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Abstract
Field of cancerization in the airway epithelium has been increasingly examined to under-

stand early pathogenesis of non-small cell lung cancer. However, the extent of field of can-

cerization throughout the lung airways is unclear. Here we sought to determine the

differential gene and microRNA expressions associated with field of cancerization in the pe-

ripheral airway epithelial cells of patients with lung adenocarcinoma. We obtained peripher-

al airway brushings from smoker controls (n=13) and from the lung contralateral to the

tumor in cancer patients (n=17). We performed gene and microRNA expression profiling on

these peripheral airway epithelial cells using Affymetrix GeneChip and TaqMan Array.

Integrated gene and microRNA analysis was performed to identify significant molecular

pathways. We identified 26 mRNAs and 5 miRNAs that were significantly (FDR<0.1) up-

regulated and 38 mRNAs and 12 miRNAs that were significantly down-regulated in the can-

cer patients when compared to smoker controls. Functional analysis identified differential

transcriptomic expressions related to tumorigenesis. Integration of miRNA-mRNA data into

interaction network analysis showed modulation of the extracellular signal-regulated

kinase/mitogen-activated protein kinase (ERK/MAPK) pathway in the contralateral lung

field of cancerization. In conclusion, patients with lung adenocarcinoma have tumor related

molecules and pathways in histologically normal appearing peripheral airway epithelial

cells, a substantial distance from the tumor itself. This finding can potentially provide new

biomarkers for early detection of lung cancer and novel therapeutic targets.
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Introduction
Although lung cancer is the leading cause of cancer deaths worldwide, the early molecular
changes remain poorly understood, with more research needed to improve early stage diagno-
sis and increase survival. The disappointingly low (15%) 5-year survival rate of lung cancer re-
flects the fact that most patients present with advanced disease [1]. In contrast, when lung
cancer is detected in stage I and surgically resected, 10-year survival is as high as 88% [2]. Deci-
phering the early molecular events in lung tumorigenesis has the potential to improve the clini-
cal management of lung cancer.

Exposure to environmental pollutants, especially cigarette smoke, radon, and asbestos, is
the major culprit in initiating and promoting lung tumorigenesis. Exposure to these pollutants
and the host inflammatory responses to the irritants result in a histologic and molecular field
of injury throughout the central and peripheral airways [3]. The concept of field cancerization,
first described by Slaughter et al. in 1953, refers to areas of histologically normal epithelium,
adjacent to tumor tissue, but with an abnormal molecular profile similar to that of the tumor it-
self [4]. In lung cancer, studies have demonstrated that adjacent histologically normal airway
epithelial cells have mutations in p53, KRAS, and EGFR genes, aberrant promoter methylation,
and allelic loss [5–11]. In addition, studies on microRNAs (miRNAs) and their target messen-
ger RNA transcripts (mRNAs) have shown that these molecules play an important role in lung
cancer initiation and progression [12–14]. Differentially expressed miRNAs in normal tissues
and lung cancers have been found to target protein-coding tumor suppressors and oncogenes
[15,16]. Similarly, gene expression profiles in the proximal airway epithelium of subjects with
lung cancer have provided insights into the effect of lung field of cancerization [17].

Although considerable progress has been made in profiling the molecular changes in the
field of cancerization, little is known regarding this field effect in the peripheral airway and
how far the “field” extends. Transcriptomic studies on peripheral airways of smokers and non-
smokers have demonstrated changes in genes coding for immunity, apoptosis, mucin produc-
tion and response to oxidants and xenobiotics [18,19]. Since adenocarcinoma typically arises
from peripheral airway or alveolar epithelial cells, specifically Clara cells and type II pneumo-
cytes, better characterization of the molecular aberrations in these terminal airway bronchoal-
veolar cells may lead to improved understanding of early events in tumorigenesis. We
hypothesized that by using high-throughput technologies to simultaneously profile miRNA
and mRNA expression of peripheral airway epithelial cells in high-risk smokers and lung can-
cer patients, we may, first, find higher-order miRNA-mRNA interactions associated with field
of cancerization and tumorigenesis; and second, demonstrate the effect of lung field of canceri-
zation in the contralateral lung of the tumor.

Methods

Patient Population
Between April 2010 and May 2012, we recruited 30 subjects (17 with lung adenocarcinoma
and 13 smoker controls), and all signed informed consent. Participants included current or for-
mer (quit>5 years) smokers (>20 pack-years), age 55–75 years, with suspicious nodules, who
were referred for diagnostic bronchoscopy at New York University Langone Medical Center
and Bellevue Hospital Center. We excluded those with any previous history of cancer. Seven-
teen subjects were confirmed to have the diagnosis of adenocarcinoma after the bronchoscopy.
Thirteen subjects were classified as control smokers; including smokers with benign nodules
after normal diagnostic bronchoscopy and with more than three-year stability on CT scan; and
normal smoker volunteers without any pulmonary nodules. The protocol was approved by the
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New York University Langone Medical Center Institutional Review Board (IRB) and the Belle-
vue Research Committee (BRC) of Bellevue Hospital Center.

