote a sparse
solution and improve generalization, but it cannot obtain a wide class of solutions known to
have certain “group sparsity” structure. Incorporating group information using mixed-norm
regularization has been previously discussed in statistics and machine learning. A favorable ap-
proach in literature is to use the mixed l2,1 norm regularization [23, 24]. Inspiring by the above
idea, we add a constraint to U by using l2,1 norm, which is defined as

kUk2;1 ¼
XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

U2
ik

s
¼

XK

k¼1

kUkk; ð3Þ

where Uk is the kth column of U. As we can see in (3), the l2,1 norm of a matrix is the sum of
vector l2 norm of its columns, which can be considered as l1 norm of vector l2 norm of its col-
umns. So penalization with l2,1 norm promotes as many zero columns as possible to appear in
the matrix. Thus, the l2,1 norm will achieve the group sparsity.

There are many options to fit the adjacency matrix A and the expected adjacency matrix Â.
Least square loss and the generalized Kullback-Leibler (KL) divergence are most widely used
[25]. Similar with other NMF-based methods [11–14], we adopt the least square loss between

A and Â for simplicity. Here, we show the motivation of the least square loss from the view-
point of likelihood. Usually, the observed weight Aij between vertices i and j can be represented

by the expected weight Âij adding additional noise "ij,

Aij ¼ Âij þ "ij : ð4Þ

Suppose the noise "ij follows zero mean normal distribution with standard deviation of τ, that

is Aij � NðÂij; t
2Þ. In general, we assume each weight Aij is independent, therefore, the proba-

bility distribution of Aij conditioned on Âij is

pðAijjÂijÞ � exp f� ðAij � ÂijÞ2
2t2

g : ð5Þ

Thus for all the weights, the log likelihood can be written as

log
YN
i¼1

YN
j¼1

pðAijjÂijÞ ¼ � 1

2t2
XN
i¼1

XN
j¼1

ðAij � ÂijÞ2 : ð6Þ

Then maximizing the log likelihood is equivalent to minimize
XN

i¼1

XN

j¼1
ðAij � ÂijÞ2 in (6).

Thus we have

min
Âij

XN
i¼1

XN
j¼1

ðAij � ÂijÞ2 ¼min
U

kA�UUTk2F: ð7Þ
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This means the least square loss underlies the Gaussian additive observation noise [18]. Finally,
by adding the l2,1 norm regularization term to control the group sparsity of U, the formulation
of our model is

min
U�0

LðA; ÂÞ ¼ kA�UUTk2

F þ lkUk2;1; ð8Þ

where λ is a positive real-valued parameter, which controls the degree of group sparsity. In
other words, the coefficient λ controls the number and the average size of communities. If λ is
small, we can get smaller communities. And if it is large, we can get less but larger communi-
ties. If it is large enough, the whole network becomes a community. Hence, the parameter λ
tunes the resolution of the network. Different λmeans various scales of the network.

Model learning
Firstly we deduce the gradient of (8) with respect to Uik

@L
@Uik

¼ ð�4AUþ 4UUTUÞik þ l
UikffiffiffiffiffiffiffiffiffiffiffiffiP

iU
2
ik

p : ð9Þ

We then get the positive term of (9)

½��þ ¼ ð4UUTUÞik þ
lUikffiffiffiffiffiffiffiffiffiffiffiffiP

iU
2
ik

p ; ð10Þ

and the negative term of (9)

½��� ¼ ð4AUÞik : ð11Þ

According to the gradient decent algorithm, one can use the [�]+ and [�]− to define an iterative
learning based update rule as follows:

Uik ¼ Uik � Zik
@L
@Uik

¼ Uik � Zikð½��þ � ½���Þ : ð12Þ

Here, ηik is a positive learning rate. If we choose Zik ¼ Uik
½��þ according to the Oja rules [26], the

update rule becomes a multiplicative update rule:

Uik ¼ Uik �
Uik

½��þ
ð½��þ � ½���Þ ¼ Uik

½���
½��þ

: ð13Þ

Finally, we can simply update Uik by multiplying its current value with the ratio of the negative
term to positive term

Uik ¼ Uik

ð4AUÞik
ð4UUTUÞik þ l UikffiffiffiffiffiffiffiffiffiffiP

i
U2
ik

p : ð14Þ

It is worth noting that the update rule converges to a local optimum. But in order to get a better
result, we take the similar strategy as other NMF methods used. We first initialize ten “seeds”
randomly, that is, we initialize ten Umatrices randomly. When the algorithm converges, the
ten different matrices will lead to ten different results, which corresponds to ten values of the
loss function respectively. We can then find the minimum value from these values, and consid-
er the corresponding matrix U as the final solution that will be not too far from the
global optimum.
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Both of disjoint and overlapping communities can be derived from the obtained member-
ship matrix U. To be specific, to derive a disjoint partition, vertex i can be assigned to commu-
nity r = argmaxk{Uik, k = 1, 2, . . ., K}. To construct a structure with overlapping communities,
we take the similar strategy in [12] and [27]. We first choose the maximum and minimum
value in vector {Ui1, Ui2, . . ., UiK},

Uip ¼max
Uik

fUik; k ¼ 1; 2; . . . ;Kg; ð15Þ

Uiq ¼min
Uik

fUik; k ¼ 1; 2; . . . ;Kg: ð16Þ

We then rescale each entry in this vector to [0–1] as follows,

Unew
ik ¼ Uik � Uiq

Uip � Uiq

; k ¼ 1; 2; . . . ;K : ð17Þ

In this way, the maximum value in each row rescales to 1 and the minimum value in each row
rescales to 0. The rest entries rescale to values in the range of 0 to 1. We then vary a threshold
from 0 to 1 and set all those entries in U that exceed a predetermined threshold to 1, and 0 oth-
erwise. Now different thresholds will lead to different communities. In order to get the desired
communities, we select modularity Q (or minimum description length L) as the quality metric,
which depends on the specialized scenarios. Thus, the proper threshold is the one that corre-
sponds to the community structure with the maximum Q-value (or the minimum L-value).

Now, inspired by the proof in [11], we will give the proof of the correctness of the updating
rules in (14).

THEOREM 1. At convergence, the converged solution U of the updating rule in (14) satis-
fies the Karush-Kuhn-Tucker (KKT) condition of the optimization theory [28].

