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Abstract
The objective of the present study was to formulate a simple and at the same time effective

mathematical model of heart rate kinetics in response to movement (exercise). Based on an

existing model, a system of two coupled differential equations which give the rate of change

of heart rate and the rate of change of exercise intensity is used. The modifications intro-

duced to the existing model are justified and discussed in detail, while models of blood lac-

tate accumulation in respect to time and exercise intensity are also presented. The main

modification is that the proposed model has now only one parameter which reflects the

overall cardiovascular condition of the individual. The time elapsed after the beginning of

the exercise, the intensity of the exercise, as well as blood lactate are also taken into ac-

count. Application of the model provides information regarding the individual’s cardiovascu-

lar condition and is able to detect possible changes in it, across the data recording periods.

To demonstrate examples of successful numerical fit of the model, constant intensity exper-

imental heart rate data sets of two individuals have been selected and numerical optimiza-

tion was implemented. In addition, numerical simulations provided predictions for various

exercise intensities and various cardiovascular condition levels. The proposed model can

serve as a powerful tool for a complete means of heart rate analysis, not only in exercise

physiology (for efficiently designing training sessions for healthy subjects) but also in the

areas of cardiovascular health and rehabilitation (including application in population groups

for which direct heart rate recordings at intense exercises are not possible or not allowed,

such as elderly or pregnant women).

Introduction
An understanding of heart rate kinetics combined with the correct and efficient way of data in-
terpretation and analysis is fundamental not only to our knowledge of cardiovascular health
and rehabilitation, but also to fitness, weight management, training methodology and also
competitive success in sport and exercise. The interest of the scientific community in the area
of exercise physiology was originally focused on oxygen uptake kinetics (see for example

[1–8]), where the term oxygen uptake (V_O2) refers to the product of cardiac output and the
volume of oxygen extracted from the blood. As the heart rate is, however, the most commonly
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used and the easiest to obtain cardiovascular variable, the analysis and modeling of heart time
series data recorded during exercise has become an area of major importance.

Let us assume an individual who starts moving from rest, a condition which will be referred
to asmovement or simply exercise. The temporal evolution of his/her heart rate (heart rate ki-
netics) depends on the intensity of the exercise, as well as on a number of other factors, such as
temperature, heat, fatigue, age, over-training, nutrition and hydration, altitude, medication, in-
fectious disease or even mental activity [9, 10]. The present work focuses on the effects related
to exercise intensity and blood lactate, assuming that all other factors are kept constant.

The mathematical model presented is given as a set of coupled ordinary differential equa-
tions in respect to time. Its objective is to describe, simulate, fit existing data and ultimately pre-
dict the heart rate response to movement. The proposed model is based on the following
requirements:

• A model’s features should reflect the body’s physiological features.

• A model should include as few parameters as possible; the present work assumes only one
model parameter, reflecting the subject’s overall cardiovascular condition (which improves
with appropriate training).

• The functions forming the model should be smooth functions of time.

In the sections that follow, after a brief introduction to the basic physiological features relat-
ed to the model as well as the existing models in the area of cardiovascular dynamics, details of
the proposed model are provided. The study includes new mathematical models of blood lac-
tate kinetics developed in order to simulate the lactate levels in the blood. Applications of the
proposed model to different examples of sets of heart rate data are also presented, together
with examples of simulated heart rate kinetics.

Heart rate kinetics
The maximum heart rateHRmax is the highest value that can be achieved in an all-out effort to
the point of exhaustion. It is a highly reliable value that remains constant for a particular sub-
ject (see [11] and the references therein) and changes only slightly with age (a slight but steady
decrease of about one beat/min per year, beginning at 10 to 15 years of age, has been observed).
Thinking of the heart as a simple pumping machine, it should be expected to have a maximum
pumping ability, which will depend on its size, its shape and all its intrinsic mechanical charac-
teristics which make it distinct for each individual. The reduction observed in the values of
HRmax seems, along these lines, logical, as all mechanical components of this machine become
less efficient as they age. If, for any reason, the heart is called to provide a pumping rate more
than the particular maximum value it can afford (this refers to the condition where the heart
rate demand is higher than HRmax) then it performs at its maximum until it collapses. Thank-
fully, apart from a heart, humans also posses a nervous system which, at the very dangerous
condition of being at, or near, the condition ofHRmax, interferes by sending all the necessary
warnings. This way the feeling of exhaustion saves the heart by pushing the individual to re-
duce the effort, or simply to stop moving.

Thinking once more of the heart as a blood pumping machine, then the minimum pumping
rate will of course be the obvious 0 beats/min, a condition which refers to the heart being
turned off in the absence of life. As long as there is life and the heart machine is turned on,
basic bodily functions require a minimum heart rate in order to be sustained. The resting heart
rateHRmin refers to the heart rate at absolute rest, i.e. in the absence of any movement and is
measured while the subject is relaxed but awake, in a neutrally temperate environment, and
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not having recently exerted themselves nor having been subject to stress or even surprise [10,
12, 13]. Professional athletes have been reported to have a resting heart rate as low as
35 beats/min, while for a normal person of age 10 years or more there is normally 60 beats/min
< HRmin < 100 beats/min[9, 14–20]. Men have been shown to have a lower resting heart rate
than women with a reported difference of about 5 beats/min in athletes.