Airway epithelial cell collection and RNA processing
Through bronchoscopy, we collected peripheral airway epithelial cells by brushing the small
airways in the lung contralateral to the suspicious nodule, i. e. the unaffected lung. In the con-
trols without nodules, brushings were collected from the peripheral airways of the lingula or
left lower lobe. The presence of Clara cells on the cytology brush confirmed sampling of the
small peripheral airways (see S1 Fig in the online supplement). The cytology brush was spun
down and the cell pellet was collected and stored at -80°C until RNA extraction.

MicroRNA and mRNAmicroarray
We extracted total RNA using Qiagen miRNeasy Mini Kit (Valencia, CA). To identify target
genes, global gene expression profiling was performed with the Affymetrix (Santa Clara, CA)
GeneChip Human Genome U133 Plus 2.0 Array (HG-U 133 Plus 2.0). We used TaqMan
Array Human MicroRNA A Cards v2.0 (Applied Biosystems, Foster City, CA) to profile
miRNA on the same RNA samples. All microarray data have been submitted to the Gene Ex-
pression Omnibus (GEO) under accession number GSE54495 (mRNA) and GSE54541
(miRNA).

Analysis of microarray mRNA and miRNA data
Affymetrix array data was analyzed by GeneSpring GX version 12.6.1 (Agilent Technologies,
Inc., Santa Clara, US) using Linear Models for Microarray Data (LIMMA). MiRNA Taqman
array data was normalized based on comparative CT representation using the global normali-
zation method. DAVID 6.7 was used for functional enrichment analysis of mRNA data. Gene
Set Enrichment Analysis (GSEA) was used to assess concordance between our data and a priori
defined set of genes. DIANA-mirPath [20] was performed on miRNA TaqMan array data for
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Hierarchical heatmaps
were generated with complete linkage clustering method and squared Euclidean distance mea-
sure. Ingenuity Pathway Analysis (IPA) was used to identify top biological functions and dis-
ease/disorders, and to generate pathways regulated from integrated mRNA-miRNA data
(http://www.ingenuity.com). MiRNA predicted targets for integrated analysis were generated
based on TargetScan 6.2 (www.targetscan.org) or miRanda (microRNA.org). (S2 Fig for overall
study design). We used support vector machines (SVM) to develop multivariate molecular sig-
natures of lung field of cancerization from differentially expressed miRNA and mRNA follow-
ing the leave-one-out cross-validation protocol.

Quantitative Real-time Reverse transcription PCR Analysis
We isolated total RNA using Qiagen miRNeasy Mini Kit (Valencia, CA) according to the com-
pany protocol, and performed quantitative real time-polymerase chain reaction on four
mRNAs (ASCL1, AMOTL2, CLCN3, and MAP3k8) and four miRNAs (miR-486–3p,
miR-483–5p, miR-374a, and miRNA-375).

Statistical Methods and Graphs
We used GeneSpring and MATLAB (The MathWorks, Inc.) to calculate LIMMA—value, stu-
dent t-test p-value, Benjamini-Hochberg False Discovery Rate (FDR) for adjustment of multi-
ple comparisons, and fold change (FC) for each individual gene/miRNA probe. Correlation
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between phenotype and miRNA/mRNA was assessed using both correlation coefficient and
partial correlation coefficient conditioned on age, sex, and smoking status. Differential expres-
sion comparison was made between early stage I and II adenocarcinoma vs. late stage III and
IV adenocarcinoma. Pearson’s correlation was used to calculate correlation between RT-PCR
and microarray platforms. Rank-order analysis was used to compare miRNA-mRNA correla-
tion. Area under the curve was generated using Mann-Whitney U statistics theory.

(See S1 Methods for more detailed description)

Results

Demographic and Clinical Characteristics
Of the 30 subjects recruited for this study, 17 were diagnosed with lung adenocarcinoma after
initial bronchoscopy and 13 were determined to be smoker controls, free of lung cancer. The
clinical characteristics of these subjects are shown in Table 1. Most of the study subjects were
male, Caucasian and had a significant smoking history (>30 pack years), and most cancers
were stage III-IV lung adenocarcinoma.

