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Abstract
Afforestation, the conversion of non-forested land into forest, is widespread in China. How-

ever, the dynamics of soil organic carbon (SOC) after afforestation are not well understood,

especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforesta-

tion sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC,

total nitrogen (TN), the carbon-to-nitrogen ratio (C/N) and soil bulk density (BD) were

investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulat-

ed at rates of 138.2 g C m-2 yr-1 and 4.6 g N m-2 yr-1, respectively, in shrub-dominated

afforestation sites and at rates of 113.3 g C m-2 yr--1 and 6.7 g N m-2yr-1, respectively, in

tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-

dominated afforestation plots, and significantly reduced in soil layers from 0–40cm in the

tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to

the reference sites. SOC accumulation was closely related to TN accumulation following af-

forestation, and the inclusion of N-fixing species in tree-dominated afforestation sites addi-

tionally increased the soil accumulation capacity for SOC (p< 0.05). Multiple regression

models including the age of an afforestation plot and total number of plant species explained

75% of the variation in relative SOC content change at depth of 0–20 cm, in tree-dominated

afforestation sites. We conclude that afforestation on the Qinghai Plateau is associated with

great capability of SOC and TN sequestration. This study improves our understanding of

the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides

evidence on the C sequestration potentials associated with forestry projects in China.

Introduction
Soil is a major carbon (C) pool in terrestrial ecosystems, containing nearly 1500 Pg of C as soil
organic carbon (SOC) in the first meter of depth [1]. The dynamics of SOC, which is prone to
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loss or gain due to land-use changes [2], are critical to understand, owing to the increasing car-
bon dioxide (CO2) concentration in the atmosphere [3]. Losses of soil C caused by the cultiva-
tion of grassland and by deforestation are the second greatest source of anthropogenic
greenhouse gas emissions [3,4]. Land C emissions contributed about 36% of the anthropogenic
CO2 emitted into the atmosphere from 1985–2000 [4]. Afforestation, the conversion of non-
forested land into forest, is one of the cost-effective strategies for climate change mitigation,
owing to the ability of forested land to sequester CO2 from the atmosphere, storing it in woody
biomass via plant photosynthesis and soil organic matter via humification [5,6]. Afforestation
also protects soils against wind and water erosion [7,8], and increases soil C stability by form-
ing macroaggregates through mycorrhizal associations with plant roots and soil microbes
[9,10]. However, both the magnitude and direction of soil C dynamics following afforestation
are poorly characterized in the literature, with different studies sometimes showing inconsis-
tent results. For example, the SOC stock in the top 10 cm of soils was enhanced by only 20%
after afforestation of cropland in Northern Europe [11], but increased by 68.6% in the top
20 cm of soils in China [12]. Previous reviews of this issue also report that there is a high risk of
soil C depletion in young stands established on cropland [13,14], and in forests established on
grassland [2,11,15]. Additionally, changes in SOC following afforestation are directly related to
the prior land use, environmental conditions (climatic factors, plant species composition and
intrinsic edaphic properties) and human management [16–19]. Thus, a credible assessment of
SOC sequestration following afforestation at regional scale remains a challenge, owing to the
need for such comprehensive information [20].

Nitrogen is a constituent of soil organic matter (SOM) that directly influences SOC accumu-
lation via its influence on the input rate from net primary productivity (NPP). Hence, soil N
can be an important factor in the regulation of long-term C sequestration potential in terrestri-
al ecosystems [21–23]. N-fixing plant species can substantially add to the amount of available
N in the soil via biological N-fixation [19,24]. This increase in N can decrease microbial respi-
ration rates [25,26], thus facilitate C sequestration and improve soil fertility in forested land.
The amount of C sequestered in soils following afforestation is directly related to levels of N re-
tention; for example, in a planted forest, a gain of 1 g total soil N (TN) was accompanied by a
35 g and a 7 g gain of C in the O horizon and the mineral soil layers (in the first meter of
depth), respectively [18]. Although there have been many studies of N effects on terrestrial
C cycles and the underlying mechanisms, whether or not the SOC sequestration potentials of
afforested lands will be restricted in the long term by progressive N limitation remains contro-
versial [22,27,28]. Hence, it is crucial not only to follow standardized protocols when collecting
post-afforestation data on SOC dynamics, but also to include measurements of soil N dynamics
in field experiments, in order to credibly assess SOC sequestration potentials and mechanisms
[29].

The Qinghai-Tibet Plateau, which covers nearly one-fourth of China’s territory, is the
world’s highest plateau and represents a unique plateau climate [30]. Gaining an understand-
ing of post-afforestation changes in SOC and TN within this climatic zone is critical for two
key reasons. Firstly, it is well-known that the response of SOC to afforestation can vary signifi-
cantly across geographic and/or climatic zones [11,12,17,18]. At a global scale, studies of SOC
sequestration potentials are geographically biased tropical and temperate climatic zones
[16,18,31,32], with few studies examining post-afforestation SOC dynamics in the plateau cli-
matic zone [33,34]. This bias limits our understanding of the mechanisms underlying SOC
changes at a global scale and makes it difficult to reconcile divergent results from different cli-
mate zones. Secondly, the responses of both SOC and TN to afforestation have been shown to
vary significantly with the use of different plant species and types of afforestation (afforestation
of cropland or barren land, mixed forests or pure forests) [17,24]. However, the majority of
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reviews published to date examining the influence of tree species planted on SOC and TN
stocks have looked across diverse climatic zones [17,18], with little research within
similar zones.