Generally speaking, a better conditioned heart needs to beat less times per minute in order
to maintain the basic bodily functions. The value ofHRmin therefore reflects the body’s cardio-
vascular condition: a decrease in the value of HRmin indicates an increase in fitness (see [11]
and the references therein).

Any kind of movement of intensity v (“velocity”) imposes a circulatory demand on the body
which the heart is called to meet. This demand is in general an intensity and time-dependent
function which we will denote as D. There is always D�HRmin. For severe or very high intensi-
ty exercise there is D� HRmax, a condition which in reality means that the heart rate (HR)
rises abruptly until it reaches HRmax, assuming that the exercise can be continued for a suffi-
ciently long time period [6], unless fatigue sets in before HRmax can be achieved. For low inten-
sity exercises there is D< HRmax. It should be noted here that bothHR and D take discrete
values, as they represent the heart rate of an individual, expressed in beats/min.

It has been observed (see [21] and the references therein) that for constant and sub-maximal
exercise intensities the body’s circulatory demand remains, to a good approximation, constant
and equal to the constant value that the heart rate reaches after some time of exercise. This
value of the demand can be obtained from the heart rate time series and is a function of exer-
cise intensity only. This special case of constant intensity exercise is very important as it forms
the basis for several tests that have been developed to estimate physical fitness [14, 18, 20] and
its study is currently the main area of research in exercise physiology.

Fig. 1 shows the heart rate values of a 33 year old male runner, recorded on a beat-to-beat
basis (see also [22, 23]) during exercise (on-transient), please refer to Exercise C in S1 Data Set.
The subject’s maximum heart rate value was 185 beats/min and the resting heart rate value 40
beats/min. The exercise intensity was strictly controlled in order to be kept constant and equal
to v = 14.4 Km/hr. Fig. 2 presents the heart rate time series during recovery (off-transient) after
the exercise of Fig. 1, please refer to Exercise D in S1 Data Set.

It should be noted here that raw heart rate data, recorded on a beat-to-beat basis are neces-
sary for the development of a model: a model which is fit to averaged data is not necessarily a
good model of the raw un-averaged data. It is widely accepted that beat-to-beat recordings ex-
hibit spontaneous fluctuations which may have biological significance, as non-linear systems
such as the one that governs the circulatory function can produce signals which look like ran-
dom noise but are in fact not stochastic. Therefore part of what is attributed to noise can con-
tain inherent features and vital information (see [31] and the references therein).

The effects of blood lactate accumulation on heart rate kinetics
The blood lactate is a chemical compound that plays an important role in various biochemical
processes. The concentration of lactate in arterial blood when the body is at rest is around
Lbasal = 1mM. During exercise this value begins to increase, as this ensures energy production
so that the exercise can continue [15, 16, 24]. The elevated blood lactate values are responsible
for the ‘burning’ feeling in the muscles during exercise. Such values can approximately reach a
concentration of Lmax = 12mM, a number which varies in the literature as it depends on the
type of exercise, see for example [24] or [25].

Lactate testing is very important in exercise physiology because it reveals the range of inten-
sities at which aerobic base training is carried out, allowing a numerical and objective analysis
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of work output. For this reason an significant lactate value, the so-called lactate threshold, has
been defined [26] as the value of exercise intensity at which blood lactate begins to accumulate.
This value depends on the physical condition of an individual and corresponds to a blood lac-
tate value of around 4mM [9, 15, 16, 24, 27, 28].

During exercise (on-transient) of low or moderate intensity blood lactate are maintained
close to their resting levels and the heart rate quickly reaches a steady state which correspond
to the demand of the particular exercise intensity (as discussed in the previous section). At
heavy exercise intensities around the lactate threshold, the values of blood lactate rise above the
resting value and only level off after approximately 10–20 minutes. For such exercise intensities
the achievement of a steady state in the heart rate values is delayed: a slow increase in the heart
rate values is observed, a phenomenon known as the slow component of cardiovascular kinetics,
see [6] and the references therein. If the intensity of the exercise is severe, then a steep increase
in the blood lactate is observed after the onset of exercise. This increase continues until the in-
dividual becomes exhausted and therefore slows down or simply stops. The higher the exercise
intensity, the steeper the increase in the blood lactate values. Fig. 3 illustrates the lactate kinetics
in respect to time elapsed after the onset of the exercise for a range of exercise intensities. As

Fig 1. Example of on-transient beat-to-beat heart rate time series.Constant intensity exercise, v = 14.4 Km/hr, please refer to Exercise C in S1 Data Set.

doi:10.1371/journal.pone.0118263.g001

Modelling Heart Rate Kinetics

PLOS ONE | DOI:10.1371/journal.pone.0118263 April 13, 2015 4 / 26



for such exercise intensities the blood lactate never reaches a steady state, the heart rate also in-
creases steeply and continues to increase beyond the typical time for reaching the steady-state
value (until fatigue sets in and the individual lowers the exercise intensity or stops) [8, 28].

