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Abstract
Peroxisome proliferator-activated receptors (PPARs) are involved in the control of carbohy-

drate and lipid metabolism and are considered important targets to treat diabetes mellitus

and metabolic syndrome. The available PPAR ligands have several side effects leading to

health risks justifying the search for new bioactive ligands to activate the PPAR subtypes, in

special PPARδ, the less studied PPAR isoform. Here, we used a structure-based virtual

screening protocol in order to find out new PPAR ligands. From a lead-like subset of pur-

chasable compounds, we identified 5 compounds with potential PPAR affinity and, from

preliminary in vitro assays, 4 of them showed promising biological activity. Therefore, from

our in silico and in vitro protocols, new PPAR ligands are potential candidates to treat

metabolic diseases.

Introduction
Peroxisome proliferator-activated receptors (PPARs) constitute a subfamily of nuclear recep-
tors involved in the transcription of genes related to the cellular proliferation and differentia-
tion, immune responses and metabolism of carbohydrates and lipids [1–8]. From the
pathological point of view, these receptors are related to metabolic diseases (mainly, type 2 dia-
betes mellitus, metabolic syndrome and dyslipidemia) [9–11], inflammatory process [12,13],
neurodegeneration [14] and some kinds of cancer [15–17].

The treatment of type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS) brings an
important focus to the development of new PPAR agonists. There are at least two classes of
pharmacological agents targeting the PPARs. The fibrates are known as PPARα ligands used
for the control of hypercholesterolemia, while the thiazolidinediones (TZDs) such as rosiglita-
zone and pioglitazone are PPARγ full agonists used as insulin sensitizers in T2DM therapy. De-
spite the clear efficacy to restore blood glucose levels, rosiglitazone was reported to cause
important side effects, such as fluid retention, weight gain and increase in the chance of a
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cardiovascular event [18]. These effects leaded some regulatory agencies around the world to
restrict or suspend the use of rosiglitazone [19]. Interestingly, pioglitazone was shown to be a
safer drug than rosiglitazone, raising two interesting considerations about the interactions be-
tween PPARγ and its agonists. As noted by Bruning and coworkers [18], small changes in the
binding mode, as observed between rosiglitazone and pioglitazone, can lead to important
changes in the pharmacological profile, including the side effects.

There is another class of PPAR agonists, fibrates, responsible for the activation of PPARα
that is well known to result in a decrease in the triglyceride levels and increase in HDL levels
(considered important factors for the establishment of T2DM) [20]. On the other hand,
PPARδ (the less studied receptor among the PPARs) was shown to be involved in anti-obesity
effects [21] and anti-inflammatory processes as arthritis, eczema and psoriasis [22,23] reinforc-
ing the potential beneficial effects of this receptor in the treatment of chronic and metabolic
diseases. Most PPAR dual- and pan-agonists developed to date were discontinued during the
clinical trials due to harmful effects observed in these assays, making unclear whether these ag-
onists can actually exert in vivo beneficial effects [20]. Researches on these topics are very im-
portant have the main purpose of highlighting how relevant it is the development of new
PPARδ agonists that could be used as chemical probes for a better understanding on the molec-
ular mechanisms involved in the PPARδ activation.

Here, a virtual screening (VS) of a large chemical library, the ZINC database [24], based on
the crystallographic structure of PPARδ receptor was used as a tool to identify new PPAR ligand
candidates. PPAR agonists can be classified as full agonists (related to the stabilization of α-
helix 12 [H12] by the interaction with polar residues and, this way, providing structural condi-
tions to the recruitment of cofactors at the AF-2 region) and partial agonists (related to a subop-
timal stabilization of H12 and also called H12 independent mechanism) [18]. Since the main
commercial PPAR agonists (glitazones and fibrates) and the reference PPARδ agonist
(GW501516) are full agonists [25,26], our VS protocol was carried out aiming to select the com-
pounds by analyzing the interactions that characterize a full agonist. After several analyses of
the main ligand-receptor interactions, five compounds were selected for preliminary biological
assays and four novel ligands were identified as agonists acting on PPARδ/γ and PPARγ. These
ligands are promising candidates to treat metabolic disorders, such as diabetes and metabolic
syndrome.

Material and Methods

Molecular Docking
The ‘clean-leads’ subset of purchasable compounds library was chosen for virtual screening as
available in ZINC (version of January-2010) [24]. This subset includes purchasable compounds
with molecular weight between 250 and 350 Da, n-octanol/water partition coefficient values
between 2.5–3.5 and number of rotatable bonds between 5 and 7 and this subset also excludes
toxic compounds with aldehydes and thiol groups.