Gene Expression in the Peripheral Airways Contralateral to the Tumor
To characterize differences in gene expression found in the field of cancerization in lung cancer
patients compared to smoker controls, we collected peripheral airway epithelial cells from air-
ways distant from the tumor, i.e. in the contralateral lung, which we term the contralateral pe-
ripheral airway. RNA samples were extracted and run on an Affymetrix HG-U 133 Plus 2.0
chip. After adjusting for age, sex, and smoking status, we used FDR correction of 0.10 as the
threshold. 64 mRNAs in the contralateral peripheral airway epithelial cells were found to be

Table 1. Demographic & clinical characteristics.

Adeno Ca (n = 17) Control (n = 13) p-value†

Age, yr (SD) 64 (7.4) 62 (6.9) 0.41

Male Sex (%) 13 (76) 9 (69) 0.67

Race 0.46

White 14 9

African American 1 3

Hispanic 1 1

other 1 0

Smoking status 0.69

Past 11 10

Current 6 3

Pack-years (SD) 38 (19)‡ 43 (23) 0.61

Cancer Stage

I 3 na

II 1 na

III 4 na

IV 9 na

Definition of abbreviations: Adeno Ca = adenocarcinoma
Mean and standard deviation (SD) were calculated.
†p-values calculated using Student's t-test or Fisher exact test.
‡Missing pack-years for 1 subject

doi:10.1371/journal.pone.0118132.t001
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differentially expressed between lung cancer patients and smoker controls (S1 Table); the top
30 mRNAs are shown in Fig. 1A. Of these 64 mRNAs, 38 mRNAs were down-regulated in lung
cancer patients, of which the top 5 mRNAs were CHGB, B4GALT1, ZNF434, GLB1, and
ASCL1 (p�0.0001). Of the 26 mRNAs that were up-regulated, INSIG1, SGK223, RND3,
TUFT1, DPYD, and AMOTL2 were the most significant (p�0.0001). Fig. 1B-C shows individ-
ual dot plots for each of the top 30 mRNAs identified as significantly different between cases
and controls. These findings suggest possible differences in underlying biological processes.

To further evaluate the biological processes occurring in the peripheral airway field of can-
cerization, we performed DAVID Bioinformatic functional enrichment analysis from the
above gene list. Functional Annotation analysis (S2 Table) with a “medium” classification
stringency generated a list of biological processes of which the top terms included apoptosis
(fold enrichment = 3.9, p-value = 0.01), programmed cell death (fold enrichment = 3.9,
p-value = 0.01), disaccharide metabolic process (fold enrichment = 133.1, p-value = 0.01), cell
death (fold enrichment = 3.3, p-value = 0.02), and cell proliferation (fold enrichment = 3.9,

Fig 1. Top 30 Gene expressions in the peripheral airway epithelial cells. A)Using Affymetrix Gene Chip HG U133 Plus 2.0, Top 30 differentiated mRNAs
in peripheral airway field of cancerization of cancer patients (black bar) vs. peripheral airways of smoker controls (gray bar) are shown. 13 mRNAs were
strongly up-regulated and 17 mRNAs were strongly down-regulated in peripheral airway field of cancerization. Gene expression fold change is shown as the
mean expression relative to a reference value. Table below shows FDR value base on Benjamini-Hochberg multiple testing and log2 fold change value of
cancer patient relative to smoker control.B) Individual dot plot of cancer patients (n = 17) compared to smoker controls (n = 13) with up-regulatedmRNAs.
C) Individual dot plot with down-regulatedmRNAs.

doi:10.1371/journal.pone.0118132.g001
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p-value = 0.04). Apoptosis, programmed cell death, and cell death genes included TNS4, BAD,
AHR, B4GALT1, and PLG. Cell Proliferation genes included CALCA, TUSC2, ASCL1,
INSIG1, and BAD. These differentially expressed biological processes in the contralateral pe-
ripheral airway, many of which are important in tumorigenesis, suggest that tissue far from the
tumor may also have abnormal molecular expressions. We performed GSEA using publicly
available datasets. We identified concordant relationship with 10 gene sets (FDR<0.1) in the
C4 computational gene sets, cancer gene neighborhoods collection by Broad Institute Molecu-
lar Signatures Database (MSigDB). These gene sets are involved in apoptosis (MORF_DAP,
MORF_CSNK2B, MORF_PHB), DNA repair (MORF_DDB1), and oncogenes MYC
(MORF_NME2) and RAS (MORF_RAN). (S3 Fig, S3 Table). We also identified 14 gene sets
(FDR<0.1) in the C4 computation gene sets, cancer modules collection by MSigDB (more de-
tails in S4 Table). Top 5 gene sets are shown in S4 Fig. Both DAVID and GSEA identified simi-
lar biological processes in the peripheral airway field of cancerization, many of which relate to
lung cancer pathogenesis.