An opportunity to examine the impact of planted tree species within a single climatic zone
exists on the Qinghai-Tibet Plateau, where a large planted forest was established using multiple
species. In Qinghai province, shrubland now occupies up to 52.9% of the total planted area
[35]. Study of this unique multi-species forest could illuminate the individual responses of
SOC and TN, as well as their interaction, to afforestation (using different tree species) in a
unique plateau climatic zone. However, this opportunity has yet to be fully exploited, with little
research occurring to date, particularly for shrubland. The scientific identification of an affores-
tation type that combines the desire for C sequestration with the maintence of soil fertility is es-
sential for forestry policy-makers. Consequently, it is a priority to evaluate changes in SOC
accurately within this unique climatic region.

In the current study, we examined changes in SOC and total soil nitrogen (TN) following af-
forestation on the Qinghai-Tibet Plateau, a region for which little is known about C dynamics.
We examined 48 sites, using the same protocol to investigate the dynamics of SOC, TN,
carbon-to-nitrogen ratio (C/N) and soil bulk density (BD) after afforestation in this region.
Our objectives were to: (1) evaluate the direction and magnitude of changes in SOC and TN
stocks after afforestation across the Qinghai Plateau using the paired-plot method; and (2) un-
derstand the mechanisms underlying the SOC and TN accumulation observed after afforesta-
tion of cropland on the Qinghai Plateau.

Materials and Methods

Site Descriptions
Soil sample collection sites were selected on the Qinghai Plateau in accordance with the distri-
bution of forest types and corresponding afforested areas; sampling was permitted by the Chi-
nese Academy of Sciences and the Forestry Department of Qinghai Province. According to the
Forestry Statistic Yearbook for Qinghai province, five prefectures (Haibei, Haidong, Hainan,
Haixi, and Xining) in the north of Qinghai province account for 97% of the province’s affor-
ested areas. Although the southern part of the province (consisting of Huangnan, Guoluo, and
Yushu prefectures) accounts for a high proportion (40%) of the total land area, it accounts for
only 4% of the total area afforested from 2002–2010 [35]. Thus, the sample sites were focused
in northern Qinghai province and were categorized according to forest type and proportion of
the land that was afforested in the last decades.

In order to investigate changes in SOC and TN correlated with afforestation, each afforested
sample site plot was paired with a nearby non-afforested (reference) plot, either cropland with-
out organic fertilizer inputs or barren land. To ensure that paired sample plots were compara-
ble, prospective study sites had to meet the following criteria: (1) afforested land had been
under cultivation for at least 20 years prior to afforestation, to ensure that any differences in
SOC were due to afforestation itself. As little soil C is accumulated in cropland, this was as-
sumed to be a long enough period that observed soil C stock would be the result of recent affor-
estation [31]; (2) the plantation age of afforested land was recorded accurately; (3) the paired
plots had comparable soil types with similar topographies; and, (4) the distance between paired
plots was no greater than 1,000 meters. The age and land use history of the afforested plots
were acquired from local county officials or town forestry administration bureaus or stations.
A total of 48 afforested sites were included in the study (Fig. 1): 24 shrubland sites, 20 broadleaf
forest sites and 4 conifer-dominated sites. The land used for soil core sampling was protected
by the Forestry Department of Qinghai province. Sites located in the hills on the eastern
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Qinghai Plateau had relatively longer distances (400~1,000 m) between paired plots than sites
located in central and western Qinghai Plateau (within 100~400 m). Afforestation plots were
classified as either shrub-dominated (24 sites) or tree-dominated (24 sites), based on the life
form of the dominant plant species. The shrub-dominated plots were further subdivided into
shrub-grass ecosystems (12 sites) and pure shrub plantations (12 sites) according to the mode
of afforestation. The tree-dominated plots were subdivided into mixed-forests with N-fixers
(13 sites) and forests without N-fixers (11 sites), based on the N fixation function of accompa-
nying species. The land-use types that existed prior to afforestation were also subdivided into
cropland (42 sites) and barren land (6 sites). This research did not involve endangered or pro-
tected species. Additionally, this study did not involve animal husbandry, experimentation, or
care/welfare. Basic information on each sample site (including climatic factors, plant species
and GPS coordinates) is provided in S1 Table.

Soil Sampling and Analysis
Field sampling took place between July and October 2011. The same sampling protocol was
used for all sites (Fig. 2). The paired plots covered at least 25×25 m2 each, with 3 replicates per
sample site. All soil cores were taken using a stainless steel auger (3.5 cm in diameter) with
fixed intervals of 0–10, 10–20, 20–40, 40–60, 60–80 and 80–100 cm in the mineral soil layer.
To account for spatial heterogeneity within each sampling plot, five soil cores were obtained

Fig 1. Location of the 48 sample sites in Qinghai province. The three plates in the corners of the map show the typical forest types. (A) A 21-year-
old planted forest (Larch) under rain-fed conditions in the eastern hilly region, (B) a 9-year-old planted shrubland (Hippophae rhamnoides) in the middle
region, and (C) a 31-year-old planted forest (Populus bolleana) with irrigation in the west region.