For the docking simulations, the crystal structure 3GZ9 containing PPARδ LBD was chosen
[27] and prepared in three steps. First, all non-amino acid atoms (waters, ions, ligands and oth-
ers) were removed from the structure. Then, the missing hydrogen atoms were added and, fi-
nally, the protonation state of the residues in the active site was automatically defined based on
the local interactions. All water molecules were removed from the active site, since there are no
structural water molecules mediating the main interactions responsible for the PPARδ activa-
tion from the selected crystallographic structure. The preparation of the receptor structure was
performed with UCSF Chimera [28] software. Afterwards, the active site region was defined
based on the coordinates of the crystallographic ligand. Finally, the semi-flexible docking
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simulations were performed employing DOCK 3.5.54 [29–35] software. The ligand conformers
were obtained from ZINC database [24].

50 molecules selected after several analyses of the docking results were used for redocking
using Surflex-docking [36] and GOLD 3.1 [37–39] with their default parameters. The Surflex-
docking software employs the incremental search to generate docking poses, whereas GOLD
3.1 software uses a genetic algorithm (GA) to generate the poses of ligands. Both Surflex-
docking and GOLD programs generated 50 poses for each ligand and the top 5 ranked poses
were analyzed. The ranking of the docked poses was performed using CScore and GOLD-
Score, respectively. All the generated poses were analyzed with a rigorous visual inspection re-
garding the main molecular interactions between some amino acid residues in the active site
and the studied ligands. In this analysis, the polar interactions with Thr-289, His-323, His-449
and Tyr-473 and also stereochemical complementarities were inspected.

The main purpose of using three different docking programs to perform a consensus analy-
sis is avoiding the pitfalls of each method. DOCK 3.5.54 and GOLD 3.1 programs use force-
field based scoring function [34,39] while Surflex-docking uses a consensus scoring function
(Chem-Score as empirical scoring function, D-score and G-score as force-field based scoring
function and PMF-score as knowledge-based scoring function) [40]. These programs also have
important differences in the generation of ligand conformers. The definition of active site (rect-
angular box, sphere centered or amino acid residues) and the flexibility degree of ligand bonds/
angles can also affect the success rate in the molecular docking because it interferes in the
search space of the docking algorithm. Finally, taking into account that the training set used to
calibrate each docking engine is different from each other, it is expected that a docking pro-
gram works better on a certain system than others [41]. Several studies indicate that it is too
difficult to compare the efficiency of docking programs due to several factors such as the limita-
tion of evaluation metrics (e. g. root mean squared deviation [RMSD] value could indicate an
acceptable pose but the ligand orientation is wrong) [41–43]. Therefore, a consensus between
the ranked poses and a careful visual inspection of the results obtained by the three different al-
gorithms could improve the final results [44,45].

Transluciferase Assays
HeLa cells were cotransfected [46,47] by electroporation with expression vectors pcDNA3-
PPARδ or pcDNA3-PPARγ, report vector pGL3-PPARE and pRL. In addition, the cells were
treated for 20h in the presence of the studied ligands. Bezafibrate was employed as positive con-
trol to PPARδ and rosiglitazone was employed as positive control to PPARγ. DMSO was em-
ployed as vehicle to compounds 1–4 and the DMSO:EtOH (2:1 v/v) mixture was employed as
vehicle for compound 5. The PPAR activation measurements were estimated by Luciferase
Assay System (Promega) and were determined by the standard deviation of triplicate measure-
ments. Unfortunately, the transactivation assays with PPARα were not experimentally accessi-
ble for us.

Molecular Dynamics (MD) Simulations
Before the MD simulations, we generated the initial conformation of the compound 1 in the
PPARδ and γ binding sites and compound 2 at PPARγ binding site using DOCK 3.4 software
with the same VS protocol. We used the 3GZ9 [27] structure as PPARδmodel and 1ZGY [48]
as PPARγmodel.

All MD parameters were equally set to the four generated models. The MD simulations
were performed employing the GROMACS v.4.5.4 software [49,50] in an Intel Xeon
processor with 8GB RAM, running the CentOS5.5 Linux operating system. The explicit
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water molecules were defined employing Simple Point Charge (SPC) model [51]. Protonation
states of some amino acid residues were set according to pH 7.0 and counter ions were added
to neutralize the system. The protonation states of histidine residues were set as default (epsi-
lon form), because the initial protonation was tested only with docking protocol and for
PPARδ. Gromos force field [52] was chosen to perform the MD simulations. The ligand to-
pologies were generated employing PRODRG2 Server [53], which also uses Gromos force
field to parameterize charges and protonation states. The MD simulations were performed at
constant temperature and pressure in a periodic truncated octahedral box, with a minimum
distance between box edges and any protein atom equal to 2.0 nm.