We next used quantitative RT-PCR to confirm our Affymetrix microarray results. First, we
validated two of the most significantly altered genes, ASCL1 and AMOTL2, in a subset of 20 sub-
jects (13 lung cancer patients and 7 controls). The different gene expression detection methods
produced similar p-values and fold changes (Fig. 2A). ASCL1 was significantly decreased in can-
cer compared to control by 0.32-fold, p = 0.003 (RT-PCR) vs. 0.36-fold p = 0.0001 (Affymetrix
microarray). AMOTL2 was significantly increased in cancer compared to control by 1.2-fold,
p = 0.006 (RT-PCR) vs. 1.7-fold, p = 0.0001 (Affymetrix microarray). Similarly, we used RT-PCR
to evaluate expression of two other randomly selected genes, CLCN3 and MAP3k8, and found
fold change in the same magnitude and direction using the two methods (Fig. 2B). CLCN3 was
decreased in cancer compared to control by 0.80-fold, p = 0.09 (RT-PCR) vs. 0.84-fold, p = 0.01
(microarray). MAP3k8 was increased in cancer compared to control by 1.51-fold, p = 0.11
(RT-PCR) vs. 1.57-fold, p = 0.001 (microarray). Correlation plots between RT-PCR data and mi-
croarray data for individual subjects are shown in S5 Fig.

It is interesting to note that when we compared our samples based on tumor stage, analysis
of stage I/II (early) vs. stage III/IV (late) did not produce statistically significant mRNAs
(FDR<0.1); suggesting that pathogenesis of field of cancerization may differ from that of
tumor metastasis. It is possible that this study may not be powered to analyze gene expression
differences between tumor stages; alternatively, it is possible that no differences were detected
because there was no direct metastasis to the contralateral lung in our subjects.

MicroRNA expression in the Peripheral Airways Contralateral to the
Tumor
We used the same RNA samples extracted from the contralateral peripheral airway epithelial
cells of lung cancer patients and smoker controls to profile miRNA expression using TaqMan
Array Human MicroRNA A Cards v2.0. Adjusting for age, sex, and smoking status, and using
FDR< 0.1 filter, 17 miRNAs were found to be differentially expressed (Fig. 3A). Of these 17
miRNAs (S5 Table), 12 miRNAs were down-regulated in lung cancer patients; miR-224,
miR-708, miR-221, and miR-328 were the most significant. Of the 5 miRNAs that were up-
regulated in cases with lung cancer, miR-483–5p, miR-374a, and miR-486–3p were the most
significant. Fig. 3B-C shows individual dot plots for each of the 17 miRNAs. Differences in
miRNA expression between cancer patients and smoker controls suggest that modulation of
miRNAs may activate biological pathways relating to tumorigensis.

To explore the biological pathways that might be regulated by these miRNAs, we performed
a KEGG pathway classification analysis using the DIANA-mirPath [20] with microT-CDS
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Fig 2. Real time RT-PCR validation. A) Two highly significant differentially expressed genes (ASCL1 and
AMOTL2) detected by microarray in the peripheral airway epithelial cells of cancer patients compare to
smokers controls, were confirmed with RT-PCR, producing similar p-value and fold change.B) Two randomly
selected genes (CLCN3 and MAP3k8) were confirmed with RT-PCR to produce fold change in same
direction and with similar magnitude to that seen with microarray. Gene expressions were expressed as
means and ± standard errors of means.C-D) Three up-regulated miRNA and a fourth down-regulated miRNA
were select for RT-PCR to confirmation miRNA expression. miR-486–3p, miR-483–5p, and miR-374a were
up-regulated and miR-375 was down-regulated in the peripheral airway field of cancerization in lung cancer
patients compared to smoker controls; fold change between cancer patients and smoker controls were in the
similar direction. MiRNA expressions were expressed as means and ± standard errors of means.

doi:10.1371/journal.pone.0118132.g002
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prediction. MicroT-CDS prediction identified the top five most significant KEGG pathways:
ErbB signaling pathway (p = 2.3x10-26, 14 miRNAs), prostate cancer (p = 2.3x10–26, 14 miR-
NAs), TGF-beta signaling pathway (p = 2.1x10-25, 13 miRNAs), mitogen-activated protein ki-
nase (MAPK) signaling pathways (p = 6.2x10-49, 24 miRNAs), and Pathways in cancer
(p = 5.1x10-21, 16 miRNAs) (S6 Fig). Interestingly most KEGG pathways are due to four miR-
NAs: miR-374a, miR-26a, miR-27b, and miR-320a. Modulation of cancer related pathways
support the presence of field of cancerization at the miRNA level in the contralateral peripheral
airway epithelial cells.

