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Abstract
It is generally accepted that the basal ganglia play an important role in interval timing that re-

quires the measurement of temporal durations. By contrast, it remains controversial wheth-

er the basal ganglia play an essential role in temporal order judgment (TOJ) of successive

stimuli, a behavior that does not necessarily require the measurement of durations in time.

To address this issue, we compared the effects of idiopathic Parkinson’s disease (PD) on

the TOJ of two successive taps delivered to each hand, with the arms uncrossed in one con-

dition and crossed in another. In addition to age-matched elderly participants without PD

(non-PD), we examined young healthy participants so that the effect of aging could serve as

a control for evaluating the effects of PD. There was no significant difference between PD

and non-PD participants in any parameter of TOJ under either arm posture, although reac-

tion time was significantly longer in PD compared with non-PD participants. By contrast, the

effect of aging was apparent in both conditions. With their arms uncrossed, the temporal

resolution (the interstimulus interval that yielded 84% correct responses) in elderly partici-

pants was significantly worse compared with young participants. With their arms crossed,

elderly participants made more errors at longer intervals (~1 s) than young participants, al-

though both age groups showed similar judgment reversal at moderately short intervals

(~200 ms). These results indicate that the basal ganglia and dopaminergic systems do not

play essential roles in tactile TOJ involving both hands and that the effect of aging on TOJ is

mostly independent of the dopaminergic systems.

Introduction
Patients with Parkinson’s disease (PD), a neurodegenerative disease strongly associated with basal
ganglia dysfunction, show deficits in temporal processing when performing temporal reproduction
tasks [1–3], perceptual timing tasks [4, 5], simultaneity judgments, and temporal discrimination
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between two stimuli [6–8]. A neuroimaging study of healthy participants confirmed that the basal
ganglia and the substantia nigra pars compacta are involved in the reproduction of short and long
time intervals [9]. These previous findings suggest that dopaminergic transmission in the basal
ganglia and related cortical structures play an important role in interval timing tasks [10, 11].

In contrast to the general agreement regarding the contribution of the basal ganglia to inter-
val timing, it remains controversial whether the basal ganglia play an essential role in judging
the temporal order of two successive tactile stimuli. When participants were required to judge
the temporal order of two successive tactile stimuli, delivered to different fingers on the same
hand, Fiorio, Valente, Gambarin, Bentivoglio, Ialongo, Albanese, Barone, Pellecchia, Brancati,
Moretto, Fiaschi and Tinazzi [7] reported that the threshold interval to judge the order of the
two stimuli was significantly larger in participants with familial PD due to a PINK1 mutation
compared with age-matched healthy participants. By contrast, Nelson, Premji, Rai, Hoque,
Tommerdahl and Chen [12] reported that the threshold interval in patients with idiopathic PD
was similar to age-matched controls, even during periods without medication. This discrepan-
cy may be due to differences in the genetic backgrounds of the two patient groups, but it is
worth noting that Fiorio, Valente, Gambarin, Bentivoglio, Ialongo, Albanese, Barone, Pellec-
chia, Brancati, Moretto, Fiaschi and Tinazzi [7] required the participants to judge both simulta-
neity and temporal order, whereas Nelson, Premji, Rai, Hoque, Tommerdahl and Chen [12]
required the participants to only judge temporal order. Because the information processing re-
quired for temporal order judgment (TOJ) is proposed to be different from that required for si-
multaneity judgment (SJ) [13–15], and the two processes have been modeled to work in
parallel [16], task performance in TOJ should have been disturbed by the concurrent SJ task in
the study by Fiorio, Valente, Gambarin, Bentivoglio, Ialongo, Albanese, Barone, Pellecchia,
Brancati, Moretto, Fiaschi and Tinazzi [7]. Assuming that PD patients showed impaired per-
formance in the SJ task, the TOJ task must have been more disturbed by the concurrent SJ task
in PD patients than in age-matched controls.

In addition, a recent neuroimaging study examining the neural correlates of tactile TOJ suggested
major contributions from several cortical areas (the prefrontal, parietal, and temporal cortices) but
less contributions from the basal ganglia [17]. Thus, it is possible that the basal ganglia are not criti-
cally involved in TOJ. The primary purpose of the present study was to test whether the performance
of tactile TOJ in idiopathic PD patients is significantly different from age-matched controls.

In contrast to previous studies [7, 12] in which two stimuli were delivered to the fingers of
one hand, we used a TOJ task whereby two successive tactile stimuli were delivered to each
hand. Involving both hands in our TOJ task is unique because crossing the arms causes a reversal
of subjective temporal order in healthy young participants at intervals of up to 300 ms [13, 18].
Thus, to examine whether the basal ganglia contribute to the reversal of subjective temporal
order due to arm crossing, we compared TOJ in PD and non-PD participants not only in the
standard arms-uncrossed condition but also in the arms-crossed condition. We also studied
young healthy participants as another control group. Because young PD patients are rare, it was
not possible to adopt a factorial design (PD/non-PD x young/old), but we expected that the effect
of aging [19–24] could serve as a control for evaluating the effects of PD. Therefore, we examined
the TOJ of tactile stimuli delivered to each hand with arms uncrossed in one condition and
crossed in another in young and elderly participants without PD and in idiopathic PD patients.