PROOF. Because of the nonnegativity constraint of U, we introduce the Lagrangian multi-
plier δ for U. In this way, we can construct the Lagrangian function as

L0 ¼ kA�UUTk2F þ lkUk2;1 � trðdUTÞ; ð18Þ

where δ is a N × K nonnegative matrix and its element δik is the Lagrangian multiplier of Uik.
Then we have the KKT conditions

@L0
@Uik

¼ ð�4AUþ 4UUTUÞik þ l UikffiffiffiffiffiffiffiffiffiffiP
i
U2
ik

p � dik ¼ 0

Uik � 0

dik � Uik ¼ 0

dik � 0

8i; k

: ð19Þ

8>>>>>>><
>>>>>>>:

Following the first KKT condition, we obtain

@L0

@Uik

Uik ¼ fð�4AUþ 4UUTUÞik þ l
UikffiffiffiffiffiffiffiffiffiffiffiffiP

iU
2
ik

p gUik � dikUik ¼ 0 : ð20Þ

Further, by the third KKT condition, we have

fð�4AUþ 4UUTUÞik þ l
UikffiffiffiffiffiffiffiffiffiffiffiffiP

iU
2
ik

p gUik ¼ 0 : ð21Þ
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On the other hand, once U converges, according to the updating rule of (14), the converged so-
lution U satisfies

Uik ¼ Uik

ð4AUÞik
ð4UUTUÞik þ l UikffiffiffiffiffiffiffiffiffiffiP

i
U2
ik

p ; ð22Þ

which can be written as

fð�4AUþ 4UUTUÞik þ l
UikffiffiffiffiffiffiffiffiffiffiffiffiP

iU
2
ik

p gUik ¼ 0 : ð23Þ

This is identical to (21). Besides, the updating rule guarantees the nonnegativity of U and δ is
the Lagrangian multipliers, and thus the second and the fourth KKT conditions are satisfied.
Then the updating rule in (14) satisfies all the above KKT conditions, so we finish the proof of
the correctness of our updating rule.

An illustrative example for l2,1 norm regularization
In this section, we do not intend to show the whole procedure of our method, but to depict the
main effect of our above method by adding l2,1 norm regularization. Here we use the well-
known karate club network, and assume the number of communities is 17 at first. Fig 1(a) is
the color mapping of U normalized to 0–1 obtained by standard NMF [25], where colors close
to red indicate the strong propensity of vertex i belonging to community k, and colors close to
blue indicate the weak propensity of vertex i belonging to community k. Fig 1(b) is the color
mapping of U normalized to 0–1 obtained by our method. Here, we set the resolution parame-
ter λ = 1.7, and in the later sections we will introduce how to determine λ in details. As we can
see, both the standard NMF and our method will get the membership matrix U with size of
34 × 8. However, for our method, there are only three non-zero columns, and the remaining
columns are all zeros. This suggests that, although we set the number of communities at a large
number at the beginning, but actually, not all communities are essential for this network. It
also means that there are some communities in which all the vertices do not involved, and the

Fig 1. An illustrative example for depicting the main effect of the l2,1 norm regularization term in our method on karate club network. (a) the color
mapping of the membership matrix U obtained by standard NMF. (b) the color mapping of the membership matrixU obtained by our method. X-axis
represents the index of community, and Y-axis represents the index of vertex. Colors close to red indicate strong propensity of vertex i belonging to
community k.

doi:10.1371/journal.pone.0119171.g001
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three non-zero columns are the derived three communities that we are looking for. As a result,
after removing the unnecessary communities, we get the number of communities as K = 3, cor-
responding to 3 significant communities. But for the standard NMF without group sparsity,
when we set K = 17, it cannot select the suitable communities from the initial setting. The verti-
ces are assigned to the 17 communities, and hence we cannot get the significant split of the Ka-
rate club network.

It is worth noting that we can get both the overlapping and disjoint communities from U.
The strategy about how to use the membership matrix U to determine the communities and
how to choose a suitable threshold have been introduced in the Model Learning section, which
are similar with other NMF methods. Besides, we can also get the multi-scale structures when
varying the resolution parameter λ.

Results
In this section, we test the performance of our approach on artificial and real-world networks
in terms of the results of hard-partitions, overlapping structures, as well as hierarchical struc-
tures. We also give the analysis of the resolution parameter in this model.

The methods compared include: Louvain method [20] and Infomap [29], both of which are
the most popular hard-partitioning methods; CPM [4], which is one of the most widely used
overlapping community detection method; Fuzzy Infomap (F-Infomap) [30], which is an ex-
tension of Infomap to detect overlapping communities; SNMF [11] and BNMTF [12], which
are the model-based methods based on NMF. Except some special comparison scenarios, we
will make a full comparison against all these above methods.

There are various quality metrics that are used to evaluate the goodness of community
structures. However, each of these metrics is only applicable to several types of evaluation sce-
narios. For this reason, we will use different quality metrics in different cases. They include:
normalized mutual information (NMI) [31] which is used to evaluate the hard-partition results
on networks with known community structures, generalized normalized mutual information
(GNMI) [19] which is used to evaluate the overlapping results on networks with known com-
munity structures, modularity Q [32] which can be used to evaluate the hard-partition results
on real networks without ground-truth, and the extended map equation L [30] which can be
used to evaluate overlapping results on real networks without ground-truth.

Test on synthetic networks
To evaluate the performance of our approach, we conduct experiments on three types of
synthetic benchmarks.

We firstly evaluate the hard-partitioning results. Here we adopt the widely used Newman’s
model, proposed in [3]. The graph consists of 128 vertices, which are divided into four commu-
nities of 32 vertices each. Each vertex has the expected degree 16, including an average zin
edges connecting to vertices within the same community and zout edges to vertices in other
communities. With the increase of zout, the community structure becomes more and more am-
biguous. In this experiment, we first choose Louvain method, Infomap, SNMF and BNMTF to
be compared, and use NMI as the accuracy metric. The higher the value of NMI index, the bet-
ter the results will be. Because CPM and F-Infomap only provide overlapping community re-
sults, we cannot compute their NMI values, and hence we cannot compare with them in terms
of NMI. For this problem, we further use GNMI which is suitable for evaluating both overlap-
ping and disjoint structures as the accuracy metric to compare with all these methods.