To validate our microarray findings we randomly selected four miRNA to quantify by quan-
titative RT-PCR and compared with quantification of miRNA by TaqMan array in a subset of
19 subjects (12 lung cancer patients and 7 controls). The up-regulated miRNAs included:
miR-486–3p, with 2.9 fold change (p = 0.034) by RT-PCR vs. 4.8 fold change (p = 0.001) by
TaqMan array; miR-483–5p, with 2.5 fold change (p = 0.014) by RT-PCR vs. 4.1 fold change
(p<0.0001) by TaqMan array; and miR-374a, with 1.3 fold change (p = 0.24) by RT-PCR vs.
1.9 fold change (p = 0.001) by TaqMan array (Fig. 2C-D). MiRNA-375 was down-regulated,
with 0.8 fold change (p = 0.21) by RT-PCR vs. 0.3 fold change (p = 0.002) by TaqMan array.
Correlation plots between RT-PCR data and TaqMan array data for individual subjects are

Fig 3. MicroRNA expression in the peripheral airway epithelial cells. A) Using TaqMan miRNA Array, 5 miRNAs were highly (FDR<0.1) up-regulated in
peripheral airway field of cancerization of cancer patients (black bar) vs. peripheral airways of smoker controls (gray bar). 12 miRNAs (FDR<0.1) were
strongly down-regulated. MiRNA fold change is shown as the mean expression relative to a reference value. Table below shows FDR value base on
Benjamini-Hochberg multiple testing and log2 fold change value of cancer patient relative to smoker control.B) Individual dot plot of cancer patients (n = 17)
compared to peripheral airways of smoker controls (n = 13) with up-regulatedmiRNAs.C) Individual dot plot with down-regulatedmiRNAs.

doi:10.1371/journal.pone.0118132.g003
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shown in S7 Fig. Importantly, differences in miRNA expression were in the same direction for
both methods. However, the magnitude of the difference between cases and controls was larger
for the TaqMan array data.

Integrated mRNA and miRNA analysis identified the ERK/MAPK
Pathway
To further explore the pathways associated with the identified changes in uninvolved peripher-
al airway epithelial cells from cancer patients vs. smoker controls, we integrated differentially
expressed miRNA data with the negatively correlated predicted mRNA targets from these 30
patients for analysis. Assuming larger statistical power by integrating miRNA and mRNA data,
we selected negatively correlated miRNAs and mRNAs with FDR<0.15. A total of 24 miRNAs
and 67 mRNAs probes were selected after filter, producing 102 miRNA-mRNA pairings
(S6 Table). Using IPA program analysis, we identified the top biological functions of these
miRNA-mRNA pairings as being involved in cellular development (p = 7.8x10-8, 38 mole-
cules), cellular growth and proliferation (p = 2.5x10-7, 43 molecules), cell death and survival
(p = 1.1x10-6, 44 molecules), cellular movement (p = 3.1x10-5, 31 molecules), and cell cycle
(p = 2.6x10-5, 19 molecules). IPA network generation identified that the majority of these
mRNA and miRNAs (54 molecules) were networked to the extracellular signal-regulated
kinase/mitogen-activated protein kinase (ERK/MAPK) pathway (Fig. 4), which represents a
composite of merging 3 top interaction networks based on “network score.” This higher-order
analysis was able to identify a previously known oncogenic signaling pathway, MAPK, in the
peripheral airway field of cancerization, suggesting that interaction between mRNA and
miRNA may be important in field of cancerization.