The observed slowing down in cardiovascular kinetics is a very interesting and important
feature in the area of exercise physiology as it has very important applications in the design of
training sessions [9, 15, 27–29]. Because of the existence of the slow component, there is a wide
range of exercise intensities (which depend on the physical condition of the individual) for
which a steady state in the heart rate values cannot be attained. As the slow component is
linked to the process of fatigue, the higher the intensity that can be sustained in the absence of
slow component, the better the prospects for endurance. Endurance training will have the ef-
fect of elevating the value of lactate threshold of an individual and thus eliminate the slow com-
ponent for some exercise intensities. This way exercise intensities which were initially severe
for the particular person might become heavy or even moderate following training [24, 30].
Fig. 4 illustrates this point. Curves similar to the ones shown in Fig. 4 can be obtained via incre-
mental workload test revealing the unique metabolic response to training of each individual
subject at a particular level of cardiovascular condition.

Fig 2. Example of off-transient beat-to-beat heart rate time series. Recovery after the exercise of Fig. 1, please refer to Exercise D in S1 Data Set.

doi:10.1371/journal.pone.0118263.g002
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During recovery (off-transient), the initial elevated lactate values produced during the pre-
ceding exercise finally return to their resting levels. A certain amount of time is, however, re-
quired, in order for the body to clear out any lactate in the blood [9, 16]. The higher the blood
lactate values at the termination of exercise, the more the time needed for blood lactate to re-
turn to its basal levels (with a time scale of approximately 60 minutes [14, 18, 20, 25]. Fig. 5
presents an example of blood lactate recovery after the end of exercise.

The 3-phase model
It was originally observed [4] that the kinetics of the cardiovascular variables in response to
constant intensity exercise follow an approximately exponential function of time. Later three
time-delayed phases were proposed to model the oxygen uptake and heart rate kinetics in re-
sponse to constant intensity exercise [2, 3, 5, 7, 8, 21].

The 3-phase model has been emerged as the best fit to the data, from a statistical point of
view. There is, however, much debate as to its validity: it is very likely that the observed three
phases are a figment of the incorrect and overly simple treatment of the data (for a more de-
tailed discussion please refer to [6, 31]). Furthermore, the parameter values that the model

Fig 3. Blood lactate kinetics for different exercise intensities.

doi:10.1371/journal.pone.0118263.g003
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provides can only reflect the body’s physiological response to the particular exercise intensity.
As far as other exercise intensities are concerned, no reliable predictions can be made. In addi-
tion, there is a strong interdependency in the model’s parameters which dramatically affects
their values and consequently the confidence of the fitted model.

Using a set of coupled ODEs to model heart rate kinetics
The model presented in [6, 21] does not assume the existence of phases or time delays. The un-
derlying heart rate kinetics is described as a dynamical system whereby the rate of change of
heart rate is assumed to be a function of the current heart rate, exercise intensity and time, so

there is _HR� _HRðHR; v; tÞ.
_HR is given as a product of three terms which respectively describe the heart rate kinetics

when the value ofHR is near restHRmin, near maximum HRmax and near the body’s circulatory
demand demand D(v,t). Denoting these terms as fmin, fmax and fD, then the model is expressed
by the following set of coupled ordinary differential equations:

_HR¼ AfminðHR;BÞfmaxðHR;CÞfDðHR; v; t; EÞ ð1Þ

_v ¼ IðtÞ ð2Þ

Fig 4. Effect of training on blood lactate.

doi:10.1371/journal.pone.0118263.g004
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where

• A,B,C and E are the positive parameters that control the shape of the model curve and pro-
vide information regarding the subject’s cardiovascular condition,

• fmin � [HR−HRmin]
B,

fmax � [HRmax−HR]
C,

fD � [D(v,t)−HR]E,
smooth functions of time and exercise intensity, and

• the vector v_= I(t) defines the rate of change of exercise intensity, which can be constant (zero
exercise intensity refers to absolute rest) or any linear or non-linear function of time (condi-
tions that could not be modelled by use of the 3-phase model).

In the language of dynamical systems [32, 33], the valuesHRmin and HRmax are repelling
fixed points for HR(v,t), as at any time the heart rate tends to move away from these two ex-
tremes. The value D(v,t) is an attracting fixed point of the system. The values of the parameters
A, B, C, and E are very important as they characterize the subject’s current condition across the

Fig 5. Example of blood lactate kinetics during recovery.

doi:10.1371/journal.pone.0118263.g005
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continuum of possible exercise intensities. Any changes in the parameters indicate changes in
the fitness level of that particular subject [6, 11, 21, 22, 34].

The model of equations (1) and (2) has been successfully fit to experimental heart rate time
series data, see for example [6, 11, 21, 22, 34]. However, the following weaknesses have been
detected:

• Although the parameters B and C and E are introduced in order to control the dynamics in
the neighborhood ofHRmin, HRmax and D(v,t) respectively, careful observation reveals that
the terms including these parameters do not become inactive away fromHRmin,HRmax or
D(v,t). As a result the overall rate of change of HR(v,t) is also affected by B, C and E.

• The dynamics of the cardiovascular response to movement is in fact a function of only one
parameter, the overall cardiovascular condition of an individual. The model, however, uses
the four parameters A, B, C, and E instead of a global one.

• Equation (1) does not take into account that the value of HRmin follows the changes in the
overall cardiovascular condition.

Methods

An improved dynamical systems model
We propose here a modified and improved version of the model of equations (1) and (2).