Methods

Participants
Twenty young adults (9 females and 11 males; mean age 23 ± 1.0 years; mean ± standard devia-
tion), 26 patients with idiopathic Parkinson’s disease (PD patients; 12 females and 14 males;
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mean age 67 ± 4.9 years), and 24 age-matched elderly adults without PD (non-PD elderly par-
ticipants; 12 females and 12 males; mean age 67 ± 4.9 years) participated in this study
(Table 1). All of the participants were strongly right-handed (+60� L.Q� +100) according to
the Edinburgh Inventory [25]. The diagnosis of PD was based on the United Kingdom Parkin-
son’s Disease Society Brain Bank Clinical Diagnostic Criteria [26]. Disease severity was
assessed with the Unified Parkinson’s Disease Rating Scale (UPDRS) Part III and the Hoehn-
Yahr Scale: H&Y [27]. All of the PD patients were receiving dopaminergic replacement
therapy, which included levodopa (0–1000 mg) and/or a dopamine agonist (pramipexole, ropi-
nirole, or pergolide), or entacapone or selegiline. The PD patients joined the experiments dur-
ing periods under medication. The UPDRS-III was performed when patients were on
(mean ± S.E. UPDRS-III-on = 13.8 ± 6.7) and off (UPDRS-III-off = 30.6 ± 8.8) their medica-
tion. The Hoen-Yahr stage when patients were off medication ranged from mild to advanced
(minimum, 1; maximum, 4). None of the patients had a history of stroke, head injury, epilepsy,
psychiatric problems, any primary sensory abnormalities or diabetes mellitus. The Mini-
Mental State Examination (MMSE) [28] was performed as a brief mental screening test for the
PD patients and non-PD elderly participants. All of the participants scored 25 or more (full
score = 30) except for one PD patient. During the experiments, one PD and another non-PD
elderly participant were not able to keep their eyes closed as instructed. These two participants
and the PD patient with the MMSE score less than 25 were excluded from further analysis.
Therefore, we analyzed data from 20 young participants, 23 non-PD elderly participants, and
24 PD participants. Written informed consent was obtained from all participants prior to the
experiments. This study was approved by the Ethical Review Board of Juntendo University
School of Medicine.

Task procedures
The participants were required to sit with their hands palm down on a desk and their arms un-
crossed (arms-uncrossed condition) or with their arms crossed (arms-crossed condition). In

Table 1. Demographics of the participants.

Young Elderly PD

Number 20 23 24

Gender (M: F) 9:11 11:12 14:10

Age (years) 23 ± 1.0 67 ± 4.9 67 ± 4.9

Edinburgh handedness inventory 89 ± 13 92 ± 15 94 ± 11

Mini Mental State Examination NA 29 ± 1.7 28 ± 1.6

Self-Rating Depression Scale * NA 27 ± 4.0 41 ± 9.0

Disease duration (years) NA NA 8.7 ± 4.4

UPDRS III total motor score, On NA NA 13 ± 6.7

UPDRS III total motor score, Off NA NA 32 ± 9.7

Hoen-Yahr stage, On NA NA 2.4 ± 0.60

Hoen-Yahr stage, Off NA NA 3.7 ± 0.50

Levodopa equivalent dosage (mg) NA NA 706 ± 328

An asterisk (*) indicates a significant difference between the non-PD and PD participants (p < 0.001,

Wilcoxon rank sum test). Each cell shows the mean ± s.e.m, where applicable. On/off: on-medication/

off-medication. NA: not applicable.

doi:10.1371/journal.pone.0118331.t001
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the arms-crossed condition, the left arm was placed over the right arm, and the arms touched
each other at the distal end of the forearm.

Solenoid skin contactors (Uchida Denshi, Tokyo, Japan) were used to deliver brief tactile
stimulation (10 ms duration) to the dorsal surface of the ring finger of each hand. The distance
between the ring fingers was 20 cm in all conditions. A response button was placed under
the tip of each index finger. During the experiments, the participants had to close their eyes
while white noise (80 dB) was played via headphones placed over the participants’ ears. There-
fore, the stimulus could be neither seen nor heard; the participants could only feel the tactile
stimulation of the skin.