The comparisons in terms of NMI and GNMI are shown in Figs 2 and 3, respectively. As we
can see, when zout is small, the community structures are very clear, so both of the NMI and

A Stochastic Model for Community Detection

PLOS ONE | DOI:10.1371/journal.pone.0119171 March 30, 2015 9 / 26



Fig 2. Evaluation of different methods on Newman’s benchmark networks in terms of NMI.

doi:10.1371/journal.pone.0119171.g002

Fig 3. Evaluation of different methods on Newman’s benchmark networks in terms of GNMI.

doi:10.1371/journal.pone.0119171.g003
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GNMI accuracies of all the methods are very high, close to 1. With the increase of zout, the com-
munity structures will be not so clear, and it becomes a challenge to these methods. Especially,
when zout > 6, the NMI (and GNMI) accuracy begins to decrease quickly. When zout > 8,
which means the number of between-community edges per vertex is more than that of within-
community edges and there is almost no community structure in the network, it will lead to a
very low value of NMI (and GNMI) index for most of the methods. But in general, the perfor-
mance of our method is often better than (or competitive with) that of the other methods in
terms of both NMI and GNMI.

We then evaluate the overlapping community results. Here we adopt a new type of bench-
mark proposed by Lancichinetti, Fortunato and Radicchi [33], named as LFR. Compared with
Newman’s model, LFR model can not only generate overlapping communities, but also possess
the statistical property of heterogeneous distributions of degree and community size, which
often appears in real-world networks.

Following the experiment designed by Lancichinettic et al. [33], the setting of the parame-
ters in LFR model is shown in Table 1. Here, N denotes the number of vertices; k denotes the
average degree per vertex;maxk denotes the maximum degree of vertex; u denotes the mixing
parameter, i.e., each vertex shares a fraction u of its links with vertices in other communities; t1
denotes the minus exponent for the degree sequence; t2 denotes the minus exponent for the
community size distribution;minc denotes the minimum for the community size;maxc de-
notes the maximum for the community size; on denotes the fraction of overlapping vertices;
om denotes the number of memberships of the overlapping vertices. In Table 1, we use S de-
notes the benchmark networks with smaller communities, B denotes the the benchmark net-
works with larger communities; 0.1 and 0.3 denotes networks with different mixing parameters
which are 0.1 and 0.3, respectively. So we produced four types of LFR benchmarks.

In this experiment, we choose Louvain method, CPM, Infomap, F-Infomap and SNMF to
be compared, and use GNMI as the accuracy metric. Because BNMTF cannot provide results
within 100h for each set of the tests, we did not include it here. The comparison results are
shown in Fig 4. As we can see, F-Infomap and our method perform best on networks with
small communities (see Fig 4(a) and 4(b)). On large communities (see Fig 4(c) and 4(d)), the
performance of our method is competitive with that of F-Infomap and SNMF, but much better
than that of the other 3 methods. With the increase of the fraction of overlapping vertices on,
the overlapping community structure will become more and more indistinct, and hence the
curves will often decrease. But compared with other methods, our approach is still relatively
stable with the change of on, and performs well. Besides, the performance of our approach is
also relatively stable when the mixing parameter u changes from 0.1 to 0.3. This also expresses
the effectiveness of our method on LFR benchmarks.

Finally we evaluate the hierarchical community results. We adopt the hierarchical commu-
nity model proposed by Lancichinetti et al. [19], which extends Newman’s basic model to ac-
commodate the hierarchical structures. This new model contains 512 vertices and two levels in
all. At its second level, the 512 vertices are arranged in 16 communities of 32 vertices each.

Table 1. The detailed parameters of LFR benchmark networks.

Network N k maxk u t1 t2 minc maxc on om

0.1S 1000 20 50 0.1 2 1 10 50 0–0.5 2

0.3S 1000 20 50 0.3 2 1 10 50 0–0.5 2

0.1B 1000 20 50 0.1 2 1 20 100 0–0.5 2

0.3B 1000 20 50 0.3 2 1 20 100 0–0.5 2

doi:10.1371/journal.pone.0119171.t001
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Further, the 16 communities form 4 super communities of 128 vertices each at its first level.
On average, each vertex has k1 links connecting other 31 vertices within the same community
at the second level, has k2 links connecting the other 96 vertices within the same supercommu-
nity at the first level, and has k3 links connecting the rest of the network. Usually, with the in-
crease of k2 and k3, the communities at each level become more and more unclear, leading to a
challenge for all the methods. Following the parameter configuration in [19], here we specify k1
= k2 = 16 and vary k3 from 16 to 36 with an interval of 2.

As this model only provides the ground-truth of hierarchical structure with disjoint com-
munities, hence we choose Louvain method which can provide hierarchical community

Fig 4. Evaluation of different methods on LFR benchmark networks. (a) Comparison on LFR networks with small mixing parameter and small
communities; (b) Comparison on LFR networks with large mixing parameter and small communities; (c) Comparison on LFR networks with small mixing
parameter and large communities; (d) Comparison on LFR networks with large mixing parameter and large communities.

doi:10.1371/journal.pone.0119171.g004
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structure to be compared. Besides, because Informap has been extended to detect hierarchical
structure [34], we also choose it to be compared, and use the name H-Infomap in short. Fig 5
shows this comparison results at the first scale. As we can see, the performance of our approach
is better than that of H-Infomap, and is competitive with that of Louvain method. Especially,
when k3 > 26, the NMI accuracy of Louvain method is slightly better than that of our method,
although they are both very high and close to 1. Then when k3 > 22, because H-Infomap de-
tects 512 communities, which is much more than the ground-truth, its value of NMI decreases
to around 0.35. Furthermore, Fig 6 shows the comparison results at the second level. As we can
see, the performance of our approach is better than that of both Louvain method and H-Info-
map. The reason may be that, Louvain method is based on the modularity optimization suffer-
ing from resolution limits [35], and thus it cannot find a high resolution solution, such as the
structure at the second level structure with 16 communities. H-Infomap also does not find the
real number of communities 16 at the second level, e.g., H-Infomap often finds 4 or 512 com-
munities on the networks. On the contrary, our method is flexible to adjust the resolution pa-
rameter λ, and hence can accurately detect community structures at different levels.

To sum up, we adopt three types of artificial benchmark networks to test the performance
of our approach. The results not only show the superior performance of our approach, but also
validate its flexible ability to detect communities in terms of different cases, such as disjoint
communities, overlapping communities as well as the hierarchical structures.