miRNA and mRNA expression correlation identifies miR-374a and
ASCL1 interaction
To further characterize miRNA-mRNA interaction in the peripheral airway field of canceriza-
tion, we explored specific miRNA-mRNA pairings. Vosa and colleagues identified miR-374a as
a prognostic biomarker in early stage non-small cell lung cancer [21]. We also identified miR-
374a as a differentially expressed miRNA in the peripheral airway field of cancerization; its ex-
pression was increased in lung cancer patients compared to smoker controls (Fig. 3). Using a
publicly available miRNA target prediction program, miRanda, we searched for possible targets
of miR-374. One of the predicted targets, ASCL1, a gene member of the basic helix-loop-helix
family transcription factors, was also identified in our study as differentially expressed. Quanti-
tative RT-PCR confirmed our microarray results (Pearson’s correlation = 0.47, p = 0.04)
(S7 Fig). When we correlated the miR-374a and ASCL1 quantitative RT-PCR expressions in
each individual, we found a significant negative correlation (p = 0.013), as expected with
miRNA-mRNA pairings (Fig. 5.) While there is substantial literature describing the function of
ASCL1, little is known about miR-374a. We know that ASCL1 is important in pulmonary neu-
roendocrine cell development, lung injury repair, airway dysplasia, and neuroendocrine differ-
entiated lung cancer pathogenesis [22–24]. There is some evidence that low miR-374a
expression level in non-small cell lung cancer is associated with poor survival, suggesting it
may have tumor suppressive effect. We hypothesize that miR-374a is up regulated in the field
of cancerization, and in turn down regulates ASCL1 transcription factor, which may represent
a reaction of epithelial cells to the presence of tumor in the lung; possibly counteracting and/or
preventing tumor metastasis. It would be important to explore further the mechanism by
which this interaction affects tumor invasion.
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Molecular Signatures in the Lung Field of Cancerization
To explore whether differentially expressed mRNAs and miRNAs in the contralateral peripher-
al airway epithelial cells could be used to differentiate our cancer patients from cancer-free
smokers, we developed molecular signatures from mRNA and miRNA data using support vec-
tor machines (SVM) following the leave-one-out cross-validation (LOOCV) protocol. When
SVMs were applied to differentially expressed mRNAs (FDR<0.15 and |FC|>1.5, as deter-
mined by LOOCV), a receiver operating characteristic (ROC) curve with area under the curve
(AUC) of 0.92, 95% CI 0.82–1.00, p<0.0001 was generated (S8A Fig). On average, 30 mRNAs
were included to generate these molecular signatures. Using miRNAs data, SVMmolecular sig-
natures were based on 24 miRNAs, on average, and generated a ROC curve with AUC = 0.94,
95% CI 0.86–1.00, p<0.0001 (S8B Fig). The top mRNAs and miRNAs selected are listed in
S8C Fig and S8D Fig. These results, although only performed in a training set, suggest that
both mRNAs and miRNAs in the contralateral peripheral airway epithelial cells differentiate

Fig 4. ERK/MAPK Signaling Pathway. IPA was used to generate a network of molecules frommRNA and miRNA that were significantly different in
peripheral airway field of cancerization in lung cancer patients compared to smoker controls. This composite network merge three top networks based on
“network score,” which converges on the ERK/MAPk pathway: specifically merging on Extracellular signal-related kinases 1 and 2 (ERK1/2), c-Jun
N-terminal kinases (JNKs), and p38 kinases subfamily. Red is up-regulated andGreen is down-regulated.

doi:10.1371/journal.pone.0118132.g004
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lung cancer patients from smoker controls in our cohort, and could be used as a biomarker for
diagnosis. Therefore, performance evaluation of these molecular signatures in a validation set
is needed.

Discussion
In this study we showed that peripheral airway epithelial cells distant from the lung tumors
have many differentially expressed mRNAs and miRNAs commonly associated with tumori-
genesis when compared with peripheral airways from smoker controls. The transcriptomic
profile of these epithelial cells showed cellular functions relating to cell adhesion (DST, RND3)
[25,26], apoptosis (NR4A2, STK17B, miR-21) [27–29], airway dysplasia (ASCL1) [23], tumor
suppression (MAP3k8) [30], angiogenesis (AMOTL2) [31], and signaling pathways, such as
MAPK signaling (miR-483–5p, LDLR) [32,33], and PI3k-Akt (IRS2, miR-26a) [34,35]. We also
identified several miRNAs in the peripheral airways that have been implicated in carcinogene-
sis. For example, miR-483–5p, previously identified as being abnormally expressed in hepato-
cellular carcinoma and rectal cancer[36,37], exerts its effect by directly targeting the ERK1
pathway [33], and was recently shown to be important in lung cancer cell proliferation and se-
nescence[38]. We identified miR-483–5p as the top differentially expressed miRNA in our
miRNA array and confirmed its expression by quantitative RT-PCR (Figs. 2C and 3), also
suggesting that miR-483–5p may play a role in the peripheral airway field of cancerization. In
addition, we observed that 71% (12/17) of the differentially expressed miRNAs were down-
regulated. This result reflects current evidence across multiple different cancer types that there
is a global down-regulation of miRNAs in cancer [39,40]. Mascaux and colleagues examined
bronchial biopsies from a wide range of patients including never smokers, smokers with nor-
mal bronchial epithelium, and patients with bronchial dysplasia, carcinoma in situ, and inva-
sive squamous cell carcinomas, and found a linear reduction in miR-32 and miR-34c
expression correlating with progression from normal bronchial epithelium to squamous cell
carcinoma [41]. This is an interesting finding suggesting that global down-regulation of miR-
NAs may play a role in tumorigenesis. If true, further studies regarding miRNA expression in

Fig 5. Correlation betweenmiR-374a and ASCL1.Quantitative RT-PCR for miR-374a and ASCL1 were
performed in each individual’s peripheral airway epithelial cells (n = 17 cancer patient and n = 13 smoker
controls) to confirm miRNA-mRNA negative correlation in the array. We confirm that ASCL1 expression was
negatively correlated with miRNA-374a expression in peripheral airway epithelial cells (Pearson’s = -0.56,
p = 0.013).

doi:10.1371/journal.pone.0118132.g005
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the field of cancerization may provide potential targets for chemopreventive strategies for lung
cancer [42].