Initially, an energy minimization using a steepest descent algorithm was performed. Then
to equilibrate the system, 200 ps of MD were performed at 298 K with positional restraints ap-
plied to the backbone atoms using LINCS algorithm. Finally, an unrestrained MD was per-
formed at 298 K during 5 ns of simulation to assess the stability of the structures. During the
simulations, temperature and pressure (1.0 bar) were maintained by the coupling to an external
heat and an isotropic pressure bath. Finally, we generated all MD figures employing PyMOL
0.99c [54] software.

Results and Discussion

Structure-based Virtual Screening
From the 21 crystallographic structures of PPARδ [27,55–68] found in Protein Data Bank
(PDB), we selected the structure with PDB code 3GZ9 [27] due to its crystallographic quality
(the lowest resolution value equals to 2Å, R-value and R-free values equal to 0.192 and 0.254,
respectively) and the similarity of its crystallographic ligand to the compound dataset em-
ployed in the enrichment-based model calibration stage. 51 PPARδ ligands synthesized and
tested by Wickens et al. [69] were employed as active compounds, while a subset of PPAR de-
coys (~ 3600 compounds) from Directory of Useful Decoys (DUD) [70] was employed as inac-
tive compounds in the enrichment-based calibration. In this step, we performed the docking
analysis of all actives ligands and decoys by varying several internal parameters related to li-
gand orientation (distance tolerance; the number and histogram parameters of ligand-receptor
spheres matching; the minimum and maximum number of ligand atoms to consider it as
docked; distance and degrees of molecule initial translation and rotation, respectively) and the
use of “chemical matching” function of DOCK 3.5.54. The chemical matching function con-
sists in creating spheres related to a specific compatible chemical group (H-bond donor or ac-
ceptor, charged groups and hydrophobic group) into the active site and trying to fit the
correspondent groups of the ligand in the created spheres. In other words, chemical matching
is a function with the idea of pharmacophore matching. The default settings of DOCK 3.5.54
without chemical matching function showed the best performance to distinguish the active
compounds to decoys identifying all active compounds at 5% of all screened dataset.

740,000 compounds were docked in the active site of PPARδ using the program UCSF
DOCK 3.5.54 [29–35] and, then they were sorted from the calculated binding energy. Fifty
compounds (approximately 0.007% of the initial set) were selected in a visual inspection from
the docking results (A Table in S1 File). The fifty selected compounds were then redocked in
the PPARδ active site using the Surflex-Dock [36], as implemented in Sybyl 8.1 package [71],
and Gold 3.1 [37–39] with their default parameters. According to the agreement among
DOCK, Surflex and Gold poses and binding energies, five compounds were selected for the bio-
logical evaluation. Fig. 1 shows the chemical structure of the selected ligands.
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Fig 1. Compounds selected by VS protocol.

doi:10.1371/journal.pone.0118790.g001
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Biological Assays
Initially, luciferase transactivation assays were carried out to verify the activity of the chosen
compounds against PPARδ and γ in comparison to negative (vehicle) and positive (bezafibrate,
100 μM for PPARδ; rosiglitazone, 100 μM for PPARγ) controls (A Fig. in S1 File). For an initial
screening, the compounds were tested in different concentrations, according to the ligand solu-
bility in DMSO. The most promising results were observed for the compounds 1 (300 μM) and
5 (10 μM) which activated PPARδ by 5.9 and 6.4 fold than vehicle and, surprisingly, by com-
pound 2 (3 μM) which activated only PPARγ by 6.9 fold than vehicle. The compound 1 also
showed PPARγ activity (6.8 fold of activation) at the same concentration of the positive control
and compound 4 showed a small activity against PPARδ and γ (2.5 and 2.8 fold in comparison
to vehicle, respectively) at 10 μM and 100 μM, respectively.