Two successive stimuli were delivered, one to each hand, separated by one of 12 randomly
assigned stimulus onset asynchronies (SOAs) from -960 to 960 ms (-960, -480, -240, -120, -60,
-30, 30, 60,. . ., 960 ms) in the arms-uncrossed condition and from -1920 to 1920 ms (-1920,
-960, -480, -240, -120, -60, 60, 120,. . ., 1920 ms) in the arms-crossed condition. In positive
SOAs, the right hand was stimulated earlier than the left and vice versa. The participants were
required to judge the order of the two stimuli and had to press a button with the index finger of
the hand that had been stimulated second. To prevent the participants from making a decision
from the first stimulus alone, each experiment included catch trials, in which two successive sti-
muli with an interval of 960 ms (arms-uncrossed condition) and 1920 ms (arms-crossed condi-
tion) were delivered to only one hand (right or left). The participants were encouraged to
respond as soon as possible after the delivery of the second stimulus. When the reaction time
was larger than 6000 ms or the participants responded before the second stimulus, that trial
(with the same SOA) was repeated at the end of each experiment. No feedback was given to the
participants about the reaction time or whether their responses were correct/incorrect.

All of the participants, except for two young participants and eight PD participants, took
part in two separate experiments in the following order: with the arms uncrossed and with the
arms crossed. To increase our statistical power to detect the difference in the temporal resolu-
tion in the arms-uncrossed condition, we started from the arms-uncrossed condition in all of
the participants, thereby maximizing the number of participants with valid data in the arms-
uncrossed condition. The two young participants and eight PD participants were not able to
participate in the second experiment (arms-crossed condition) owing to fatigue. Each experi-
ment consisted of eight epochs, in which 12 test trials with different SOAs and 2 catch trials
were permuted in a random order. Thus, one experiment consisted of 112 trials including 16
catch trials. Inter—trial intervals were randomly chosen within the range of 1.5 to 2.5 s.

The participants took part in a single stimulus task before each TOJ experiment with the
arms crossed or uncrossed. A single stimulus was delivered to only one of the two hands in a
random order for 20 trials, and the participants were required to react by pressing a button
with the index finger of the stimulated hand. This task was necessary because we had to evalu-
ate how many of the errors in the TOJ task resulted from the mere inability to report a correct
hand when a single stimulus was delivered to a single hand. The single stimulus task also served
as a period during which participants became familiar with the response buttons and
tactile stimuli.

Data analysis
The response data were sorted by stimulation interval to calculate the order-judgment proba-
bilities that the right hand was stimulated earlier (or the left hand was stimulated later) in the
uncrossed (pu) and crossed (pc) conditions. The data from trials in which the reaction time was
greater than the 75th percentile by 1.5 times the interquartile range (in the arms-uncrossed
condition) or longer than 6000 ms were excluded as outliers. The order-judgment probability
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in the uncrossed condition (pu) was fitted by a cumulative density function of a Gaussian distri-
bution as follows [13]:

puðtÞ ¼ ðpmax � pminÞ
Z t

�1

1ffiffiffiffiffiffi
2p

p
su

exp
�ðt� duÞ2

2s2
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where t, du, σu, pmax, and pmin denote the SOA, size of the horizontal transition, temporal reso-
lution, and upper and lower asymptotes of the judgment probability, respectively. The tempo-
ral resolution (σu) corresponds to the SOAs that yielded 84% correct responses (relative to the
asymptotes).

The order-judgment probability (right hand stimulated first) in the arms-crossed condition
(pc) was assumed to be flipped from the order-judgment probability in the uncrossed condition
(pu) in a manner formulated as follows:

pcðtÞ ¼ flðtÞf1� puðtÞg þ f1� frðtÞgpuðtÞ; ð2Þ
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where fl denotes the flip probability of judgment from ‘left first’ to ‘right first’ and fr denotes the
flip probability of judgment from ‘right first’ to ‘left first’. We estimated five parameters in the
flip probabilities that follow the Gaussian functions shown in Equations 3 and 4: the peak flip
amplitude of the Gaussian functions (Al and Ar), the size of the horizontal transition (d), the
time window of the flip (σf), and a constant error rate (c). The constant error rate (c) corre-
sponds to the degree of general error in each response, and the peak flip amplitudes of the
Gaussian functions (Al and Ar) show the tendency of judgment reversal at short SOAs that sub-
side at longer intervals. Moreover, we calculated the net peak flip amplitudes (Ãl and Ãr) as
follows [29]:

~Al ¼ max Al � exp
�ðt � dÞ2

2sf
2

 !
� ð1� puðtÞÞ

 !
; and ð5Þ

~Ar ¼ max Ar � exp
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 !
: ð6Þ

Matlab was used with the optimization toolbox (MathWorks, Natick, MA, USA) for fitting
while minimizing the Pearson chi-squared statistic, which reflects the discrepancy between the
sampled order-judgment probability and the prediction using the four-parameter model.