Fig 5. Comparison with Louvainmethod and H-Infomap on hierarchical community benchmarks at its
first level. X-axis indicates the mixing parameter, and the Y-axis indicates the normalized
mutual information.

doi:10.1371/journal.pone.0119171.g005
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Test on real-world networks
As real networks may have some different topological properties from artificial networks, here
we use various real-world networks to further evaluate the performance of our algorithm. We
select 8 widely-used real networks which are summarized in Table 2, where N denotes the
number of vertices,M denotes the number of links, and K denotes the number of communities.
Especially, “—” implies that the number of communities is unknown. In the following, we will
test the performance of different algorithms in terms of disjoint communities and overlapping
communities, respectively.

Fig 6. Comparison with Louvainmethod and H-Infomap on hierarchical community benchmarks at its
second level. X-axis indicates the mixing parameter, and the Y-axis indicates the normalized
mutual information.

doi:10.1371/journal.pone.0119171.g006

Table 2. Real-world networks used here.

Datasets N M K Descriptions

Karate 34 78 2 Zachary’s karate club [36]

Dolphins 62 159 2 Dolphin social network [37]

Polbooks 105 441 3 Books about US politics [38]

Word 112 425 2 Word network [39]

Football 115 613 12 American college football [3]

Les Miserables 77 254 - the novel by Victor Hugo [40]

C. elegans neural 297 2148 - the neural network of C. elegans [1]

C. elegans metabolic 453 2025 - the metabolic network of C. elegans [41]

doi:10.1371/journal.pone.0119171.t002
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Firstly, we estimate the disjoint community results for different algorithms. Because Table 2
contains networks with and without known communities, here we take modularity Q as a uni-
fied quality metric. In this experiment, we select Louvain method, Infomap, BNMF and
BNMTF to be compared. CPM and F-Infomap cannot provide the hard-partitioning results,
and hence we cannot compute Q-values for these results. Therefore, we did not include these
two methods here. The comparison results are shown in Table 3. The last row of Table 3 is the
average Q-value of each method on all the networks. Because Louvain method is based on the
optimization of modularity Q, it is not surprising that it gives the best performance on almost
all the networks. Thus, for clarity, we show the results of Louvain method in the right column
of the table separately. Except Louvain method, we mark the best results by boldface and our
second best results by italic. As we can see, our approach achieves the best performance among
those methods which do not directly optimize modularity Q. Also of note is that, our approach
has the advantage of providing overlapping and hierarchical solutions, while other methods
do not.

Next, we estimate the qualities of overlapping communities obtained by different algo-
rithms, and select the extended map equation L as the quality metric. Here we use all the meth-
ods to be compared. The results are shown in Table 4. The last row of Table 4 is the average
L-value of each method on all the networks. Because both F-Infomap and Infomap directly op-
timize the Minimum Description Length L, it is not surprising that they achieve the best and

Table 3. Comparison with other methods in terms of modularity (Note that wemark the best results by boldface and our second best results by
italic).

Modularity Q Infomap SNMF BNMTF Ours Louvain

Karate 0.4020 0.3715 0.3715 0.4081 0.4188

Dolphins 0.5108 0.3899 0.3848 0.5054 0.5286

Polbooks 0.5268 0.5093 0.0548 0.5126 0.4986

Word 0.0138 0.1577 0.1978 0.2712 0.2906

Football 0.6007 0.5796 0.6005 0.6011 0.6046

Les Miserables 0.5391 0.5466 0.5460 0.5437 0.5556

C. elegans neural 0.3920 0.3400 0.3306 0.3378 0.3876

C. elegans metabolic 0.3880 0.3060 0.3252 0.3631 0.4266

Average Q 0.4216 0.4001 0.3514 0.4429 0.4639

doi:10.1371/journal.pone.0119171.t003

Table 4. Comparison with other methods in terms of the map equation L for overlapping communities (Note that wemark the best results by bold-
face and our second best results by italic).

Extended map equation L Louvain CPM SNMF BNMTF Ours Infomap F-Infomap

Karate 4.3359 5.0634 4.4093 4.4093 4.2510 4.3118 4.2574

Dolphins 4.9104 5.6240 5.1258 5.6084 4.8566 4.8854 4.8296

Polbooks 5.5837 5.8534 5.5631 5.5696 5.4701 5.4669 5.4392

Word 6.5642 6.5431 6.7887 6.6628 6.6308 6.3431 6.3297

Football 5.4982 5.5204 5.4467 5.4429 5.4467 5.4467 5.4429

Les Miserables 4.7632 5.2518 4.8907 4.8845 4.8238 4.6813 4.6169

C. elegans neural 7.6309 7.9940 7.6768 7.6180 7.6263 7.5323 7.4900

C. elegans metabolic 7.4736 7.6469 7.6620 7.4129 7.3692 7.2498 7.1415

Average L 5.8450 6.1871 5.9454 5.9511 5.8093 5.7397 5.6934

doi:10.1371/journal.pone.0119171.t004
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second best performance, respectively. Therefore, for clarity, we put their results on the right
side of the table separately. As we can see, on average our approach achieves the best perfor-
mance among those methods which are not based on the optimization of function L. To sum
up, these two experiments, in terms of disjoint and overlapping communities, both validate the
effectiveness of our method.

In particular, here we take the dolphins social network as an example to test the perfor-
mance of our approach in more details. The dolphins social network was reported by Lusseau
[37], where vertices represented the dolphins and a link was created if two dolphins were ob-
served together more often than expected by chance from 1994 to 2001. In the regular experi-
ment, the network is often divided into two communities, where one community mainly
consists of male dolphins and the other mainly consists of female dolphins, which are marked
by square and cycle vertices, respectively (see Figs 7 and 8).