doi:10.1371/journal.pone.0116591.g001
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for each interval in each plot; these were mixed in a cotton bag. An obvious organic layer (for-
est floor) was noted in older afforested plots of a few decades of age; a sample of this layer was
collected from a 20×20 cm square. However, there was no clear evidence of the presence of for-
est floor (< 1 cm) in most of the forested plots, especially for shrub-dominated sites and youn-
ger tree-dominated sites (< 15 years old) (S1 Table). Thus, only four sites with relatively older
ages, including two sites with 26- and 29-year Larix principis-rupprechtii forest, a 33-year Po-
pulus cathayana Rehd. forest and a 57-year Populus cathayana Lauche forest, were selected to
measure the C and N accumulation in the forest floor. Many of the soil profiles obtained in the
sampling plots had a depth of less than 1 m. Therefore, we only studied the changes in SOC
and TN that occurred from 0–60 cm, and the soil cores deeper than 60 cm were used to correct
the changes in SOC and TN stocks via the equivalent mass method [31,36]. All of the soil sam-
ples were air-dried in a well-ventilated room. Each soil sample was sieved through a 2 mm
mesh, and the remaining fraction,> 2 mm, was separated and weighed. Soil bulk density sam-
ples were also collected at a depth of 0–60 cm, with 10 cm intervals, using stainless steel bulk
density rings (AMS soil sampling equipment, USA) with three replicates per afforested sites
and reference plot. The soil bulk density samples were dried in an oven in the laboratory at
105°C until reaching constant in weight. The dominant and accompanying species were re-
corded for each sample site.

The soil samples< 2 mm were ground finely using a ball mill after removing any fine roots
and then passed through a 0.25 mmmesh for measurement of SOC and TN concentrations.
The SOC concentration was determined using the K2Cr2O7–H2SO4 wet oxidation method of
Walkley and Black [37]. The TN concentration was analyzed with a continuous-flow auto-
analyzer (Auto-Analyzer III, Bran+Luebbe GmbH, Germany) after the samples were digested
with concentrated H2SO4 (98%). The C/N was calculated from the SOC and TN concentra-
tions. The soil texture, clay (< 0.002 mm), silt (0.002–0.05 mm), and sand (0.05–2 mm) con-
tent in the soil samples were determined using a Laser Particle Size Analyzer.

Fig 2. Scale map of soil sampling locations at one site on the Qinghai Plateau.

doi:10.1371/journal.pone.0116591.g002
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Main Calculations
All data for the soil samples, such as sample locations, soil properties and plant types, was com-
piled using Microsoft Excel. The SOC content in a fixed layer, i, was calculated using [38]:

Ci ¼ SOCi � BDi � hi � ð1� diÞ � 10�1 ð1Þ

Ct ¼
Xn

i¼1
Ci ð2Þ

where Ci is the SOC content (Mg C ha-1) and SOCi is the SOC concentration (g C kg-1) in sam-
ple layer i; BDi is the bulk density (g cm

-3); hi is the thickness (cm) of the soil layer; δi is the
fraction (%) of coarse fraction> 2 mm; and Ct is the SOC stock in the soil profile, which is the
sum of the content in different layers.

The equivalent mass method was used to evaluate the changes in SOC stocks after afforesta-
tion due to soil BD changes. The SOC stock value obtained after afforestation was corrected to
the same mass as in the reference site using the equations reported by Poeplau et al. [31].

Calculation of the change in SOC stocks (ΔCj, Mg C ha-1) for sample site j followed
equation:

DCj ¼ Cej � Ccj ð3Þ

where Cej is the SOC stock for sample site j for afforested soil (Mg C ha-1), and Ccj is the SOC
stock in the reference (Mg C ha-1). The relative change in SOC stock after afforestation (Pj, %)
for sample site j was estimated as [17]:

Pj ¼
DCj

Ccj

� 100 ð4Þ

The rate of absolute changes in SOC stocks (�Rj, g C m-2 yr-1) and the rate of relative SOC

stock change (�pj, % yr-1) were calculated, to evaluate the changes in SOC intensity, using the

formula described by Li et al. [18].
The TN contents and intensity of changes in TN stocks were also calculated using corre-

sponding forms of equations (1) through (4).

Statistical Analysis
There was substantial variation among the soil properties in their variance at each sample site,
indicating that not all the data had the same quality. Therefore, we decided to use weighted re-
gression models to explore which factors most strongly influenced the dynamics of SOC and
TN stocks after afforestation. We calculated the mean and standard deviation of each soil prop-
erty measured for each paired afforested and reference plot. Next, the property variances were
estimated using the equation [39]:

s2
j ¼

S2ej
nejX2

ej

þ S2cj
ncjX2

cj

ð5Þ

where s2
j is the variance of a response variables (i.e. soil property) after afforestation at site j;

Xej is the mean of the variable for the afforested plots and Xcj is the mean for reference plots at
site j; nej and ncj are numbers of samples obtained in the paired afforested and reference plots,
respectively; and Sej and Scj are the standard deviations for the paired afforested and reference
plots, respectively.
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In order to analyze the effects of different potential causal factors on the relative changes in
SOC and TN stocks, the C/N ratio and soil BD associated with afforestation, forward/backward
regressions were performed using the inverse variance (1=s2

j ) as weighted factor [40,41].