The median of each estimated parameter was compared across the three participant groups
(young, non-PD elderly, and PD elderly participants) in each condition (arms-uncrossed and
crossed) by using the Wilcoxon rank-sum test (exact test). The level of statistical significance
was set to 0.05/3 after a Bonferroni correction for multiple comparisons. A non-parametric test
was used because 13 out of 21 distributions significantly deviated from normal over all 7 pa-
rameters (Lilliefors test): the temporal resolution (σu, young: p = 0.012), the net peak flip ampli-
tude (Ãl, PD: p = 0.036; Ãr, young: p = 0.0092), the constant error rate (c, young: p< 10-10,
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non-PD: p = 0.0071), the time window of the flip (σf, non-PD: p = 0.0024, PD: p = 0.018), the
error rate in catch trials (young: p< 10-10, non-PD: p = 0.0026, PD: p = 0.016), and the error
rate in single stimulus trials (young: p< 10-10, non-PD: p< 0.0001, PD: p< 0.0001). Accord-
ingly, we used Spearman’s rank correlation coefficient rather than Pearson’s when correlations
between two parameters were calculated. The 95% bootstrap confidence interval of the mean
was also calculated for each estimated parameter.

To evaluate the effect size in each comparison between two groups, we calculated the
Mann-Whitney test statistic “U” divided by the product of the number of participants in
each group:

U
n1 � n2

¼ ranksum2 � n2ðn2 þ 1Þ=2
n1 � n2

ð7Þ

where n1 and n2 represent the number of participants in groups 1 and 2, and ranksum2 repre-
sents the sum of the ranks of members in group 2 when the members of groups 1 and 2 are or-
dered from smallest to largest. The statistic (U/(n1×n2)) reflects the probability of a sample
from group 2 being larger than a sample from group 1 when each sample is randomly selected
from each group. Thus, U/(n1×n2) computes to 1) the value of 0 when all data in group 2 are
smaller than those in group 1, 2) the value of 0.5 when the distributions of the two groups are
identical, and 3) the value of 1 when all data in group 2 are greater than in group 1.

A three-way mixed model ANOVA was used to compare mean reaction time with a
between-subject main factor (the participant group: young, non-PD elderly, and PD elderly
participants), and two within-subject main factors (the posture: uncrossed, and crossed; the
SOA: -960, -480, -240, -120, -60, 60,. . ., and 960 ms), and their interactions. Post-hoc tests of
simple main effects, and/or simple, simple main effects were performed for each of significant
interactions. Significance of the post-hoc tests were judged by using the Ryan’s method for
multiple comparison [30].

Results

Arms-uncrossed condition
With arms uncrossed, the order-judgment probability (pu) that the right hand was stimulated
first was closely approximated by a monotonic sigmoid function (Equation 1) in the young,
non-PD elderly, and PD elderly participants (Figs. 1A-C). The sigmoid curves clearly show
that the temporal resolution (σu, the SOA yielding approximately 84% correct responses) was
generally better in the young participants (Fig. 1A, solid curve) than the elderly participants
(Fig. 1B, C). Among the elderly participants, the non-PD participants (Fig. 1B, broken curve)
did not perform better than the PD patients (Fig. 1C, solid curve). Wilcoxon rank sum tests
confirmed these observations (Fig. 1D); the median temporal resolution in the young partici-
pants (median = 41 ms, interquartile range (IQR) = 50 ms) was significantly better than in the
elderly participants with PD (median = 114 ms, IQR = 84 ms; p< 0.0001, U/(20×24) = 0.97)
and without PD (median = 96 ms, IQR = 67 ms; p< 0.0001, U/(20×23) = 0.92), but the
temporal resolution was not significantly different between the non-PD and PD participants
(p = 0.078, U/(20×23) = 0.62; α = 0.05/3, Bonferroni corrected). The temporal resolution in the
PD patients did not significantly correlate with disease severity (UPDRS-III severity score,
Spearman’s ρ = 0.0039, p = 0.99), disease duration (ρ = -0.011, p = 0.96), medication (Levodopa
equivalent doses [31], ρ = -0.15, p = 0.48), or the score of the Mini-mental state examination
(ρ = 0.13, p = 0.54).

The lower bound of the sigmoid function (Pmin) was close to zero, and the upper bound
(Pmax)) was close to one in all three groups (Table 2). Accordingly, the error response rates in
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the catch trials (double stimulation to the same hand, Fig. 1E) and in the single stimulus trails
were close to zero in all groups (Fig. 1F, Table 2). The results show that the young and elderly
participants seldom erred in reporting the hand that was stimulated as long as a single hand
was stimulated with the arms uncrossed.

Arms crossed condition
With arms crossed, both the young (red circles, Fig. 2A) and elderly participants (red squares
and triangles, Figs. 2B, C) reported inverted judgment more often than in the uncrossed condi-
tion (sigmoid curves in Fig. 2A-C), which is in agreement with previous studies [13, 18, 29].
The difference between the order-judgment probability in the arms-crossed condition and the
arms-uncrossed condition (red symbols in Figs. 2D-F) was biased by the constant error rate (c)
and had positive (Ãl) and negative peaks (Ãr) that was approximated using two Gaussian func-
tions with different peaks (Al and Ar in Equations 3 and 4) and a single standard deviation (σf).
The net peak flip probabilities (Ãl and Ãr, insets in Fig. 2F) represent the maximum probability