Fig 7 illustrates the two communities detected by our approach at the scale of λ = 1.7. Our
result is marked by different colors, which successfully discovers the two communities with
four overlapping vertices: PL, Oscar, DN63, and SN100. Moreover, as mentioned in [10], one
can measure the uncertainty in assigning vertices to communities by the mean entropy, so that
they used it to monitor the allocation confidence. Besides, [11] takes a similar strategy, and
they also used the mean entropy to infer how active (meaning the degree of uncertain or fuzzy)
of a vertex is. According to these literatures, since each row of U in our model represents the
propensity that a vertex belongs to the communities, we can normalize each row of U to make
its summation to be 1. In this way, the propensity that a vertex belongs to the communities can
be considered as a probability distribution. So we can use this to compute the entropy of this
vertex, and then measure its uncertainty in terms of the community memberships. High value
of entropy stands for high uncertainty, which also means this vertex is more active than other
vertices. Therefore, here we monitor the allocation confidence in the viewpoint of the mean en-
tropy (in bits), which is defined as

H ¼ �
X
k

Uik log 2Uik; ð24Þ

Fig 7. Two communities detected by our approach on dolphins network.Here different shapes represent the ground-truth communities, and different
colors represent the communities obtained by our approach. Especially, the overlapping vertices are shown by pie vertices.

doi:10.1371/journal.pone.0119171.g007
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and we use it to infer the activities of the dolphins in the communities. Fig 9 shows the mean
entropy of membership distribution of the result in Fig 7. It is noteworthy that the four highest
spikes in Fig 9 correspond to the four overlapping vertices in Fig 7. This suggests that these
overlapping vertices are more active than others, and also they are located next to the junction
of the two communities. Hence it makes sense that they are allocated to both of the two com-
munities. Furthermore, Fig 8 illustrates the four communities at the scale of λ = 1.5. As we can
see, it reveals the community structure at a higher resolution, and that is the larger community
in Fig 7 are further divided into 3 smaller communities here. It is known that, the basic parti-
tion of dolphins network is based on the gender, and the larger community in Fig 7 mainly
consists of female dolphins. However, it is observed that two smaller communities consisting
of male dolphins in Fig 8 are nested in the larger community in Fig 7. For example, in the com-
munity marked by green in Fig 8, the vertices such as PL, Oscar, SN96, Beak, and Bumper are
all male dolphins. Again, in the community marked by purple in this figure,MN60, Cross, Top-
less,Haecksel, Jonah, andMN105 are also male dolphins. So it demonstrates that, compared
with community detection at only one scale, the detection of communities at multi-scales can
provide more detailed information to analyze the network. Similar with the result in Fig 7, here
the overlapping vertices are also near the boundaries of different communities. Again, we plot
the mean entropy of membership distribution of result in Fig 8, which is shown in Fig 10. In
this figure, the four highest spikes correspond to the SN100, Double, TR99, and Kringel, respec-
tively, which are all the overlapping vertices. Especially we find out that, the mean entropy in
Fig 9 is much sparser than that in Fig 10. This may imply that the vertices in smaller communi-
ties are usually more active than those in larger communities.

Fig 8. Four communities detected by our approach on dolphins network. Here different shapes represent the ground-truth communities, and different
colors represent the communities obtained by our approach. Especially, the overlapping vertices are shown by pie vertices.

doi:10.1371/journal.pone.0119171.g008
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Fig 9. Themean entropy of membership distribution whenK = 2. X-axis indicates the index of each vertex, and the Y-axis indicates the mean entropy of
membership distribution when K = 2.

doi:10.1371/journal.pone.0119171.g009

Fig 10. The mean entropy of membership distribution whenK = 4. X-axis indicates the index of each vertex, and the Y-axis indicates the mean entropy of
membership distribution when K = 4.

doi:10.1371/journal.pone.0119171.g010
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Analysis of the resolution parameter
Here we analyze the resolution parameter λ in the model. This resolution parameter controls
the weight of the regularization term in (8). With the increase of λ, the importance of the regu-
larization term will increase. Especially, when λ equals to 0, the regularization term will have
no effect on this model.

In particular, the larger the resolution parameter, the sparser the membership matrix U.
Here we take four real-world networks as an example, which are polbooks, dolphins, football,
and karate networks. Firstly, we present the relationship between the resolution parameter λ
and the number of communities in Fig 11. As we can see, the number of communities will de-
crease with the increase of λ. This is because the regularization term will penalize U, making it
become sparser with the increase of λ. As a result, more “redundant” communities will be
abandoned, and hence the network will consist of only few communities with large size. Espe-
cially, when λ> 3, there will be only one community for each of the networks. Similar with
other hierarchical methods, sticking to a resolution can get the corresponding community
structure at that scale. In general, it is easy to set a large resolution parameter firstly, to get the
community structure at low scale first. And then, by decreasing the resolution parameter grad-
ually, one can explore the hierarchical community structures at high scales. Finally, the natural
hierarchy of the network will be detected.

Furthermore, we check the qualities of community structures at different scales. Fig 12 rep-
resents the results of these networks in terms of NMI and modularity Q, respectively. In gener-
al, the trend of community qualities for each of the networks is like a parabola, which increases
from a low quality to a high value, and then falls down again. The phenomenon is intuitive.

Fig 11. The number of communities at different scales. X-axis indicates the different λ, and Y-axis
indicates the number of communities.

doi:10.1371/journal.pone.0119171.g011
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This is because the small resolution parameter leads to many but very small communities
which often do not meet the criteria of well-defined communities. With the increase of λ, the
quality of its community structure will become better and better. But finally, because large reso-
lution parameter often strongly constrains the sparsity of U, the whole network will become
one community at last, which leads to low values of modularity and NMI again. Also, the actual
number of communities often corresponds to the largest NMI accuracy. For example, the larg-
est NMI accuracy of dolphins network appears when the resolution parameter is around 1.6,

Fig 12. The qualities of communities at different scales. X-axis indicates the resolution parameter λ, and Y-axis indicates the modularity and normalized
mutual information (NMI) (a) The values of modularity and NMI on polbooks network; (b) The values of modularity and NMI on dolphins network; (c) The
values of modularity and NMI on football network; (d) The values of modularity and NMI on karate network.

doi:10.1371/journal.pone.0119171.g012
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where the number of communities is 2, shown in Figs 11 and 12(a). The largest NMI accuracy
of karate network appears when the resolution parameter is around 2.6 where the number of
communities is 2 in Figs 11 and 12(b). The same phenomenon also happens on the other
two networks.