We calculated the annual availability of water,W, for use as an index of climatic effects in
modeling the response of SOC and TN stocks to afforestation, using the equation [42,43]:

W ¼ MAP � Qs

rwL
þ 4000 ð6Þ

where MAP is mean annual precipitation (mm yr-1), Qs is mean annual global solar radiation
(J m2 yr-1), ρw is density of liquid water (1000 kg m-3 at 25°C) and L is the latent heat of water
evaporation (2.5×106 J/ kg H2O at 25°C).

We compared how SOC and TN stocks changed with afforestation (i.e. comparing reference
vs. afforested plots) using a mixed model with spatial autocorrelation, over soil depth, in SAS
(Sas Institute Inc., 1999). The Kenward-Roger correction was applied to the denominator to
correct the degrees of freedom, as in the statistical method reported by Eclesia et al. [44]. A
mixed model, with sample site as a random factor, was used to test for differences in the rate of
SOC or TN content in each soil layer among the different afforestation types. Linear regression
was used to explore the association between SOC and TN change intensity in the top 20 cm for
each afforestation type.

Results

Rates of Change in SOC and TN Content
Among the shrub-dominated afforestation plots, SOC content in the shrub-grass ecosystems
increased significantly at a rate of 50.5 g C m-2 yr-1 in surface soils with a depth of 0–10 cm
(p< 0.05) (Table 1). The SOC content in layers deeper than 10 cm and the TN content in each
soil layer increased slightly but not significantly (i.e. p> 0.05). In contrast, SOC content in
pure shrub plantations increased significantly in the deeper soil layers, but not in the top 10 cm
(p< 0.05). Differences in the rates of change in SOC and TN contents between the shrub-grass
ecosystems and pure shrub plantations were not significant, except for TN content at 0–10 cm
(p = 0.03). Overall, the mean rates of change in SOC and TN contents within the top 60 cm of
the soil were 138.2 g C m-2 yr-1 and 4.6 g N m-2 yr-1, respectively.

Among the tree-dominated afforestation plots, the SOC content in mixed forests including
N-fixing species increased significantly by 7.4 Mg C ha-1 at 0–10 cm of soil depth (p< 0.01)
and by 5.7 Mg C ha-1 at 20–40 cm of depth (p< 0. 1) (Table 1). The TN content increased sig-
nificantly at a rate of 2.3 g N m-2 yr-1 at 0–10 cm (p< 0.01) and by 1.7 g N m-2 yr-1 at 10–20
cm (p< 0.05). Similarly, the SOC content in forests without N-fixing species increased signifi-
cantly (p< 0.05), at a rate of 33.2 g C m-2 yr-1 at 0–10 cm and 36.4 g C m-2 yr-1 at 20–40 cm.
Overall, the mean rate of change in SOC and TN contents within the top 60 cm were 113.3 g
C m-2 yr-1 and 6.7 g N m-2 yr-1, respectively. Rates of change in SOC and TN contents in the
top 10 cm of the soil differed significantly (p< 0.05) between forests with and without
N-fixing species.

Prior land use of the afforested plots had limited effects on post-afforestation soil changes.
The SOC content in each soil layer was significantly greater (p< 0.05) in both types of affor-
ested plots than in the reference plots, with the exception of afforestation plots in former crop-
land at 0–10 cm (p> 0.05) (Fig. 3A). The TN content in each soil layer at the afforestation
plots in former cropland increased slightly but not significantly (Fig. 3B). However, the TN
content in afforestation plots in former barren land increased significantly at all soil intervals
within 0–40 cm (p< 0.05). Notably, the forest floor in the oldest afforested plots (several
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decades old) sequestered substantial amounts of C and N after afforestation with either conifers
or deciduous trees, although this result is based on a limited number of sites (S1 Fig.).

Patterns in the Rate of Change of SOC and TN Content
In the shrub-dominated afforestation plots, there was a weak overall relationship between the
rate of change of SOC content and that of TN content, but no significant relationship in pure
shrub plantations (Fig. 4A, B). The slope of the regression between these two rates of change
was 3.1 (Fig. 4B), which was greater than 1 (p< 0.01). In the tree-dominated afforestation
plots, there was a strong linear relationship between the rate of change of SOC content and that
of TN content after afforestation (Fig. 5). Here, a 1.0 Mg gain in TN was accompanied by a
17.8 Mg SOC gain in forests with N-fixers and by a 9.2 Mg C gain in forests without N-fixers
(Fig. 5A). Statistical analysis indicated that the slopes of the regressions of relative change in
SOC content vs. relative change in TN content obtained for forest with N-fixers (2.3) and with-
out N-fixers (1.5) were both greater than 1 and differed significantly from each other
(p< 0.01) (Fig. 5B).