Fig 1. Temporal order judgment in the arms-uncrossed condition. (A-C) The order-judgment probability (ordinate) that the right hand was stimulated
earlier than the left is plotted against the stimulation onset asynchrony (SOA, abscissa) for the young (A, circles), non-PD elderly (B, squares), and PD elderly
participants (C, triangles). A positive SOA indicates that the right hand was stimulated first. The sigmoid curves indicate the results of the model fitting
(Equation 1). A broken curve in (B) shows the result for the non-PD elderly participants and the same broken curve is superimposed in (A) and (C) for the
sake of comparison with the young (A) and elderly-PD participants (C). Each symbol represents 160 (A, 8 trials×20 participants), 184 (B, 8×23), and 192 trials
(C, 8×24) trials. (D) Group comparisons of temporal resolution. Each box in the box-plots show the 25, 50 (median), and 75 percentiles. The whiskers extend
to the most extreme data points not considered as outliers that falls outside the range of 1.5 times of the interquartile range from either end of each box. The
brackets with asterisks indicate that the median was significantly different (p< 0.05/3, Wilcoxon rank sum test after Bonferroni corrections for multiple
comparisons).

doi:10.1371/journal.pone.0118331.g001
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of judgment reversal from “right-hand first” to “left-hand first” (Ãr) and from “left-hand first”
to “right-hand first” (Ãl), which were added to the baseline error rate c (Fig. 2F, inset). When
the model parameters were calculated for each participant, the median of the net peak flip
probabilities were not significantly different among the three groups (Ãl and Ãr, Figs. 2G, H).
By contrast, the median of the constant error rate (c: the degree of general error in each re-
sponse) was significantly greater in the elderly participants (non-PD: median = 0.14,
IQR = 0.35; PD: median = 0.24, IQR = 0.28) than in the young participants (Fig. 2I, median = 0,
IQR = 0; p< 0.0001, U/(18 × 23) = 0.86 for young/ non-PD; p< 0.0001, U/(18 × 16) = 0.87 for
young/ PD; Wilcoxon rank sum tests, α = 0.05/3, Bonferroni corrected). The median of the
time window of the flip (σf in Equations 3 and 4), which reflected the time window of the judg-
ment reversal, was also significantly greater in the elderly participants (non-PD: median = 430
ms, IQR = 630 ms, p = 0.00014, U/(18 × 23) = 0.77; PD: median = 530 ms, IQR = 820 ms,
p = 0.0035, U/(18 × 16) = 0.77; α = 0.05/3) than in the young participants (median = 240 ms,
IQR = 130 ms).

Accordingly, the medians of the error rate in the catch trials (Fig. 2K) and the single stimu-
lus trials (Fig. 2L) were also significantly worse in the elderly participants than in the young
participants (catch: p = 0.00094, U/(18 × 23) = 0.75 for young/ non-PD, p< 0.0001,
U/(18 × 16) = 0.84 for young/ PD; single: p = 0.00035, U/(18 × 23) = 0.79 for young/ non-PD,
p = 0.00019, U/(18 × 16) = 0.82 for young/ PD). In addition, the constant error rate was signifi-
cantly correlated with the time window of the flip (Spearman’s ρ = 0.36, p = 0.0055, t(55) = 2.9;
Fig. 2M) and the error rate in the catch trials (ρ = 0.53, p< 0.0001, t(55) = 4.6; not shown) and
in the single stimulus trials (ρ = 0.43, p = 0.00077, t(55) = 3.6; not shown). The results show
that the elderly participants with or without PD generally erred more in reporting which hand
was stimulated, even when a single hand was stimulated.

In addition, it is worth noting that there was not a single parameter that differed significantly
between the non-PD and PD elderly participants. The 95% confidence intervals of the mean
from the two groups overlapped (Table 2). The effect size,U/(23×16), was mostly close to

Table 2. Comparison of the mean model parameters.

Young Non-PD elderly PD
(n = 20) (n = 23) (n = 24)

Arms uncrossed σu (ms)* 36 ± 26, [26, 47] 109 ± 58, [90, 140] 133 ± 68, [111, 166]

du (ms) 20 ± 27 4.2 ± 41 4.2 ± 61

Pmin 0 0.0009 ± 0.003 0.0004 ± 0.002

Pmax 1 1 0.9996 ± 0.002

Single 1 1 0.998 ± 0.011

Catch 0.997 ± 0.014 1 0.997 ± 0.014

Arms crossed Ãl 0.48 ± 0.28, [0.36, 0.61] 0.43 ± 0.28, [0.32, 0.55] 0.40 ± 0.25, [0.27, 0.51]

Ãr 0.37 ± 0.22, [0.29, 0.49] 0.26 ± 0.20, [0.18, 0.34] 0.31 ± 0.20, [0.21, 0.40]

c * 0.019 ± 0.04, [0.0050, 0.041] 0.21 ± 0.19, [0.14, 0.29] 0.23 ± 0.17, [0.15, 0.31]