As discussed in [19] and [21], if one wants to get the hierarchical community structure, one
often has to scan across the resolution parameter. But here, we tend to find a “robust” region
for this parameter, which can give the satisfactory results in most cases. There have been several
strategies to determine resolution parameters, such as the cross validation, the consensus clus-
tering, and so on. Of particular interest is the novel viewpoint proposed by [42–44], which fo-
cused on a dynamic process to explore the networks. They provided a physical interpretation
of the resolution parameter (the inverse of time t), and then gave the robustness of partitions at
time t. But these strategies are not suitable for our model. Here we give a new strategy. Accord-
ing to our experiments, with the increase of the resolution parameter λ, the error between the
adjacency matrix A and the expected adjacency matrix UUT (the first term of (8)) will usually
increase (see Figs 13(a) and 14(a)), and the l2,1 norm regularization (the second term of (8))
will usually decrease (see Figs 13(b) and 14(b)). This means that, with the increase of λ, the reg-
ularization term will make U sparser, which will lead to a smaller value of l2,1norm of U and
produce more zero columns in U. On the other hand, a sparser U will also result in a larger re-
constructed error, and hence the error between the adjacency matrix A and the expected adja-
cency matrix UUT will be larger. In the following, we tend to find a good balance between these
two terms. We depict the ratio of l2,1 norm regularization term to the error term in Fig 13(c)
and 13(c), and express the number of communities obtained at different scales in Figs 13(d)
and 14(d). As shown, when this ratio is around 0.5 (marked by the red ellipse), which means
the value of the l2,1 norm regularization term in (8) is about half of value of the error

Fig 13. Resolution parameter analysis on dolphins network. (a) shows the error between the adjacency matrixA and the expected adjacency
matrixUUT with different resolution parameter λ. (b) shows the value of l2,1 regularization term with different resolution parameter λ. (c) shows the ratio of l2,1
regularization term to the error betweenA andUUT. (d) shows the number of communities with different resolution parameter λ.

doi:10.1371/journal.pone.0119171.g013
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regularization term, we can get a suitable number of communities close to the real number of
communities. In this situation, we will often get the satisfactory community results. Thus, in
general we recommend the “robust” region for the resolution parameter to be a value making
the ratio of the second terms to the first terms in (8) around 0.5. This is also the setting in
our experiments.

Application
We use the network of word associations as an application in this section, to demonstrate the
superior performance of our approach in solving real-world problems. This network was creat-
ed by the University of South Florida and University of Kansas [6], which included 5,019 stim-
ulus words. There were in all more than 6,000 participants joining in this project. And they
were asked to write the first word in their minds once they heard a word. In this way, the word
association network containing 5,017 vertices and 29,148 links was constructed. Originally, the
network was weighted where the weight of link represents how frequently two given words
were associated. However, we simplified this network as an unweighted network by ignoring
weight, according to the method in [22].

The network possesses rich metadata which describes the structural and functional roles of
each vertex. Therefore, we can evaluate the performance of different methods by measuring
how well the detected community reflect the metadata. We choose CPM to be compared in
terms of overlapping community detection, and select Louvain method to be compared in
terms of disjoint community detection. CPM does not assign all the vertices in a network, and
some of them are considered as “background” vertices and belong to no communities. Thus,
when compared with CPM, we filter the “background” vertices and only adopt the remaining

Fig 14. Resolution parameter analysis on football network. (a) shows the error between the adjacency matrixA and the expected adjacency matrixUUT

with different resolution parameter λ. (b) shows the value of l2,1 regularization term with different resolution parameter λ. (c) shows the ratio of l2,1
regularization term to the error betweenA andUUT. (d) shows the number of communities with different resolution parameter λ.

doi:10.1371/journal.pone.0119171.g014
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subnetwork. However, when comparing our method with Louvain method, we use the whole
network as our target network. Because the number of communities K will also affect the evalu-
ation results, we first set K in our model the same as that of each method compared. Specifical-
ly, when compared with CPM, we use the number of communities K got by CPM in our
model. Similarly, when compared with Louvain method, we specify the K got by Louvain in
our model. Furthermore, we also use the method introduced in “Analysis of the resolution pa-
rameter” to automatically determine K. To be specific, we got K = 958 communities on the sub-
network filtered by CPM to compare with CPM, and we got K = 961 communities on the
whole network to compare with Louvain method.

We use the WordNet database for the metadata [45], which is specifically built for semantic
analysis. This database assignes a set of meanings/definitions to each word, known as Synsets.
Moreover, a unique ID is also assigned to each detailed meaning of a word. This enables us to
make quantitative analysis. In principle, a pair of words can be considered to be similar if they
belongs to a same Synset. We can measure the quality of detected community structure by the
enrichment of vertex pair similarity [22]. According to [22], the enrichment of vertex pair simi-
larity is

Enrichment ¼ hmði; jÞiall i; j within same community

hmði; jÞiall pairs i; j
; ð25Þ

where μ(i, j) = 1, if words i and j belong to the same Synset, or 0, otherwise. In other words, the
enrichment is the average metadata similarity between all pairs of vertices that share a commu-
nity, divided by the average metadata similarity between all pairs of vertices. The denominator
serves as a baseline similarity and the larger the enrichment, the more similar the vertices, and
this indicates better community structure.

When we specify the number of communities K same as CPM, the enrichment got by CPM
and our method are 30.75 and 56.31, respectively. In spite of using the filtered network which
is in favor of CPM, the performance of our result is still better than that of CPM in terms of
real semantic. Furthermore, on the whole network, when we specify K same as Louvain meth-
od, the enrichment of Louvain method is 15.97, and that of our method is 53.32. This result
also indicates the superiority of our method from the point of semantic analysis. Besides, when
there is no prior information about the number of communities, the enrichment of our method
is 63.42 and 80.45 on the filtered network and the whole network, respectively, which still
shows the superiority of our method over CPM and Louvain method.

Here we first analyze all the communities in our result overlapped at a popular word “DAY”
when we set K the same as CPM, which is shown in Table 5. As we can see, our method pro-
vides much more semantic information than CPM. The reason is that CPM is a k-clique propa-
gation method, and this is a strong constraint on networks. But in practice, networks in real

Table 5. The communities associated with the wordDAYwith K got by CPM.