Following the discussion of the sections above, a model of heart rate kinetics should include
only one parameter that reflects the subject’s overall cardiovascular condition. Let us define
this global parameter as λ; any changes in the value of λ will reflect improvements in the overall
cardiovascular condition (via appropriate training) or loss (due to lack of training or injury).
There will be 0< λ� 1, such that λ� 1 refers to an excellent cardiovascular condition.

The proposed model is also expressed in the form of a system of coupled ordinary differen-
tial equations, one regarding the rate of change of heart rate and the other regarding the rate of

change of exercise intensity. _HR is expressed again as a product of three terms, fmin, fmax and
fD, which describe the heart rate kinetics whenHR is respectively near its resting value, its max-
imum value, and near the heart rate demand.

The new model is based on the following features:

1. The function fmax that describes the repeller atHRmax is no more assumed to depend on the
overall cardiovascular condition, so it does not depend on λ. This reflects the fact that the
maximum heart rate of an individual is an intrinsic value that does not change with
cardiovascular training.

2. The function fmax is not assumed to depend on exercise intensity or time. It is modelled as a
function ofHR only, so there is fmax � fmax(HR), see Equation (5).

3. Taking into account that the resting heart rate of an individual follows the changes in their
cardiovascular condition (see introduction), so that large values of λ should reflect low val-
ues ofHRmin, the resting heart rate is modelled as a function of λ, see equations (6) and (7).

4. The function fmin that describes the repeller at HRmin is not assumed to depend on exercise
intensity or time. It is modelled as a function of HR and λ, so there is fmin � fmin(HR,λ), see
Equation (8).

5. The effects of blood lactate lactate accumulation are also taken into consideration. Recalling
the previous discussion, the lactate levels in the blood depend on λ, exercise intensity and
time. The sections that follow include a detailed discussion on how blood lactate kinetics is
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modelled in the present study by means of the function L(λ,v,t), both regarding on- and off-
transient.

6. The heart rate demand is assumed to be a function ofHR, blood lactate, exercise intensity
and time.

7. The heart rate demand is also assumed to be a function of the starting heart rate value
HR(0), as “memory” effects of previous blood lactate accumulation are also taken
under consideration.
There is D� D(HR(0),λ,v,t), see Equation (10).

8. The function fD � fD(HR,HR(0),v,λ,t) that describes the attractor at D(λ,v,t) has an extra
scaling term that depends on λ, see Equation (11).

Taking into account these modifications, the improved model of heart rate kinetics is ex-
pressed by the following set of coupled ODEs:

_HRðHR;HRð0Þ; l; v; tÞ ¼ fminfmaxfD ð3Þ

_v ¼ IðtÞ ð4Þ
and will be discussed in detail in the subsections that follow.

Heart rate kinetics near HRmax

As discussed in the previous sections, the body will always try to stay away from the very un-
comfortable and crucial condition near, or at, the maximum heart rate. In terms of dynamical
systems [32, 33], the repeller atHRmax should therefore be much stronger than the respective
repeller described by Equation (1). Furthermore, the body receives warning signs only when
the heart rate approaches its maximum values. The respective term of Equation (1) should be
therefore modified so as to limit its repelling range inside the neighborhood of HRmax.

Assuming that the repeller atHRmax influences an area of a standard deviation α1 (where α1
refers to a number of beats per minute), fmax will be assumed to have the form:

fmaxðHRÞ � � 1� e
�

HR� HRmax

a1

� �2
8>><
>>:

9>>=
>>;

: ð5Þ

It is easy to observe that the ODE _HR ¼ fmax has a fixed point at HRmax which has the de-

sired repelling effect, as _HR < 0, 8HR< HRmax. Furthermore fmax represents a repeller which,
in the neighborhood ofHRmax, is far stronger than the one used by Equation (1), but has no
control on the dynamics away fromHRmax.

An appropriate value of α1 was found, by trial and error, to be α1 = 10 beats/min. Fig. 6 illus-
trates the repeller given by fmax, in comparison also to the respective repelling function of
Equation (1) for two different values of the exponent C.

Heart rate kinetics at rest
Assuming thatHRmin(λ = 1) = 35 beats/min for males and HRmin(λ = 1) = 40 beats/min for fe-
males (please refer to previous sections), the resting valueHRmin, for any 0< λ� 1, is modelled
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as follows:

HRminðlÞ �
35

l
beats=min ðmalesÞ ð6Þ

HRminðlÞ �
35

l
þ 5

� �
beats=min ðfemalesÞ: ð7Þ

Lowering the heart rate down to values close toHRmin is a real challenge for untrained per-
sons. In the language of dynamical systems, the condition of HRmin is therefore a repeller,
which in the present study is modelled as strong as the repeller ofHRmax. The repelling action
ofHRmin should also be limited within its neighborhood.

Similar to the case ofHRmax, fmin will have the form

fminðHR; lÞ � 1� e
�

HR� HRminðlÞ
a2

� �2
8>><
>>:

9>>=
>>;

: ð8Þ

Fig 6. The repelling function fmax. Compared to its respective repelling term of normalized Equation (1). C = 1.8 andC = 2.5.

doi:10.1371/journal.pone.0118263.g006
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where it is assumed that α2 = α1 = 10 beats/min, as with fmax(HR).