σf (ms) * 278 ± 130, [229, 349] 651 ± 519, [477, 901] 894 ± 1081, [544, 1758]

d (ms) –23 ± 131 -85 ± 363 19.2 ± 334

Single * 0.02 ± 0.030, [0.0035, 0.028] 0.16 ± 0.21, [0.16, 0.39] 0.17 ± 0.20, [0.12, 0.32]

Catch * 0.01 ± 0.030, [0.0083, 0.036] 0.26 ± 0.29, [0.094, 0.27] 0.18 ± 0.19, [0.094, 0.29]

See Equations 1–6 for the definition of each parameter. Numbers in brackets show the 95% bootstrap confidence intervals of the mean with 10000

bootstrap samples. Each asterisk indicates that there was a significant difference between the young and non-PD elderly participants (p < 0.001,

Wilcoxon rank sum test). Note that no parameter was significantly different between the PD and non-PD participants.

doi:10.1371/journal.pone.0118331.t002
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Fig 2. Temporal order judgment in the arms-crossed condition. (A-C) The red symbols indicate the probability of a right-hand first judgment in the arms-
crossed condition plotted against the SOA for the young (A), non-PD elderly (B), and PD elderly participants (C). The black and red curves indicate the results
of the model fitting in the uncrossed (Equation 1) and crossed (Equation 2–4) conditions. Each symbol represents 144 (A, 8×18), 184 (B, 8×23) and 128 (C,
8×16) trials. The other conventions are as in Fig. 1A. (D-F) The difference between the order-judgment probability in the crossed and uncrossed condition
(ordinate) are plotted against the stimulation onset asynchrony (SOA, abscissa). The difference shown in (D), (E), and (F) was calculated using data from the
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0.5: 0.49 (Ãl), 0.55 (Ãr), 0.53 (c), 0.52 (σf), 0.45 (error rate in catch trials), and 0.49 (error rate
in single-stimulus trials). The number of participants required to make these effects significant
are 5000 (Ãl), 280 (Ãr), 1000 (c), 1600 (σf), 300 (error rate in catch trials), and 6100 (error rate
in single-stimulus trials) participants for each group. These results clearly show that these small
effects would have never reached significance unless we recruited hundreds of participants.

Reaction time
Reaction time was generally shorter in the young participants (Fig. 3A) than in the elderly par-
ticipants (Figs. 3B, C). In addition, reaction time was generally longer in the PD patients com-
pared with the non-PD elderly participants (Figs. 3B, C). A three-way mixed model ANOVA
(group × posture × SOA; group: between-subject factor; posture and SOA: within-subject fac-
tors) revealed that the three main effects, group (young, non-PD, PD; F(2, 54) = 18.8,
p< 0.0001), posture (uncrossed, crossed; F(1, 54) = 121, p< 0.05), and SOA (-960, -480, . . .,
960; F(9, 486) = 51.4, p< 0.0001), and all interactions (group × posture: F(2, 54) = 6.9,
p< 0.0022; group × SOA: F(18, 486) = 4.2, p< 0.0001; posture × SOA: F(9, 486) = 5.0,
p< 0.0001; group × posture × SOA: F(18, 486) = 2.8, p = 0.0001) were significant. Post-hoc
tests for the simple main effect of group showed on average that the mean reaction time was
significantly different between any combination of the three groups (young/ PD: p< 0.0001,
t(32) = 5.9; non-PD/ PD: p = 0.0022, t(38) = 3.2; young/ non-PD: p = 0.0034, t(40) = 3.1,
Ryan’s method; young: 720 ± 20 ms, non-PD: 990 ± 22 ms, PD: 1300 ± 31 ms; mean ± s.e.m.).
However, it is worth noting that the three-way interaction qualified the main effect in many
ways. For example, the simple, simple main effects of group did not reach a level of signifi-
cance at longer SOAs (-960, -480, -240, 480, 960 ms) when the arms were uncrossed, but were
significant at any SOAs when the arms were crossed. That is, the group difference was more
marked when the arms were crossed (Fig. 3, red circles) than when the arms were uncrossed
(black squares). Longer reaction time in the PD patients compared with the non-PD

young (A), non-PD elderly (B), and PD elderly participants, respectively. The upward and downward Gaussian curves (blue) correspond to the flip functions, fl
and fr, of the judgment probabilities as defined in Equations (3) and (4). The net peak flip amplitudes (Ãl and Ãr in Equations (5) and (6)) and the probability of
generic error (c in Equations (3) and (4)) are indicated in (F). (G-L) Group comparisons: the net left-to-right flip probabilities (Ãl) (G), those of the reverse (Ãr)
(H), the constant error rate (c) (I), the time window of the flip (σf) (J), and error response rates in the catch (K) and the single stimulus trials (L). The box-plot
conventions are as Figs. 1D-F. The brackets with asterisks show that the median was significantly different (p< 0.01, Wilcoxon rank sum test after the
Bonferroni correction for multiple comparisons). (M) The time window of the flip (σf, ordinate) plotted against the constant error rate (c, abscissa). Data from
the young (circles), non-PD elderly (squares), and PD elderly participants (triangles) are shown with different symbols. Note a significant correlation between
the two parameters (Spearman’s ρ = 0.36, p = 0.0055).

doi:10.1371/journal.pone.0118331.g002

Fig 3. Comparisons of reaction time. The mean reaction time (ordinate) is plotted against the SOA (abscissa) for the young (A), non-PD (B), and PD
participants (C). The colors differentiate between the arms-crossed (red) and -uncrossed (black) conditions.

doi:10.1371/journal.pone.0118331.g003
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participants, ~300 ms greater on average, indicates that the motor disorder due to Parkinson-
ism was present even with medication.