Our result CPM

FRIDAY, MONDAY, TUESDAY, WEDNESDAY, WEEK,
WORK, WEEKEND

FRIDAY, MONDAY, TUESDAY,
WEDNESDAY, WEEK, WORK

CLOUDY, FOGGY, RAINY, SUNNY, UNCLEAR FOGGY, RAINY, SUNNY, CLOUDY

AFTERNOON, EVENING, MORNING, NIGHT, NOON,
LUNCH, SUNRISE, OATMEAL

AFTERNOON, EVENING, MORNING,
NIGHT, NOON,

DATE, MONTH, TIME, YEAR, CALENDAR, SCHEDULE,
ALMANAC, COUPLE

DATE, MONTH, TIME, YEAR, CALENDAR

doi:10.1371/journal.pone.0119171.t005
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world do not always consist of cliques, so CPMmay loose some useful information. For exam-
ple, in the first community, we detect “WEEKEND”, while CPM does not detect it. Obviously,
“WEEKEND” is very similar with other words in this community from the perspective of se-
mantic. Therefore, we can say, our approach is free from the clique constraint, and provides
more comprehensive semantic information than CPM. Furthermore, we also analyze the com-
munities associated with “DAY” when the number of communities K is determined automati-
cally. As shown in Table 6, we got the similar community results as that of CPM. In summary,
under both these two situations, our method can find significant communities with
similar semantic.

Discussion
In this work, we propose a novel generative model to detect overlapping and hierarchical com-
munity structures, which is based on nonnegative matrix factorization with l2,1 norm regulari-
zation term, balanced by a resolution parameter. In this approach, the NMF technology
provides the overlapping communities solution, and the l2,1 norm regularization term enables
us to solve the problem of model selection, i.e., to learn the number of communities automati-
cally. Besides, by varying the resolution parameter, we get the hierarchical organization of net-
works so as to reveal more comprehensive information. All of these above problems are
essential to be solved when dealing with the real-world applications, and here we provide a uni-
fied framework. Furthermore, we derive the update rule of the model parameters and give the
proof of its correctness. In addition, because our approach is based on NMF, it can not only
capture the membership of a vertex in multiple communities, but also measure how strongly
that a vertex participates in each of the communities. Finally, the experiments on both of syn-
thetic and real-world networks are presented to show the effectiveness of our approach.

However, our method is not perfect, which still has room for further improvements. Our
generative model is originally designed for static network. But in many cases, the static network
can be considered as a snapshot in the process of network evolution. Therefore, we wish to ex-
tend our approach to detect communities as well as its evolution in the dynamic situations. A
natural extension maybe design a effective regularization term that smoothes the current mem-
bership matrix and the membership matrix in the next time stamp. This will be our main direc-
tion in the future.
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Table 6. The communities associated with the wordDAYwith K determined automatically.

Our result CPM

FRIDAY, MONDAY, TUESDAY, WEDNESDAY,
WEEK, WEEKEND

FRIDAY, MONDAY, TUESDAY, WEDNESDAY,
WEEK, WORK

FOGGY, RAINY, SUNNY, CLOUDY FOGGY, RAINY, SUNNY, CLOUDY

AFTERNOON, EVENING, MORNING, NOON,
SUNRISE

AFTERNOON, EVENING, MORNING, NIGHT,
NOON,

DATE, MONTH, YEAR, CALENDAR DATE, MONTH, TIME, YEAR, CALENDAR

doi:10.1371/journal.pone.0119171.t006

A Stochastic Model for Community Detection

PLOS ONE | DOI:10.1371/journal.pone.0119171 March 30, 2015 24 / 26



References
1. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393:440–442. doi:

10.1038/30918 PMID: 9623998

2. Barabási AL, Albert R. Emergence of scaling in random networks. science. 1999; 286(5439):509–512.
doi: 10.1126/science.286.5439.509 PMID: 10521342

3. Girvan M, NewmanMEJ. Community structure in social and biological networks. Proceedings of the
National Academy of Sciences. 2002; 99(12):7821–7826. doi: 10.1073/pnas.122653799

4. Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex net-
works in nature and society. Nature. 2005; 435(7043):814–818. doi: 10.1038/nature03607 PMID:
15944704

5. Fortunato S. Community detection in graphs. Physics Reports. 2010; 486(3):75–174. doi: 10.1016/j.
physrep.2009.11.002

6. Xie J, Kelley S, Szymanski BK. Overlapping community detection in networks: the state of the art and
comparative study. arXiv preprint arXiv:11105813. 2011;.

7. NewmanM. Communities, modules and large-scale structure in networks. Nature Physics. 2012; 8
(1):25–31. doi: 10.1038/nphys2162

8. Karrer B, NewmanME. Stochastic blockmodels and community structure in networks. Physical Review
E. 2011; 83(1):016107. doi: 10.1103/PhysRevE.83.016107

9. Zarei M, Izadi D, Samani KA. Detecting overlapping community structure of networks based on vertex–
vertex correlations. Journal of Statistical Mechanics: Theory and Experiment. 2009; 2009(11):P11013.
doi: 10.1088/1742-5468/2009/11/P11013

10. Psorakis I, Roberts S, Ebden M, Sheldon B. Overlapping community detection using Bayesian non-
negative matrix factorization. Physical Review E. 2011; 83(6):066114. doi: 10.1103/PhysRevE.83.
066114

11. Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using nonnegative matrix factorization.
Data Mining and Knowledge Discovery. 2011; 22(3):493–521. doi: 10.1007/s10618-010-0181-y

12. Zhang Y, Yeung DY. Overlapping community detection via bounded nonnegative matrix tri-factoriza-
tion. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM; 2012. p. 606–614.

13. Zhang ZY, Wang Y, Ahn YY. Overlapping community detection in complex networks using symmetric
binary matrix factorization. Physical Review E. 2013; 87(6):062803. doi: 10.1103/PhysRevE.87.
062803

14. Cao X, Wang X, Jin D, Cao Y, He D. Identifying overlapping communities as well as hubs and outliers
via nonnegative matrix factorization. Scientific reports. 2013; 3,2993. doi: 10.1038/srep02993 PMID:
24129402

15. RenW, Yan G, Liao X, Xiao L. Simple probabilistic algorithm for detecting community structure. Physi-
cal Review E. 2009; 79(3):036111. doi: 10.1103/PhysRevE.79.036111

16. Shen HW, Cheng XQ, Guo JF. Exploring the structural regularities in networks. Physical Review E.
2011; 84(5):056111. doi: 10.1103/PhysRevE.84.056111

17. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix
factorization. Proceedings of the National Academy of Sciences. 2004; 101(12):4164–4169. doi: 10.
1073/pnas.0308531101

18. Tan VY, Fevotte C. Automatic Relevance Determination in Nonnegative Matrix Factorization with the/
spl beta/-Divergence. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2013; 35
(7):1592–1605. doi: 10.1109/TPAMI.2012.240

19. Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure
in complex networks. New Journal of Physics. 2009; 11(3):033015. doi: 10.1088/1367-2630/11/3/
033015

20. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment. 2008; 2008(10):P10008. doi: 10.1088/1742-
5468/2008/10/P10008

21. Huang J, Sun H, Liu Y, Song Q, Weninger T. Towards online multiresolution community detection in
large-scale networks. PloS one. 2011; 6(8):e23829. doi: 10.1371/journal.pone.0023829 PMID:
21887325

22. Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature.
2010; 466(7307):761–764.