The point HR =HRmin is a repelling fixed point for the ODE _HR ¼ fmin, as _HR > 0, 8 HR>

HRmin. Fig. 7 illustrates the above, showing also a comparison of fmin with the repelling func-
tion of Equation (1) for different values of the exponent B.

As can be seen in Equation (8) the repeller described by the function fmin depends on λ, via
the dependence of HRmin. This way changes in the value of λmove the position of the fixed
point HRmin: if λ increases, HRmin moves to the left and vice versa.

The heart rate demand
As discussed in the previous sections, in the absence of any effects of lactate accumulation (low
exercise intensity), the heart rate demand seems to be time-independent. In this case its value,
let us call it Dss, is the steady state that the heart rate reaches after a few minutes of exercise. For
heavier exercise intensities the fatigue-induced increases in the heart rate values are apparent
only after a few minutes after the beginning of the exercise and start to become slowly notice-
able (hence the name “slow component”) as the exercise continues.

During passive recovery (complete rest) there is v = 0 and the effects of increased body tem-
perature, dehydration, or other unknown factors (which are beyond control, at least for the
present study) are apparent and can add up to extra 20 beats/min, see also the data shown in
Fig. 2).

Defining as DLa(λ,v,t) the lactate induced heart rate demand then DLa(λ,v,t) will be assumed
to be added as an extra component to Dss, simulating slow component effects during on-
transient.

Regarding its functional form, DLa(λ,v,t) will be assumed to be given both during on-tran-
sient and during off-transient by a relation of the form

DLa v; l; tð Þ � a3Lðl; v; tÞ ; ð9Þ
where L(λ,v,t) models the lactate values in the blood, for more details see the sections
that follow.

The multiplier α3 > 0 corrects the units and simulates slow kinetics. In the present study the
value of α3 was found by trial and error (during the process of fitting the model to experimental

data, see sections that follow) to be equal to α3 = 4 beats=min
mM

, both for on- and for off-transient.

“Memory” effects in heart rate kinetics
Let us assume on-transient (exercise) or off-transient (recovery) starting from an initial heart

rate of HR(0). As the heart rate changes to reach the demand D̂(λ,v,t)� Dss(λ,v,t)+DLa(λ,v,t), it
is still affected by the attracting heart rate demand of the preceding state. This “memory” effect
is far more apparent during off-transient: the attracting effect of the heart rate demand of the
preceding exercise does not disappear from one second to the other, instead it slowly and

smoothly vanishes to finally allow D̂(λ,v,t) to fully drive the kinetics.
The total heart rate demand D is assumed to be for a short time “attracted” by the initial

heart rateHR(0) and to finally reach D̂(λ,v,t), following a gaussian-like curve in respect to
time. The standard deviation of this gaussian curve is assumed to depend on λ and also on how
high the initial demand is in comparison to the resting heart rate, i. e. on the difference
HR(0)−HRmin. A relation that adequately describes the above is

DðHRð0Þ; l; v; tÞ ¼ D̂ðl; v; tÞ þ HRð0Þ � D̂ðl; v; tÞ� �
e�s t2 ð10Þ
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where

s � a4l
HRmax � HRmin

HRð0Þ � HRmin

� �a5

;

and the multiplier α4 > 0 was found by trial and error (fit to experimental time series data, see
sections that follow) to be equal to α4 = 0.003 sec−2. Similarly the superscript α5 > 0 was found
by trial and error to be equal to α5 = 4.

The attracting term fD
Based on the physiological fact that, the better the individual’s physiological condition, the less
the time needed to reach the demand, both regarding on-transient and off-transient kinetics
[6, 9, 11, 15, 17, 19, 34], the function fD which will describe the attractor at D(λ,v,t) can be de-
fined as follows:

fDðHR;HRð0Þ; v; l; tÞ � �dðlÞ HR� Dðl; v; tÞ½ � ; ð11Þ
where the role of the strictly increasing function 0< d(λ)< 1, 8 0< λ< 1 is to control the

Fig 7. The repelling function fmin. Compared to its respective repelling term of normalized Equation (1). B = 1.8 and B = 2.5.

doi:10.1371/journal.pone.0118263.g007
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overall dynamics of the kinetics towards the attractor of D (please compare also with the pa-
rameter A that appears in Equation (1)). The functional dependence of d on λ is assumed here
to be linear, thus

dðlÞ � al ; ð12Þ
where the multiplier α> 0 corrects the units and correctly simulates the heart rate kinetics. In
the present study (see the numerical sections that follow) the optimal value of α was found to
be α = 0.08 sec−1.

The point HR = D(λ,v,t) modelled as in Equation (11) is an attracting fixed point for the

ODE _HR ¼ fD, as _HR > 0, 8HR< D(λ,v,t) and _HR < 0, 8 HR> D(λ,v,t).

Modeling blood lactate dynamics
We present here the models of blood lactate kinetics used in the present work, both regarding
on- and the off-transient.

As was previously defined, L(λ,v,t) denotes the function that models blood lactate. Let
Lon(λ,v,t) and Loff(λ,t) refer to on-transient and off-transient respectively (please note that the
off-transient blood lactate kinetics is not assumed to depend on exercise intensity v, due to the
fact that the recovery is assumed to be passive and so v = 0).