Table 1. SOC and TN contents and their changes after afforestation with shrubs and trees on the Qinghai Plateau.a

SOC TN

Soil depths Afforestation Control ΔSOC C.V. b RSOC Afforestation Control ΔTN C.V. RTN

(cm) (Mg C ha-1) (Mg C ha-1) (Mg C ha-1) (%) (g C m-2 yr-1) (Mg N ha-1) (Mg N ha-1) (Mg N ha-1) (%) (g N m-2 yr-1)

Shrub-dominated afforestation plots (shrub-grass ecosystems)　

0–10 20.21 14.43 5.78* 143 50.46* 2.02 1.77 0.24 82 2.12*

10–20 16.87 13.87 3.02 158 26.32† 2.08 1.89 0.19 199 1.62

20–40 29.58 25.73 3.85 249 33.62 3.43 3.57 -0.13 -496 -1.15

40–60 24.91 22.95 1.95 451 17.05 3.2 3.04 0.16 737 1.35

Shrub-dominated afforestation plots (pure shrub plantations)

0–10 17.71 14.63 3.09 218 27.44† 1.77 1.66 0.11 653 1.04

10–20 15.55 11.21 4.34† 116 38.58* 1.76 1.66 0.1 419 0.85

20–40 24.47 20.03 4.44† 181 39.47 3.06 2.88 0.18 415 1.64

40–60 22.53 17.95 4.58† 129 40.73* 2.93 2.75 0.18† 596 1.64

Tree-dominated afforestation plots (mixed forests with N-fixers)

0–10 18.57 11.18 7.39** 127 39.89** 1.76 1.32 0.43† 112 2.33**

10–20 14.59 10.36 4.23 182 22.82 1.56 1.24 0.32 145 1.71*

20–40 23.58 17.88 5.70† 190 28.67 2.74 2.31 0.43† 318 2.34

40–60 20.95 17.24 3.71 215 20.04 2.57 2.37 0.2 214 1.09

Tree-dominated afforestation plots (forests without N-fixers)

0–10 15.8 9.86 5.94* 142 33.18* 1.66 1.47 0.19 322 1.07

10–20 12.97 10.2 2.77 198 15.46 1.57 1.55 0.02 1824 0.12

20–40 25.88 19.36 6.51** 80 36.40** 3.46 2.94 0.52† 232 2.89†

40–60 22.47 19.54 2.93 188 16.39 2.93 2.6 0.33 194 1.87

a The different units can be converted using a transfer coefficient (e.g., 1 Mg ha-1 = 100 g m-2).
b C.V.: coefficient of variation for changes in SOC and TN content after afforestation.
† p < 0.1;

* p < 0.05;

** p < 0.01, tested with a mixed model.

doi:10.1371/journal.pone.0116591.t001
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Changes in Soil BD and the C/N Ratio
Soil BD was only slightly reduced in all soil layers in the shrub-dominated afforestation plots
(p> 0.05), while it was significantly reduced in the tree-dominated afforestation plots
(Fig. 6A). The C/N ratio was significantly higher in afforested versus reference plots at soil
depths of less than 20 cm,, increasing by 16.9% in the 0–10 cm soil depth interval and by 14.5%
in the 10–20 cm interval (p< 0.05) (Fig. 6B). The C/N ratio in the tree-dominated afforestation
plots was also significantly higher than in the reference plots at soil depths less than 40 cm
(p< 0.05) (Fig. 6B).

Fig 4. Patterns in SOC and TN content at 0–20 cm in shrub-dominated afforested sites. (A) Rates of absolute change in SOC and TN content; (B) Rates
of relative change in SOC and TN content. The solid line indicates shrub-grass ecosystems and the dashed line indicates pure shrub plantations.

doi:10.1371/journal.pone.0116591.g004

Fig 3. Comparing the mean soil SOC (A) and soil TN (B) contents in afforested and reference (CK) plots at different soil layers acrossmultiple sites
on the Qinghai Plateau. The symbols of **, * and ns indicate the levels of significant differences between reference and afforested plots at<0.01,<0.05
and>0.05, respectively.

doi:10.1371/journal.pone.0116591.g003
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Determinants of SOC and TN Stock Changes after Afforestation
The relative change in SOC content with afforestation, for both shrub- and tree-dominated
sites, was positively correlated with the age of the afforested site (Table 2). Examining the rele-
vant climatic factors, in shrub-dominated afforested sites, the relative change in SOC content
in the top 20 cm of soil was positively correlated with the mean annual temperature (r = 0.36,
p< 0.1), and negatively correlated with the annual availability of water (r = -0.42, p< 0.1). In
contrast, the mean annual temperature and annual availability of water had no significant rela-
tionship with SOC content change in tree-dominated afforested sites. The relative change in
SOC content in the top 20 cm of soil in tree-dominated afforested sites was closely correlated
with the total number of plant species (r = 0.62, p< 0.001). A multiple regression model con-
taining afforestation age and the total number of plant species explained 75% of the relative

Fig 5. Patterns in SOC and TN content at 0–20 cm in tree-dominated afforestation systems. (A) Rates of absolute change in SOC and TN content; (B)
Rates of relative change in SOC and TN content. The solid line indicates mixed forests with N-fixers and the dashed line indicates forests without N-fixers.

doi:10.1371/journal.pone.0116591.g005

Fig 6. Comparing the mean soil BD (A) and C/N ratio (B) in afforested and reference (CK) plots at different soil layers acrossmultiple sites on the
Qinghai Plateau. The symbols of **, * and ns represent the levels of significant differences between reference and forested plots at< 0.01,< 0.05 and
> 0.05, respectively.

doi:10.1371/journal.pone.0116591.g006
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SOC content changes in tree-dominated afforested sites (Table 2). However, in shrub-
dominated afforested sites, the responses of SOC and TN to afforestation were poorly charac-
terized by these factors (R2 = 0.33 and 0.26, respectively).