By integrating miRNA and mRNA data in the field of cancerization, we showed for the first
time that the MAPK signaling pathway is deregulated in the contralateral peripheral airway ep-
ithelial cells. MAPK signaling is comprised of three kinases: ERK kinases 1 and 2 (ERK1/2),
c-Jun N-terminal kinase (JNKs), and p38 kinase. ERK1/2 MAPK signaling is highly responsive
to growth factors and cytokines, resulting in cell proliferation, cell division, and cell differentia-
tion [43,44]. Activation of ERK1/2 has been shown to correlated with advanced and aggressive
NSCLC [45]. Dubinett et al. demonstrated that the ERK1/2 pathway appears to be a potential
intermediary of the Snail-mediated up-regulation of SPARC, which contributes to lung tumor
invasion and migration [46]. In contrast, JNK and p38 kinases respond to ultraviolet radiation,
oxidative stress, and tumor necrosis factor, leading to apoptosis, inflammation, and cell cycle
arrest. Khatlani et al. showed that JNK is activated in NSCLC cancer and promotes oncogenesis
in bronchial epithelial cells [47]. We also previously reported that activated p38 kinases are up-
regulated in NSCLC tissue by Western blotting [48]. Our microarray identified two molecules
that were shown to affect MAPK signaling: DUSP4 and IRS2, both have previously been shown
to modulate ERK1/2 activation [49,50]. This example of integrated miRNA-mRNA analysis
highlights the utility of combining integrated data for functional genomics to identify novel
molecules and pathways in field of cancerization. We also identified a possible mRNA/miRNA
pairing in ASCL1 and miR374a. Further research is needed to better understand the mecha-
nism of this interaction, which we hypothesized, may be involved in suppressing tumor inva-
sion, based on known functional properties of these two molecules. Our findings, although not
confirmed through functional experiments, are supported by our quantitative RT-PCR data on
peripheral airway epithelial cells and strengthen the idea that molecular differences seen in the
contralateral peripheral airway epithelial cells between cancer patients and smoker controls
may be involved in pathogenic pathways for lung cancer. This concept has not yet been de-
scribed in areas far distant from the lung tumor.

We also evaluated our results in the context of previously published studies of airway gene
profiling in lung cancer. In Kadara’s study which profiled field of cancerization in non-small
cell lung cancer subjects, the investigator showed that the ERK/PI3K pathways were up-
regulated in epithelial cells of adjacent airways compared to the contralateral airways [51,52].
We compared the gene expression of our 64 mRNAs to the transcriptomic architecture from
Kadara’s airway epithelial brushing “farthest away” from the tumor (GSE44077), and identified
38 mRNAs which were differentially expressed in both data sets (FDR<0.1). Of these, 61%
(23/38) were up or down regulated in the same direction (S7 Table). Interestingly, we found
only 36% (16/45) of mRNAs were similar in up/down regulation when we compared to
Kadara’s airway epithelial brushing “closest” to the tumor (FDR<0.1). Our data supplement
Kadara’s finding of a gradient field of cancerization effect relating to the proximity of the air-
way to the tumor, by suggesting that this gradient effect may extend to the contralateral periph-
eral airway. However, it is important to note the differences in study design between the two
studies: while our study was designed to compare differences between cancer patients and
smoker controls, Kadara’s comparisons were made within samples from cancer patients only.
Therefore we can only infer possible correlation when comparing these two data sets. In a sepa-
rate analysis, we also compared gene expression of proximal large airway epithelial cells
(GSE4115) [17] to our data set and were able to identify some similar gene expressions
(S8 Table). Spira et al. demonstrated PI3k pathway activation in the proximal airway during
and prior to lung cancer development [53]. Our analysis extends current knowledge regarding
field of cancerization by identifying a list of commonly differentiated mRNAs expressed in the
proximal large airway, adjacent airways, and contralateral peripheral airways; providing

Field of Cancerization in Lung Adenocarcinoma

PLOSONE | DOI:10.1371/journal.pone.0118132 February 23, 2015 12 / 18



a spatial gene expression map to help identify potentially important mechanisms in lung
cancer pathogenesis.