Simulating on-transient blood lactate kinetics
As previously discussed, incremental work load tests have revealed that after approximately
30 minutes of steady state exercise the values of lactate in the blood depend on exercise intensity
and on λ as illustrated in Fig. 4. For heavy exercise intensities the levels of blood lactate follow an
approximately exponential rise until a steady state is reached, after approximately 10—20 min-
utes of exercise, while for severe exercise intensities such a steady state can never be reached as
the values of blood lactate continue to rise instead until fatigue sets in (please refer to Fig. 3).

During on-transient, Lon(λ,v,t) is assumed to be a product of two functions, function
Lλ,v(λ,v) which depends on the level of cardiovascular condition and on exercise intensity, and
function Lont ðtÞ which is only time dependent:

Lonðl; v; tÞ � Ll;vðl; vÞ Lon
t ðtÞ : ð13Þ

Without loss of generality it can be assumed that an individual of λ = 1 can maintain an ex-
ercise session of approximately 3–4 minutes at intensities as high as vmax = 20Km/hr (please
note that the exercise intensity can be also given inWatts [9, 15, 19, 24, 27]). Taking into ac-
count the dependence of blood lactate on exercise intensity Lλ,v(λ,v) can be modelled by means
of an exponential relation of the form:

Ll;vðl; vÞ � Lbasal þ Lmax � Lbasalð Þ exp a6 � v � vmaxðlÞ½ �f g ; ð14Þ

where

• vmax(λ) refers to the intensity to exhaustion (maximum exercise intensity achievable by an
individual of cardiovascular condition λ) and

• the parameter α6 controls the curvature of the blood lactate curve.

The numerical value of α6 and the functional dependence of vmax on λ are to be determined
by fit of Equation (14) to experimental data sets of blood lactate in response to exercise intensi-
ty. To simulate the dynamics presented in Fig. 4 the value of the parameter α6 of Equation (14)
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was chosen here to be α6 = 0.5 hr/Km and it is assumed that vmaxðlÞ ¼ 20
ffiffiffi
l

p
(Km/hr). Fig. 8

presents examples of this simulation for different values of λ.
To simulate the time dependence of blood lactate accumulation, the term Lon

t ðtÞ is assumed
to have the exponential form:

Lon
t ðtÞ � 1� exp �t=a7ð Þ ; ð15Þ

where the value of the parameter α7 is again to be determined by fit to time series of blood lactate
in response to constant exercise intensity. To simulate the dynamics presented in Fig. 3 the value
of the parameter α7 of Equation (15) was chosen here to be α7 = 420 sec−1. Examples of this simu-
lation for a constant value of λ = 0.9 and for different exercise intensities are illustrated in Fig. 9.

Simulating off-transient blood lactate kinetics
Based on the physiological background previously discussed, the term Loff should depend on the
level of cardiovascular condition λ. The time dependency of Loff is assumed to have the form of a
Gaussian bell, with maximum value at t = 0 (end of exercise—beginning of recovery) and a stan-
dard deviation that depends both on the starting blood lactate value L(0) and on the value of λ:

Loff ðl; tÞ � Lbasal þ Lð0Þ � Lbasal½ � exp � a8l
Lð0Þ � Lbasal½ � t

2

� �
: ð16Þ

The value of the parameter α8 is, as before, to be determined by fit of blood lactate time se-
ries during recovery. A value that efficiently simulates the experimental background (Fig. 3)
was found to be α8 = 2.3	10−6 mMsec−2.

Fig. 10 presents simulation examples of off-transient blood lactate kinetics.

Results

Fit of the model to experimental data
This section presents the numerical application of the proposed model to the experimental
heart rate time series data. It should be noted that the model of equations (1) and (2) has been
already fit to experimental heart rate data, providing model parameter values for each one of
the two case studies [11, 22, 23]. The aim of the present section is to apply the model of Equa-
tion (3) to the same data sets in order test the modified model and provide values for λ.

The ethics committee of the Department of Physical Activity and Sport (INEF) of the Tech-
nical University of Madrid, where the data collection took place (see also [11, 22, 23]) provided
an approval for the present study. A written informed consent was signed by the participants
before data collection. We confirm that our research meets the highest ethical standards and
that it was performed in accordance with the guidelines of the Helsinki Declaration of 1975, as
revised in 2000.

As all data sets correspond to constant exercise intensity (see sections that follow) there is
v_= 0 and the coupling of the system of equations (3) and (4) disappears. In this special case the
heart rate time series data can be modelled by use of Equation (3) only. The numerical solution
of Equation (3) was carried out by use of the Runge-Kutta-Fehlberg (RKF45) method [35],
with step size set to ht = 0.01 (the RKF45 is a method of orderOðh4

t Þ with an error estimator of
orderOðh5

t Þ).
As mentioned in the previous sections, the values of α in Equation (12), α1 in Equation (5),

α2 in Equation (8), α3 in Equation (9), α4 and α5 in Equation (10) have been obtained by trial
and error during the process of model fitting to experimental time series data, while the values
of α6 in Equation (14), α7 in Equation (15) and α8 in Equation (16) have been estimated so as
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to provide efficient simulations of the existing experimental background. Summarizing, these

values are: α = 0.08 sec−1, α1 = α2 = 10 beats/min, α3 = 4 beats=min
mM

, α4 = 0.003 sec−2, α5 = 4,

α6 = 0.5 hr/Km, α7 = 420 sec−1 and α8 = 2.3	10−6 mMsec−2.
It should be emphasized here that, once calculated, α and αi (i = 1,. . .,8) are fixed numerical

values for the model (they are no parameters). In the sections that follow the above shown val-
ues of α and αi (i = 1,. . .,8) were fixed for both subjects and all experimental data sets.