Discussion
In the present study, we examined tactile temporal order judgment in young adults, healthy el-
derly participants and elderly participants with PD. We found clear effects of aging in both
conditions (arms uncrossed and crossed). With arms uncrossed, the temporal resolution was
significantly worse in the elderly participants compared with the young participants. With
arms crossed, judgment reversals were observed at relatively short SOAs (i.e.,< 500 ms) in the
young participants but over the entire range (up to ~2 s) in the elderly participants. By contrast,
we were not able find any significant differences between the non-PD and PD participants, ex-
cept that reaction times were significantly longer in the PD patients.

Effects of aging on temporal resolution
The temporal resolution in the elderly participants was worse than in the young participants
when the participants’ arms were uncrossed. These results agree with previous studies [23, 24].
The age-related decline in tactile acuity, reported here and in previous studies, may be attribut-
ed to a general slowing of nerve conduction, not only in the first-order sensory nerves [32] but
also in the callosal fibers used for interhemispheric transfer [20]. It is worth noting that a slow-
ing of interhemispheric nerve conduction not only results in a delay but also leads to an in-
crease in the variability of the delay [20]. This increase in variability should directly affect any
temporal processing, including TOJ, SJ and temporal discrimination tasks. It is of course possi-
ble that general cortical atrophy in normal aging [33] underlies the age-related decline in
temporal resolution.

Effects of aging on judgment errors in the arms-crossed condition
In the arms-crossed condition, judgment reversal was observed in both the young and elderly
participants, as previously reported in non-elderly participants. Among the parameters of the
model fitting, the net peak flip probabilities (Ãl, Ãr) of the elderly participants were not signifi-
cantly different from the young participants. This new finding indicates that the degree of judg-
ment reversal due to arm-crossing per se was comparable in both age groups with short SOAs.

However, the median time window of the flip (σf), which reflects the time window of the
judgment reversal, was significantly larger in the elderly participants (non-PD: 430 ms, PD:
530 ms) than in the young participants (240 ms, Fig. 2J). In addition, the constant error rate in
TOJ (Fig. 2I), which reflects the general error rate in choosing which hand, and the error rates
in the catch (Fig. 2K) and single stimulus trials (Fig. 2L) were significantly larger in the elderly
participants than in the young participants whose median error rates were zero. That is, the el-
derly participants generally made more errors not only at SOAs as long as ~2 s but also when a
single stimulus was delivered to a single hand. In addition, the 4 parameters, the time window
of the flip, the constant error rate and error rates in catch and single stimulus trials generally
correlated with each other. Thus, the increase in the 4 error parameters in the elderly partici-
pants is likely to reflect the same effect of aging.

It is now widely accepted that the brain initially maps a stimulus that was delivered to one
of the crossed hands (e.g., the left hand located to the right of the right hand) to the wrong
hand (the right hand to the left of the left hand), then remaps the stimulus to the correct hand
(the left hand) within 0.3–0.4 s (or even faster) after the stimulus delivery [34–39] in non-
elderly participants. This idea originated from observations of curved saccades that occur when
participants are required to make a speeded saccade to a hand that is touched while their arms
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are crossed [40, 41]. When the saccade latency is less than 200 ms, the eyes often start to move
toward the wrong hand and then change their direction toward the correct hand, resulting in a
curved trajectory. The probability of performing a curved saccade drops to less than 5% when
the saccade onset latency is larger than 250 ms, but it increases up to 70–80% when the onset
latency is as short as 160 ms [41, 42]. It should be noted that the participants were young in
these studies (20–37 years old in Overvliet, Azanon and Soto-Faraco [41] and 21–34 years old
in Nakano, Neshime, Shojima and Kitazawa [42]). The increase in the probability of curved
saccades up to 80% at shorter onset latencies indicates that the initial mapping to the wrong
hand is a reflexive process shared among young participants, and the corrective remapping fol-
lows within a very short period. Based on the present results, we speculate that elderly partici-
pants share the initial incorrect mapping process with young participants but have deficits in
the second remapping process.