Of the 64 mRNAs and 17 miRNAs significantly expressed in the contralateral peripheral
airway, 10 mRNAs/miRNAs have similar up/down expression as that of lung adenocarcinoma
tumors or lung adenocarcinoma cell lines; AHR (up), DPYD (up), ERV3–1 (up), LDLR (up),
TUSC2 (down) miR-224 (down), miR-27b (down), miR-26a (down), miR-483–5p (up), and
miR-210 (up) [54–61]. This suggests that some oncogenic expressions can be detected in areas
some distance away from the lung tumor, in the contralateral peripheral airway epithelial cells.
While Kadara el al. was able to show a spatial gradient effect of cancerization, it is reasonable to
think that our data supplement their findings by suggesting that although field of cancerization
can be detected some distance away, it is more likely that it follows a gradient in which a de-
creasing effect with increasing distance from the tumor is observed. We hypothesize that while
cigarette smoke causes a whole field of injury in the lung, only those at-risk for developing
lung cancer have an increase of oncogenic cell-lineage in many of the peripheral airway epithe-
lial cells. However, a focal area with the highest oncogenic expression might eventually arise,
transforming into a self-replicating colony and eventually becoming cancerous; this may be a
possible explanation for the gradient effect in the lung.

However, it is important to consider other hypotheses as to the importance of field of can-
cerization and its role in tumorigenesis. For example, it is interesting to note that there are
mRNAs and miRNAs with opposite up/down expression compared to lung adenocarcinoma
tumors / cell lines: AKIP1 (down in field of cancerization vs. up in lung adenocarcinoma),
ASCL1 (down vs. up), miR-708 (down vs. up), miR-21 (down vs. up), and miR-31(down vs.
up) [59,62–65]. It is reasonable to consider that while some of the pro-oncogenic molecules are
expressed in the field of cancerization, some anti-oncogenic molecules may actually reflect a
counter-regulatory mechanism in the contralateral lobe in response to the presence of tumor
in the lung; either to prevent metastasis of the lung tumor or to counteract elevated carcinogen-
ic pathways. Alternatively, this observed opposite expression may reflect progenitor cell
“fatigue” or “burn-out.” [66]. For example, Achaete-Scute homologue-1 (ASCL1), a pro-neural
transcription factor, is important in pulmonary neuroendocrine cell development [22], injury
repair [24], and highly expressed in neuroendocrine differentiated lung cancer functioning as a
regulator of RET oncogene [65]. Following constant insult from cigarette smoke damage, it is
possible that adult ASCL1 defined cells, may suffer from “fatigue,” possibly resulting in reduced
capacity of progenitor cells to successfully differentiate into normal epithelial cells. Clearly,
more experiments are needed to further explain this complex system.

Our study was limited by the moderate sample size which may have limited the power to de-
tect additional significant differentially expressed mRNA, miRNA, and/or miRNA-mRNA
pairings between cancer patients and smoker controls. Also, additional sampling of multiple
lung regions, including the tumor itself, tumor-adjacent, ipsilateral, and contralateral airways
could more definitively illustrate the spatial effect of field of cancerization. Nevertheless, field
of cancerization has the potential be a source of biomarker discovery. While we believe that
our method of sampling of the peripheral airway epithelial is a minimally invasive procedure,
we acknowledge that currently this method of biomarker discovery is not clinically optimal or
practical as it cannot be routinely performed. Currently substantial lung cancer biomarker re-
search has been conducted in the large airway bronchial cells [17], and future work should also
focus on oral and nasal epithelial cells as potential areas affected by lung cancer field of canceri-
zation, given the fact that these regions can be sampled easily.

In summary, we profiled the global mRNA and miRNA expression of the peripheral airway
epithelium contralateral to the tumor in lung cancer patients and compared it to smoker con-
trols. We showed that in these presumably histologically normal peripheral airway epithelial
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cells, our method identified changes in the molecular expression of genes relating to cellular
processes important in tumorigenesis, such as apoptosis, cell proliferation, and DNA repair.
We also demonstrated that using our technique, we were able to detect modulations in known
candidates important to tumorigenesis—MAPK signal pathway in the contralateral lung of the
tumor. Future studies on mechanisms are needed in the field of cancerization to proof this con-
cept and to provide insights on changes in different cell types, such as bronchoalveolar stem
cells which may represent the early steps by which epithelial damage leads to dysplasia and ulti-
mately tumor initiation. The concept of field of cancerization will continue to evolve as more
molecular information emerges. We believe that better understanding of field of cancerization
will help improve the poor survival rate in lung cancer patients.
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