Discussion

Effect of Afforestation on SOC Sequestration
The impacts of afforestation on SOC sequestration is inconsistent across published studies,
varying from significant depletion [45,46], to negligible change [47] to dramatic increase of up
to 163 g C m-2 yr-1 [48,49]. The average rate of SOC accumulation globally (at soil depths
< 30 cm), following 19 years of afforestation on former grasslands and croplands, was
14.1 g C m-2 yr-1 [13], while the average rate was 36.7 g C m-2 yr-1 (soil depths< 20 cm) after
15 years of restoration of cropland in China [14]. According to a recent global meta-analysis
[18], the rate of SOC accumulation in the top meter of soil, after conversion of cropland into
forest, averaged 96.7 g C m-2 yr-1. Wang et al. [49], in a study of 159 afforested plots in North-
eastern China, found that the rate of SOC accumulation after conversion of cropland into larch
(Larix gmelinii) plantations averaged 96.4 g C m-2 yr-1, ranging from 57.9–139.4 g C m-2 yr-1,
at soil depths of 0–20 cm. In this study, on the Qinghai Plateau, SOC accumulation rates (in
soil depths of up to 60 cm) increased substantially with afforestation at a rate of 138.2 g C m-2

yr-1 and 113.3 g C m-2 yr-1, respectively, in shrub- and tree-based afforested plots (Table 1), in-
dicating that afforestation is associated with greater SOC sequestration capability.

The magnitude of C accumulation in soils remains a poorly characterized aspect of the ter-
restrial C cycle [50]. As outlined previously in the literature, soil accounted for 30% of the total
C sink (biomass and soil) in European forest ecosystems [51], and for 25–49% in United States
forest ecosystems [52]. Net primary production (NPP), i.e. gross primary production minus
the cost of plant respiration, is the source of C in afforested land, and its rate determines the
amount of C from aboveground litter fall, root exudates and rhizodeposition that can be poten-
tially sequestered in soils [53]. In comparison with NPP rates reported in other studies [54–
56], we found that annual NPP (including trees, shrubs and herbs) was 273.4 g C m-2 yr-1

Table 2. Multiple regression models for each response variable in each afforested system was established on the plantation age (Age), mean
annual temperature (MAT), mean annual availability water (W) and the number of plant species (S).

Afforestation modes　 Response variable　 　Regression parameters for response variable of each afforested system

Intercept Age MAT W S Overall R2 Overall F

Shrub-dominated afforestation system(0–20cm) SOC (%) 73.31† 1.83† 4.61† -0.04† ns 0.33 3.46*

TN (%) 80.43*** Ns -3.69* -0.03* ns 0.26 0.94*

C/N (%) ns Ns Ns ns ns

BD (%) 22.30* Ns Ns -0.014* ns 0.21 6.13*

Tree-dominated afforestation system(0–20cm)　 SOC (%) -59.49*** 4.863*** Ns ns 19.59*** 0.75 43.65***

TN (%) -23.22* 2.16*** Ns -0.05* 9.17* 0.44 7.58***

C/N (%) 13.95† 0.95† Ns ns ns 0.11 3.52†

BD (%) 7.29* -0.56** Ns ns -3.13* 0.42 10.65***

The coefficients in the final models which only included the effects of the significant level at p < 0.1.
† p < 0.1;

* p < 0.05;

** p < 0.01;

*** p < 0.001 and ns, not significant.

doi:10.1371/journal.pone.0116591.t002
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(n = 2, SD = 209.1 g C m-2 yr-1) in shrub afforested sites and 363.5 g C m-2 yr-1 (n = 11,
SD = 192.3 g C m-2 yr-1) in tree-dominated afforested sites on the Qinghai Plateau (S2 Table).
In total, SOC accumulation in shrub- and tree-dominated afforested sites accounted for 34%
and 24%, respectively, of the total C sink of forest ecosystems in this region, a lower sequestra-
tion amount than the 36% observed in the larch plantations of Northeastern China [49]. There-
fore, although the rates of SOC accumulation following afforestation on the Qinghai Plateau
were higher than those previously reported at the global and/or regional scale, these rates were
still relatively comparable.

Effects of Afforestation on Soil TN and Its Associations with SOC
Nitrogen dynamics are a key factor in the regulation of C sequestration in terrestrial ecosys-
tems [21,57]. Soil N losses typically occur in the soil of afforested areas, owing to depletion as-
sociated with forest growth [45,49]. In Contrast, high levels of N sequestration, even up to
15.3 g N m-2 yr-1 in soil depths of 0–50 cm depth, were observed in the afforested land contain-
ing N-fixer species [19,24]. Afforested soils may gain N mainly from three sources: biological
N fixation, atmospheric N deposition and fertilization [18,21]. In this study, the average rate of
TN stock change (soil depths of 0–60 cm) was 4.6 g N m-2 yr-1 for shrub-dominated afforested
sites and 6.7 g N m-2 yr-1 for tree-dominated afforested sites (Table 1), which is consistent with
the value of 9.5 g N m-2 yr-1 (range: 3–14 g N m-2 yr-1) found in a recent global meta-analysis
examining afforestation effects in the top meter of soil, with site ages of�50 years [18]. In
Qinghai province, rates of atmospheric N deposition averaged 0.67 g N m-2 yr-1 and ranged
from 0.11–1.78 g N m-2 yr-1 [58]. The mean rate of biological N fixation in arid shrubland is es-
timated at 5.6 g N m-2 yr-1, which is higher than in other ecosystem types [59]. According to
forest management records for the study area, the sample afforested plots were not fertilized in
the growing season. Thus, we speculated that the higher N accumulation ability of soils ob-
served on the Qinghai Plateau might be explained by greater biological N fixation.