The numerical optimization problem consists of finding the optimal value of λ that provids
optimal fit of the model to the time series data. This value of λ is the value that minimizes an
appropriately defined cost function which described the problem [11, 22, 23].

Assuming a total number of N experimental data points, let us denote as

• HRif gNi¼0 the experimental heart rate time series and

• HRm
i

� �N
i¼0

the heart rate time series provided by numerical integration of Equation (3). The

cost function f(λ) can then be defined as the sum of the vertical distances (residuals) between
the time series data and the curve provided by the model:

f ðlÞ � �
XN
i¼1

HRi � HRm
i

	 
2
:

The numerical minimization of f(λ) was carried out the present study by numerical optimi-
zation [36, 37] and more specifically by application of the Levenberg—Marquardt algorithm
(LMA) [38, 39]. This algorithm, also known as the damped least-squares (DLS) method,

Fig 8. Lλ,v(λ,v) as defined in Equation (14) for different values of λ. For the numerical simulations there was α6 = 0.5 hr/Km and vmaxðlÞ ¼ 20
ffiffiffi
l

p
(Km/hr).

doi:10.1371/journal.pone.0118263.g008
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interpolates between the Gauss-Newton and the gradient descent methods and is a very popu-
lar algorithm used in many numerical applications.

Optimal fit of the model to each time series data provided a small range of optimal values
[λ−Δλ,λ+Δλ] which minimized f(λ). The final optimal value of λ was obtained by the intersec-
tion of all optimal λ intervals. It should be noted here that the same technique was used in [22]
and in [11] to find the optimal parameter values of the model of equations (1) and (2). As the
parameters of the model of equations (1) and (2) were, however, three and not just one, these
studies considered the intersection of parameter clusters instead.

Obtaining the value of λ: an estimation of the cardiovascular condition of
a subject
This section presents the results of the application of the model to sets of heart rate time series
of “subject 1”, a 33 year old male runner. The data sets consisted of five on-transient time series
corresponding to constant exercise intensity of 13.4 Km/hr, 14.4 Km/hr, 15.7 Km/hr and
17.0 Km/hr, together with their respective off-transient time series data. Each exercise started

Fig 9. Lon(λ,v,t) as defined by equations (13), (14) and (15) for different values of exercise intensity v. For the numerical simulations there was λ = 0.9
and α7 = 420 sec−1.

doi:10.1371/journal.pone.0118263.g009
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from rest and lasted 300 seconds. The subject’s maximum heart rate was 185 beats/min and the
resting heart rate value 40 beats/min.

As the data sets were recorded in one day, allowing appropriate breaks during the record-
ings, they reflect the cardiovascular condition of the subject for that particular day. For details
regarding the data collection protocol please refer to [22] and [23]. Examples of the on-tran-
sient and their corresponding off-transient heart rate time series data recorded on that day
were shown in Figs 1 and 2.

By numerical fit of the model to the heart rate time series data of subject 1, a small range of
optimal values of λ was obtained for each data set. The intersection of all optimal λ intervals
provided the value

l1 ¼ 0:85
 0:01

as the unique number that reflected the cardiovascular condition of subject 1 during the data
recording day.

Figs 11 and 12 present examples of the fit. The figures show the same data series presented
in Figs 1 and 2 together with the curve (solid line) calculated by numerical integration of

Fig 10. Loff(λ,t) as defined in Equation (16) for different starting blood lactate values. For the numerical simulations there was λ = 0.9.

doi:10.1371/journal.pone.0118263.g010
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Equation (1) with λ = λ1 = 0.85. By observation of these figures the success of the model fit
is obvious.

Detecting changes in the cardiovascular condition through changes in λ

This section presents the results of the application of the model to sets of time series data of
“subject 2”, a 36 year old female before, during and after gestation. The objective was to to de-
tect possible changes in the maternal heart rate kinetics during the different stages of gestation
and after labor.

Before gestation the subject’s maximum heart rate was measured to beHRmax = 195 beats/
min. This value has been reported to remain unchanged during gestation [11] and the refer-
ences therein. The subject did not follow any training during the data recording period; any
changes in her cardiovascular condition are therefore due to the body’s adaptation to gestation
and are not related to any cardiovascular conditioning from exercise.

The data sets include three on-transient heart rate time series corresponding to low intensity
exercise of approximately four minutes of different constant intensities and their respective
off-transient time series. For details regarding the data collection protocol please refer to [11].

Fig 11. Example of model fit.On-transient heart rate time series, subject 1. λ = 0.85.

doi:10.1371/journal.pone.0118263.g011
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Table 1. Subject 2, data details.