23. Lee H, Choi S. Group nonnegative matrix factorization for EEG classification. In: International Confer-
ence on Artificial Intelligence and Statistics; 2009. p. 320–327.

A Stochastic Model for Community Detection

PLOS ONE | DOI:10.1371/journal.pone.0119171 March 30, 2015 25 / 26

http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1038/nature03607
http://www.ncbi.nlm.nih.gov/pubmed/15944704
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1038/nphys2162
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1088/1742-5468/2009/11/P11013
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1007/s10618-010-0181-y
http://dx.doi.org/10.1103/PhysRevE.87.062803
http://dx.doi.org/10.1103/PhysRevE.87.062803
http://dx.doi.org/10.1038/srep02993
http://www.ncbi.nlm.nih.gov/pubmed/24129402
http://dx.doi.org/10.1103/PhysRevE.79.036111
http://dx.doi.org/10.1103/PhysRevE.84.056111
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1109/TPAMI.2012.240
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1371/journal.pone.0023829
http://www.ncbi.nlm.nih.gov/pubmed/21887325


24. Kim J, Monteiro R, Park H. Group Sparsity in Nonnegative Matrix Factorization. In: SDM. SIAM; 2012.
p. 851–862.

25. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999;
401(6755):788–791. doi: 10.1038/44565 PMID: 10548103

26. Oja E. Principal components, minor components, and linear neural networks. Neural Networks. 1992; 5
(6):927–935. doi: 10.1016/S0893-6080(05)80089-9

27. Jin D, He D, Hu Q, Baquero C, Yang B. Extending a configuration model to find communities in complex
networks. Journal of Statistical Mechanics: Theory and Experiment. 2013; 2013(09):P09013. doi: 10.
1088/1742-5468/2013/09/P09013

28. Boyd SP, Vandenberghe L. Convex optimization. Cambridge university press; 2004.

29. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure.
Proceedings of the National Academy of Sciences. 2008; 105(4):1118–1123. doi: 10.1073/pnas.
0706851105

30. Esquivel AV, Rosvall M. Compression of flow can reveal overlapping-module organization in networks.
Physical Review X. 2011; 1(2):021025. doi: 10.1103/PhysRevX.1.021025

31. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. Journal of
Statistical Mechanics: Theory and Experiment. 2005; 2005(09):P09008. doi: 10.1088/1742-5468/2005/
09/P09008

32. NewmanME, Girvan M. Finding and evaluating community structure in networks. Physical review E.
2004; 69(2):026113. doi: 10.1103/PhysRevE.69.026113

33. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algo-
rithms. Physical Review E. 2008; 78(4):046110. doi: 10.1103/PhysRevE.78.046110

34. Rosvall M, Bergstrom CT. Multilevel compression of random walks on networks reveals hierarchical or-
ganization in large integrated systems. PloS one. 2011; 6(4):e18209. doi: 10.1371/journal.pone.
0018209 PMID: 21494658

35. Fortunato S, Barthelemy M. Resolution limit in community detection.Proceedings of the National Acad-
emy of Sciences. 2007; 104(1):36–41. doi: 10.1073/pnas.0605965104

36. ZacharyWW. An information flow model for conflict and fission in small groups. Journal of anthropologi-
cal research. 1977;p. 452–473.

37. Lusseau D, NewmanMEJ. Identifying the role that animals play in their social networks. Proceedings of
the Royal Society of London Series B: Biological Sciences. 2004; 271(Suppl 6):S477–S481. doi: 10.
1098/rsbl.2004.0225 PMID: 15801609

38. NewmanME. Modularity and community structure in networks. Proceedings of the National Academy
of Sciences. 2006; 103(23):8577–8582. doi: 10.1073/pnas.0601602103

39. NewmanME. Finding community structure in networks using the eigenvectors of matrices. Physical
Review E. 2006; 74(3):036104. doi: 10.1103/PhysRevE.74.036104

40. Knuth DE. The Stanford GraphBase: a platform for combinatorial computing. AcM Press; 1993.

41. Duch J, Arenas A. Community detection in complex networks using extremal optimization. Physical re-
view E. 2005; 72(2):027104. doi: 10.1103/PhysRevE.72.027104

42. Lambiotte, R, Delvenne, JC, Barahona, M. Laplacian dynamics and multiscale modular structure in net-
works. arXiv preprint arXiv:08121770. 2008;.

43. Lambiotte, R. Multi-scale modularity in complex networks. In: Modeling and optimization in mobile, ad
hoc and wireless networks (WiOpt), 2010 Proceedings of the 8th International Symposium on. IEEE;
2010. p. 546–553.

44. Delvenne JC, Yaliraki SN, Barahona M. Stability of graph communities across time scales. Proceed-
ings of the National Academy of Sciences. 2010; 107(29):12755–12760. doi: 10.1073/pnas.
0903215107

45. Fellbaum C. WordNet. Springer; 2010.

A Stochastic Model for Community Detection

PLOS ONE | DOI:10.1371/journal.pone.0119171 March 30, 2015 26 / 26

http://dx.doi.org/10.1038/44565
http://www.ncbi.nlm.nih.gov/pubmed/10548103
http://dx.doi.org/10.1016/S0893-6080(05)80089-9
http://dx.doi.org/10.1088/1742-5468/2013/09/P09013
http://dx.doi.org/10.1088/1742-5468/2013/09/P09013
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1103/PhysRevX.1.021025
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://www.ncbi.nlm.nih.gov/pubmed/21494658
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1098/rsbl.2004.0225
http://dx.doi.org/10.1098/rsbl.2004.0225
http://www.ncbi.nlm.nih.gov/pubmed/15801609
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.72.027104
http://dx.doi.org/10.1073/pnas.0903215107
http://dx.doi.org/10.1073/pnas.0903215107


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /All
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