After the first experimental assays, two compounds were selected for a deeper examination.
Compound 1 was chosen due to its dual agonistic profile on PPARδ and γ. On the other hand,
compound 2 was found as selective PPARγ agonist. Dose-response curves were generated from
the luciferase transcriptional activation for the compound 1 using PPAR β/δ and PPARγ (B
Fig. in S1 File). EC50 of 134.2 μM and 18.1 μMwere found for PPARδ and PPARγ, respectively,
confirming that the compound 1 is more potent as PPARγ agonist than as PPARδ agonist.
Compound 2 showed an EC50 value of 190.8 μM. Dose-response curves could not be generated
for the compound 5, since higher doses resulted in a marked decrease in the cellular activation.
The compounds 1 and 2 showed EC50 above than 100 μMwhich is the limit to consider a com-
pound as a hit. On the other hand, all 5 selected compounds are negatively charged at

Fig 2. Final nanosecond snapshots of compound 1 molecular dynamic simulations in complex with PPAR subtypes.Main polar interactions
between the compound 1 and the PPARδ and PPARγ during the final nanosecond of MD simulation.

doi:10.1371/journal.pone.0118790.g002
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physiological pH due to its acid functions and, then, the low membrane permeability may in-
fluence the compounds to reach the PPAR binding sites [72]. Then, the high obtained EC50 val-
ues could be explained by this factor and the compounds 1 and 2, specifically, could be
explored by further SAR experiments in order to generate derived compounds with high PPAR
binding affinity.

Molecular Dynamics Simulations
In order to study the binding mode of the most active compounds and their PPAR selectivity,
we performed various molecular dynamics (MD) simulations. We selected the compounds 1, 2
and 5 to perform the simulations due to the significant PPAR activation in comparison to the
vehicle and the positive control. The docking poses were selected as initial conformations in
the MD simulations. We selected the compounds 1, 2 and 5 (the most active compounds) in
complex with PPARδ and γ and we also made MD simulations for the PPAR unbound sub-
types for comparison.

An equilibrium state was reached in all simulations after 4 ns, as observed by the RMSD val-
ues, available in the Supplementary Material (C Fig. in S1 File). The RMSD values for the li-
gands in the active sites and all H-bonds performed between the ligands and the PPAR
receptors are shown in Supplementary Figs. (D and E Figs. in S1 File, respectively). From these

Fig 3. Hydrogen bonds diagram between compound 1 and polar residues of PPARδ and PPARγ. Black squares indicate the presence of H-bonds and
white ones correspond to the absence of H-bonds.

doi:10.1371/journal.pone.0118790.g003
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results, we analyzed the interactions between the selected ligands (1, 2 and 5) and the main res-
idues in the active site of all PPAR subtypes after stabilization in order to understand their be-
havior in the PPAR active sites, as well as their experimental selectivity. Finally, aiming to
study the occupancy of the ligands into the H12 region, we analyzed the number of H-bonds
between the compounds and some residues in each active complex.

Compound 1
For the [5-(benzyloxy)-1H-indol-1-yl]acetic acid (compound 1, Fig. 2), H-bonds with all polar
residues in the PPAR active site for all subtypes (at least one His or Tyr residues) were observed
in the MD simulations (Fig. 3). These polar interactions involve H323, H449, T289 and Y473
in PPARδ; and H323, H449, Y473 and S289 in PPARγ (Fig. 2). A similar binding mode was
found to PPARδ and PPARγ, a typical behavior for PPAR full agonists. An analysis of the occu-
pancy for the hydrogen bonds (Fig. 3) shows that the interaction of the compound 1 with the
tyrosine residue located in H12 is more stable for PPARδ and PPARγ [64].

Compound 2
Surprisingly, unlike docking results obtained for PPARδ, 5-chloro-2-{[(2-phenylethyl)sulfo-
nyl]amino}benzoic acid (compound 2) showed only activation on PPARγ. Indeed, considering
the interactions of this compound in the active site, this ligand is not able to maintain the polar
interactions with PPARδ (Fig. 4), explaining its PPARγ selectivity. At the PPARδ binding site,
the compound 2 forms H-bonds with some residues (Thr-289 of PPARδ) and is not able to

Fig 4. Final nanosecond snapshots of compound 2 molecular dynamic simulations in complex with PPAR subtypes.Main polar interactions
between the compound 2 and the PPARδ and PPARγ during the final nanosecond of MD simulation.

doi:10.1371/journal.pone.0118790.g004
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reach the polar cavity of both receptors (Fig. 5). This can also be explained due to the larger
binding cavity of PPARγ than δ [6,64,73,74]. At the PPARγ active site, the compound 2 is able
to perform and maintain polar interactions with Ser-289, His-323, His-449 and Tyr-473 along
the 5ns of MD simulation according to Figs. 4 and 5.