Time Measured HRmin Optimal λ2 Estimated HRmin
(days) (beats/min) (±0.01) (beats/min)

47 before gest. 61 0.62 61

44, gestation 63 0.60 63

101, gestation 67 0.57 66

163, gestation 73 0.52 72

199, gestation 74 0.51 74

229, gestation 74 0.51 74

262, gestation 74 0.51 74

43 after labour 66 0.58 65

369 after labour 61 0.62 61

Data recording periods, measured resting heart rate, optimal λ values and estimated resting heart rate.

doi:10.1371/journal.pone.0118263.t001

Fig 12. Example of model fit.Off-transient heart rate time series, subject 1. λ = 0.85.

doi:10.1371/journal.pone.0118263.g012
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The subject’s heart rate responses were recorded during a period of approximately two years,
and more specifically on the days shown in table 1. Table 1 also shows the subject’s minimum
heart rate values at each recording session.

Following the same numerical procedure, a value of λ2 was obtained for each of the data sets
of subject 2 (table 1). Based on the calculated values of λ2, conclusions can be drawn regarding
changes in the overall cardiovascular condition of the particular subject during gestation (for a
comparison please refer to the study of [11]). As can be observed, one year after labor the sub-
ject had returned to her initial cardiovascular condition. Considering the lack of cardiovascular
training during the data recording period, this conclusion can provide very important informa-
tion to the physiologists regarding the beneficial cardiovascular side-effects of pregnancy. Fu-
ture research can confirm and expand this result.

Predicting the value of resting heart rate
It is worth observing that, once the value of λ is known, the subject’s resting heart rate can be
easily estimated by means of equations (6) and (7). For example, the value of λ1 = 0.85 found

Fig 13. Simulating on-transient heart rate kinetics a. Different constant exercise intensities, starting from the same heart rate. λ = 0.85.

doi:10.1371/journal.pone.0118263.g013
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for subject 1 provides an estimation of his resting heart rateHRmin = 41 beats/min which devi-
ates only 1 beat/min from the experimentally recorded value.

The estimated resting heart rate values for the different recording sessions of subject “2”, ob-
tained from the optimal values of λ2 by use of Equation (7) are shown in table 1.

Using the model to simulate heart rate kinetics
With the values of α and αi (i = 1,. . .,8) kept fixed as before, Equation (3) was numerically
solved for a number of hypothetical cases of constant intensity exercise, to provide examples of
heart rate kinetics simulations.

Fig. 13 shows examples of simulated on-transient heart rate kinetics for subject 1 (λ = 0.85,
HRmin = 40 beats/min and HRmax = 185 beats/min) for different constant exercise intensities,
starting from the same heart rate HR(0) = 60 beats/min. The exercise intensities for the curves
shown in Fig. 13 are, case 1: 13.5 Km/hr (low), case 2: 15.5 Km/hr (moderate), case 3: 17.0 Km/
hr (heavy), case 4: 18.0 Km/hr (heavy) and case 5: 19.0 Km/hr (severe). In Fig. 13 the slow

Fig 14. Simulating off-transient heart rate kinetics a. Starting from the end of the on-transient shown in Fig. 13.

doi:10.1371/journal.pone.0118263.g014
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component effect can be clearly observed in the curves which correspond to heavy/severe
exercise intensities.

The respective simulated off-transient curves are shown in Fig. 14.

Simulating the effects of changes in λ

To illustrate the effects of different cardiovascular condition on heart rate kinetics, Figs 15 and
16 present the on- and off-transient heart rate curves as simulated for subject 1 and another hy-
pothetical subject of the sameHRmin and HRmax but different cardiovascular condition level λ
= 0.55. The exercise intensity was assumed to be constant and equal to v = 14.5 Km/hr (moder-
ate for subject 1, heavy for the hypothetical subject) and the initial heart rate was assumed
equal for both subjects HR(0) = 70 beats/min.

In the graphs presented in Figs 15 and 16 it is worth observing:

• the difference in slope, such that the better the cardiovascular condition the fastest the heart
rate kinetics (as is supported by the literature in the area of exercise physiology)

Fig 15. Simulating on-transient heart rate kinetics b. Constant exercise intensity, different values of λ.

doi:10.1371/journal.pone.0118263.g015
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• the significant slow component effect in the on-transient heart rate kinetics of the
hypothetical subject

Conclusions
A powerful improved model has been derived as a result of modifying the dynamical systems
model of [6, 21]. The new model is able not only to provide important information regarding
an individual’s cardiovascular condition but to also simulate and predict heart rate kinetics for
any given exercise intensities.

It is worth emphasizing the impressive accuracy of the model’s prediction regarding resting
heart rate values. This way no previous measurements of theHRmin are necessary in order for
the model to be fit, as is the case with the existing models. The termHRmin can be substituted
by equations (6) or (7) in all relations of the model where it appears. This gives a big advantage
to the model, as the experimental estimation ofHRmin is in general not an easy task, requiring
experience, effort and concentration.

Fig 16. Simulating off-transient heart rate kinetics b. Constant exercise intensity, different values of λ.

doi:10.1371/journal.pone.0118263.g016
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Supporting Information
S1 Dataset. HR data. First column: time (in seconds), second column: heart rate (in beats/
min). Exercise A: constant velocity 13.4 Km/hr; Exercise B: recovery after exercise A; Exercise
C: constant velocity 14.4 Km/hr; Exercise D: recovery after exercise C; Exercise E: constant ve-
locity 15.7 Km/hr; Exercise F: recovery after exercise E; Exercise G: constant velocity 17.0 Km/
hr; Exercise H: recovery after exercise G.
(RAR)
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