Lack of contribution of the basal ganglia to TOJ
Consistent with Nelson, Premji, Rai, Hoque, Tommerdahl and Chen [12], the temporal resolu-
tion of the PD patients was comparable with the non-PD participants. Judgment errors in the
arms-crossed condition were similarly observed in both the non-PD and PD participants. The
lack of significant differences between the non-PD and PD participants suggests that the age-
related changes in TOJ across hands do not result from changes in the basal ganglia or the do-
paminergic system in either the arms-uncrossed condition or the arms-crossed condition.

However, the present results must be evaluated with caution because the participants with
PD joined the experiments during medicated periods. It is possible that medication improved
the temporal resolution and obscured any significant effects of the PD condition that would
have been detected if they had been tested while unmedicated. However, we believe that this is
unlikely due to the following reasoning. First, reaction times were significantly longer in the
PD patients than in the age-matched controls by 200–300 ms on average (Fig. 3). In addition,
the mean UPDRS motor score was as large as 13.8 (s.e.m = 6.8) even under medication. These
results suggest that typical motor deficits still remained in spite of the medications. Second,
three patients who were tested during their off-medication period showed no improvement in
temporal resolution compared with their on-medication tests. This agrees with Nelson, Premji,
Rai, Hoque, Tommerdahl and Chen [12] who also reported no improvement in temporal reso-
lution during on-medication periods compared with off-medication periods.

Thus, it may be questioned why PD patients have deficits in temporal discrimination (TD)
and SJ tasks [6–8] but not in the TOJ tasks in the present and previous studies [12]. If SJ is a
prerequisite to TOJ, deficits in SJ should lead to impairments in TOJ. However, these findings
are not surprising if TOJ is distinct from TD and SJ. Indeed, it is generally recognized that TOJ
and SJ involve different processes [13, 14, 16, 43]. For example, Jaśkowski [16] explained the re-
sults from a ternary-response paradigm (choice from “A then B”, “B then A”, or “simulta-
neous”) by assuming that there are two parallel mechanisms, one for SJ and another for TOJ.
We further speculate that TD and SJ are variants of an interval discrimination task in which a
zero interval and a non-zero interval are discriminated. In interval discrimination, participants
must pay attention to the “length” of time demarcated by two events, whereas they do not need
to measure this length in TOJ tasks. Therefore, we might be able to explain the previous and
present findings as follows: interval discrimination tasks, which require a measurement of the
“length” of time, are generally impaired by PD [10, 11], but TOJ, which does not require a mea-
surement of the time length, is not impaired.

The lack of critical contribution of the basal ganglia to TOJ is also supported by recent neu-
roimaging studies. Takahashi, Kansaku, Wada, Shibuya and Kitazawa [17] examined brain
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activity during the same TOJ task used in the present study and showed that several cortical
areas over the prefrontal, parietal, and temporal cortices were activated. The caudate nucleus
was also activated, but the activation was less significant than the activation in the cortical
areas. Davis, Christie and Rorden [44] reported that the temporal parietal junction was specifi-
cally engaged in the visual TOJ task but did not show any involvement of the basal ganglia. Al-
though the sensory modalities were different in these two studies, both reported major
activations in the same bilateral temporal and parietal regions. The cortical regions shared
across sensory modalities are likely to play central roles in determining the temporal resolution
of TOJ, which is known to be similar across sensory modalities [45, 46]. By contrast, it is un-
likely that the basal ganglia are a crucial component for TOJ in general.

Finally, we discuss why two studies, our study and Nelson, Premji, Rai, Hoque, Tommer-
dahl and Chen [12], reported no effects of PD on TOJ, whereas Fiorio, Valente, Gambarin,
Bentivoglio, Ialongo, Albanese, Barone, Pellecchia, Brancati, Moretto, Fiaschi and Tinazzi [7]
reported clear impairments in temporal resolution. Two differences might explain this discrep-
ancy. First, Fiorio, Valente, Gambarin, Bentivoglio, Ialongo, Albanese, Barone, Pellecchia,
Brancati, Moretto, Fiaschi and Tinazzi [7] required participants to judge not only temporal
order but also simultaneity, whereas TOJ was the only task in the other two studies. Assuming
that TOJ and SJ are distinct processes and that SJ is impaired by PD, the concurrent SJ task
must have disturbed the TOJ task more severely in PD patients than in age-matched controls.
Second, Fiorio, Valente, Gambarin, Bentivoglio, Ialongo, Albanese, Barone, Pellecchia, Bran-
cati, Moretto, Fiaschi and Tinazzi [7] examined participants with familial PD due to a PINK1
mutation, whereas idiopathic PD patients with no clear genetic background were recruited in
the other two studies. It is possible that patients with familial PD due to a PINK1 mutation
have somatosensory deficits beyond the basal ganglia [47] that could have resulted in impair-
ments in both SJ and TOJ tasks.

Taken together, we found age-related declines in temporal resolution during the arms-
uncrossed condition and deficits in elderly participants when remapping tactile signals in the
arms-crossed condition. By contrast, these effects were not altered by the presence of PD.
Therefore, we conclude that thalamo-cortico-striatal circuits and the dopaminergic system are
not critical for TOJ.
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