Compound 5
Finally, the compound 5 ([2-imino-3-(4-methylbenzyl)-2,3-dihydro-1H-benzimidazol-1-yl]
acetic acid) showed PPARδ activation from our preliminary experimental assays. In line with
the transactivation results, the MD simulations showed only loose interactions between this li-
gand the PPARγ binding pocket. As shown in Fig. 6, the compound 5 directly interacts with

Fig 5. Hydrogen bonds diagram between compound 2 and polar residues of PPARγ. Black squares
indicate the presence of H-bonds and white ones correspond to the absence of H-bonds.

doi:10.1371/journal.pone.0118790.g005
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His-323 and Lys-367 and acts as an H-bond acceptor interacting with Thr-288 of PPARδ; on
the other hand, in the PPARγ active site, the compound 5 interacts only with Ser-289. The lack
of strong interactions leads the ligand to move away from the active site even in short dynamics
(5 ns). Therefore, one possible reason for a missing activity of the compound 5 on PPARγ is
the lack of interactions with histidine or tyrosine residues as the compounds 1 and 2 perform,
showing the importance of these residues in the PPARγ activation.

In the PPARδ active site, this ligand forms H-bonds with two histidine residues (His-323
and His-449) during all MD simulation and two additional interactions between Thr-288 and
Lys-367 (Fig. 7).

In this study, we can conclude that the compounds selected by the virtual screening were
able to perform the main polar contacts with PPARδ and γ, which are a way to activate this nu-
clear receptor providing the conditions to the gene transcription [73,75–81]. There are several
experimental and theoretical studies indicating the different behavior of PPAR ligands [82–
85]. However, to the best of our knowledge, there are few studies involving PPARδ ligands,
proving the importance of our study. Here, the results obtained from the MD analyses are able
to explain the behavior of the active compounds at the PPAR active sites. Based on the experi-
mental and computational analyses, obtained in this study, we can conclude that our structure-
based studies were successfully carried out and a new scaffold of PPAR ligands was found out.

Fig 6. Final nanosecond snapshots of compound 5 molecular dynamic simulations in complex with PPAR subtypes.Main polar interactions
between the compound 5 and the PPARδ and PPARγ during the final nanosecond of MD simulation.

doi:10.1371/journal.pone.0118790.g006
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Conclusion
In this study, we performed a structure-based virtual screening using a PPARδ structure aiming
to find out new molecular entities with PPAR affinity. Then, the clean-leads ZINC subset was
employed as ligand database and the docking analyses were performed with DOCK program.
The binding energies and visual inspections were used to rank the compound library. Finally, a
consensus analysis using GOLD and Surflex-Dock programs was carried out and 5 substances
with potential PPAR affinity were selected. From the 5 purchased compounds, 4 of them pre-
sented potential biological activity: compounds 1 and 4 showed PPARδ/γ activity; compound 2
displayed a significant PPARγ activation and; finally, compound 5 presented as a PPARδ
agonist. In addition to the new found scaffold, it is important to mention that the tetrazole
group is present in the compound 4 (with low levels of activation) as well in 13 of the first 50

Fig 7. Hydrogen bonds diagram between compound 5 and polar residues of PPARδ. Black squares
indicate the presence of H-bonds and white ones correspond to the absence of H-bonds.

doi:10.1371/journal.pone.0118790.g007
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compounds ranked by DOCK (A Table in S1 File). Indeed, the tetrazole moiety is a well-
known bioisosteric replacement for acids [86]. So, the presence of tetrazole in our findings is
not surprisingly, but the experimental evidences for the activity of the compound 4 support the
use of this ligand in further investigations. Therefore, the tetrazole group can act as the polar
head present in the typical PPAR ligands and can be explored in future SAR studies.

Supporting Information
S1 File. Structure of the selected compounds, results from the biological assays and MD
simulations. A Fig. Luciferase assays. Activation of PPARδ (A) and PPARγ (B) at the single
concentration of the 5 selected ligands. B Fig. EC50 values of the compounds 1 and 2. C Fig.
RMSD values for the protein backbone during the MD simulation.D Fig. RMSD values for the
ligand atoms during the MD simulation. E Fig. Number of H-bonds between the selected li-
gands and the protein atoms during the MD simulation. A Table. 50 compounds selected by
DOCK. These compounds were employed in the redocking analyses using GOLD and
Surflex programs.
(ZIP)
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