Restoration of degraded land typically increases the number of plant species occurring there
and the site biomass productivity [33,57]. Most of our study sites planted N-fixing species such
asMedicago sativa L. andHippophae rhamnoides as accompanying species to the shrubs or
trees, in order to enhance the survival of the dominant species (S1 Table). This inclusion of N-
fixing species can lead to greater rates of return organic N to soils through biological N fixation,
plant litters and root residues. In this study, the average rate of change in TN stocks in shrub-
grass ecosystems was 1.98-fold greater than in pure shrub plantations, while the average rate of
change in TN stocks under mixed forest with N-fixers was 3.39-fold greater than in forest with-
out N-fixers (Table 1). Accretion of soil TN involves many processes, including soil C decom-
position and stabilization in soil biogeochemistry [19,60]. In this study, a significant
relationship was found between the rates of change in SOC and TN stocks in both shrub- and
tree-dominated afforested sites (Figs. 4 and 5). Previous studies [19,24] have shown that the in-
clusion of N-fixers can substantially increase available N via biological nitrogen fixation, which
in turn facilitates C sequestration and improves soil fertility in forested land. Although SOC
and TN stocks increased synchronously after afforestation in our study, the rate of relative
change in SOC stocks was significantly greater than the rate of relative change in TN stocks in
both the pure shrub plantations and tree-dominated afforested plots (Figs. 4 and 5). Further-
more, the C/N ratio increased significantly in both shrub- and tree-dominated afforested sites
(Fig. 6B). The theory of progressive N limitation predicts that soil C sequestration will not be
sustainable if soil mineral N content decreases over time [61]. However, owing to the relatively
high rate of N sequestration, we speculated that the soil C sequestration is not likely to be limit-
ed by a shortage of soil TN in afforested land on the Qinghai Plateau.
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Factors Affecting Post-Afforestation Changes in SOC and TN
Many biotic and abiotic factors can influence post afforestation changes in SOC and TN con-
tents [17,18]. For example, as discussed above, the particular plant species utilized in afforesta-
tion in our study area strongly influenced changes in SOC and TN change in afforested land.
The presence of N-fixing species can increase SOC sequestration in afforested soils by decreas-
ing the decomposition rate of C pools, or by increasing humus formation [19,24,62]. In our
study area, N-fixers such asMedicago sativa and C4-herbs such as Elymus nutans were the
main accompanying species in shrub-dominated afforested sites. Plant species richness and
functional group composition have been shown to influence rates of both SOC and TN decom-
position and accumulation in restored ecosystems [63,64]. However, owing to the large amount
of variations seen among shrubland sites, the rates of absolute change in both SOC and TN
stocks did not differ significantly between shrub-grass ecosystems and pure shrub plantations,
with the exception of in TN stocks at soil depths of 0–10 cm (p< 0.05) (Table 1). For tree-
dominated afforested sites, the rate of change in soil SOC and TN was 1.29-fold and 3.39-fold
greater, respectively, in sites with versus without N-fixing species (p< 0.05) (Table 1). The
N-fixers thus critically influenced SOC and TN accretion in tree-dominated afforested sites, as
reported in previous studies [19,24]. Statistical analysis indicated that the slopes of the regres-
sion of relative change in SOC content vs. relative change in TN content in mixed forests with
N-fixers was significantly greater than that in forests without N-fixers (p< 0.01) (Fig. 5B),
indicating that greater SOC accumulation capacity existed in forests with versus without
N-fixing species.

The afforested sites were relatively low diversity ecosystems, with all plant species, including
shrubs and grasses, on afforested land originating either from artificial introductions or natural
succession. The plant species richness, which was closely related to mean annual precipitation
(r = 0.55, p< 0.01), was positively related to relative changes in SOC and TN (in the top 20 cm
of soil) in tree-dominated afforested sites (Table 2). The impact of plant species richness on
SOC and TN accretion rates may be attributed to increases in the productivity of afforested
ecosystems and to the interactive effects of N-fixing and dominant afforestation species on soil
biochemistry [63–65].

Two additional factors may also contribute the high SOC accumulation rates in our study
area. Firstly, higher SOC accumulation ability may be fostered by low initial SOC content in de-
graded land that is subsequently afforested [66]. In this study, the mean SOC content (top
20 cm of depth) of all reference plots was 24.7 Mg C ha-1, which is much lower than the mean
level reported globally for cropland (45.9 Mg C ha-1) [1]. Forty-two afforested sites were previ-
ously used as cropland and had a long-term history of cultivation prior to afforestation
(S1 Table), implying the widespread existence of poor soil fertility in the examined afforested
land. The increasing input of organic carbon from plant litter and root residues after restora-
tion will be retained as particulate organic matter (POM) or fixed by mineral particles, contrib-
uting to SOC sequestration [60,67]. Additionally, land restoration reduces erosions by water
and wind, both of which can cause a severe depletion of the SOC pool [5]. Secondly, the SOC
sequestration after afforestation has been shown to be affected by climatic zone [17,18]. With
its unique plateau climate, the mean annual temperature for Qinghai Province is 8–12°C lower
than the average for the same latitude on the North China Plain [30]. The decomposition rate
of SOC from plant litters and root residues is lower in cooler environments compared to tem-
perate and tropical zones [68]. Additionally, nearly 75% of the yearly precipitation for the
Qinghai Plateau occurs in the summer, owing to the Indian ocean-monsoon [69], which can be
beneficial to plant growth; furthermore, cold temperatures outside of the growing season can
decrease the decomposition rate of the C pool.
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Implications for SOC Sequestration and Uncertainties
China’s program of returning farmland to forest is one of the largest such attempts in the
world. Compared to C sequestration in biomass, the amount of C sequestration in soils is very
difficult to measure [50]. Additionally, knowledge of whether afforestation will cause a reduc-
tion in soil fertility is critical for the sustainable development of forests [49]. This systematical
investigation revealed that there was a high capacity for SOC and TN sequestration (in both
top- and deep-soil layers) after afforestation. The rate of SOC sequestration in the top 60 cm of
soil in Qinghai province was estimated at 0.27 Tg C yr-1 for shrub-dominated afforested sites
and 0.29 Tg C yr-1 for tree-dominated afforestation systems (based on an approximation where
SOC sequestration = area × rate of SOC accumulation, where the area afforested with shrubs
or trees was the relevant proportion of the total afforestation area). Piao et al. [70], using pro-
cess-based models, estimated that the soil C sink corresponds to 43% of the total terrestrial C
sink of China. Our results supply essential information for evaluating of the carbon sequestra-
tion potential of forestry projects implemented over the past few decades. At a regional scale,
this study revealed that the mineral soils acted as a C sink following afforestation in Qinghai-
Tibet Plateau zone, a region about which little is known on the effects of afforestation. Affores-
tation also had a positive effect on TN storage at soil depths of 0–60 cm and soil BD decreased
with afforestation age (Table 1 and Fig. 6A), suggesting the soil fertility was improved by affor-
estation and that SOC is unlikely to be limited by low N availability in afforested soils. There-
fore, this study on the Qinghai Plateau provides crucial information for understanding the
mechanisms underlying changes in SOC and TN following afforestation at a regional scale.

Although we collected 15 soil cores at each afforested site, in order to reduce the bias intro-
duced by spatial heterogeneity (Fig. 2), there remains some limitations in the interpretation of
the results of this study. Firstly, the paired-plots method we used is based on the ecological the-
ory of “space for time”, which assumed that the initial SOC content before restoration was sim-
ilar across sites under the same abiotic conditions. The disadvantages of the paired-plots
method are obvious: when there is high spatial variability in SOC and no data available on how
SOC changes (over time) in reference sites, a lack of initial SOC content baseline measurements
for specific sites will cause errors [71]. It has been estimated that the paired-plots method over-
estimates changes in SOC stocks by 12.4% compared to the retrospective method [17]. Second-
ly, as was reflected in our multiple regression models (Table 2), the response variables in
shrub-dominated afforested sites were poorly fitted in comparison to the tree-dominated affor-
ested sites. The poor model fit may be caused by the great spatial variations in SOC content,
TN content and BD reported at fine scales in shrub-dominated afforestation systems [72,73].
Unlike in the tree plantations examined here, the shrub species used in afforestation, e.g.Hip-
pophae rhamnoides and Caragana intermedia, clustered spatially in distinctive groups in the
field, with lower and smaller canopies (than the tree canopies) (Fig. 1B). In a semi-desert grass-
land, SOC and TN contents were not affected beyond the shrub canopy of Prosopis velutina en-
croachment [73]. Lastly, the use of completely random sampling may not produce reliable
estimates of SOC sequestration in shrub encroachments in grassland, as this sampling design
ignores the strong spatial patterns in SOC and TN contents, derived from differences in shrub
size and subcanopy location [72–74]. If such strong spatial patterning also occurs in shrub
plantations, then current sampling strategies need to be redesigned in order to get more accu-
rate estimates of SOC sequestration.

Conclusions
The results of our systematic investigation showed that SOC increase dramatically after affores-
tation on the Qinghai Plateau. The rate of change in SOC was strongly correlated with the rate
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of change in TN in tree-dominated afforestation plots. Soil TN increased synchronously with
SOC sequestration on the Qinghai Plateau. Afforestation age and number of total plant species
combined explained more than 75% of the variance in SOC content change after planting trees
on the Qinghai Plateau. However, these explanatory variables did not fully characterize
changes in SOC content observed after planting shrubs. As soil TN increased with afforestation
ages and the soil BD decreased with afforestation ages, we concluded that afforestation might
improve soil fertility to some extent in our system. Finally, this study provides much needed in-
formation on the pattern of SOC accumulation following afforestation in a plateau climate,
and provides new evidence regarding the C sequestration potential associated with forestry
projects in China.
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