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Abstract

Post-weaning diarrhea and edema disease caused by F18 fimbriated E. coli are

important diseases in newly weaned piglets and lead to severe production losses in

farming industry. Protective treatments against these infections have thus far limited

efficacy. In this study we generated nanobodies directed against the lectin domain

of the F18 fimbrial adhesin FedF and showed in an in vitro adherence assay that

four unique nanobodies inhibit the attachment of F18 fimbriated E. coli bacteria to

piglet enterocytes. Crystallization of the FedF lectin domain with the most potent

inhibitory nanobodies revealed their mechanism of action. These either competed

with the binding of the blood group antigen receptor on the FedF surface or induced

a conformational change in which the CDR3 region of the nanobody displaces the

D0-E loop adjacent to the binding site. This D0-E loop was previously shown to be

required for the interaction between F18 fimbriated bacteria and blood group

antigen receptors in a membrane context. This work demonstrates the feasibility of

inhibiting the attachment of fimbriated pathogens by employing nanobodies

directed against the adhesin domain.

Introduction

In farming industry enterotoxigenic Escherichia coli (ETEC) and Shiga toxin

producing E. coli (STEC) are important pathogens [1, 2] causing serious mortality

and severe production losses [3]. Common to both classes of pathogenic E. coli is

the presence of two crucial virulence factors: (1) adherence factors (often
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fimbriae) in order to mediate the attachment to specific receptors, usually glycans,

followed by colonization of the intestinal tract and (2) the production of one or

multiple toxins that induce disease symptoms [2]. In piglets ETEC and STEC

strains expressing F18 fimbriae are associated with respectively post-weaning

diarrhoea and edema disease [4, 5]. After the initial adherence step via the F18

fimbriae ETEC strains produce and secrete the heat-labile (LT) and/or heat-stable

enterotoxins (ST), thereby stimulating the secretion of electrolytes and water and

resulting in dehydration of the enterocytes and watery diarrhoea [6, 7]. F18

positive STEC strains instead produce the Shiga toxin Stx2e, which acts by

depurination of a specific adenine from the 28S ribosomal RNA, efficiently

shutting down protein synthesis and killing the affected cells that express the

globotetraosylceramide receptor [8]. Damage to the vascular endothelium

eventually results in edema, hemorrhage and microthrombosis, and will be fatal in

90% of all STEC affected animals [9]. STEC lack a secretory mechanism for Stx

and the release of Stx occurs through lambdoid phage-mediated lysis [10].

F18 fimbriae are assembled by a dedicated machinery, the chaperone/usher

pathway, that is distributed among genera of the phyla Proteobacteria,

Cyanobacteria, and Deinococcus-Thermus. Essential to the CU pathway are a

periplasmic chaperone protein and an outer membrane pilus assembly platform,

termed usher [11]. Fimbrial subunits or pilins are stabilized by the chaperone and

complemented in the final quaternary structure by an N-terminal donor strand of

the following subunit. The usher both acts as a building platform and anchors the

fimbriae to the cell surface [12]. The two-domain tipsubunit often harbors the

adhesive properties and thus determines the host tropism of the bacteria [13]. It

features a typical two-domain organization comprising an N-terminal receptor-

binding domain linked to a C-terminal pilin domain that forms the connection to

the fimbrial shaft. F18 fimbriae are comprised of the major subunit FedA [14], the

minor subunit FedE and the tip-adhesin FedF [15], which binds to glyco-

sphingolipids having A/H blood group type 1 core antigens (H: Fuca2Galb3

GlcNAcb3Galb4Glc; A: GalNAca3(Fuca2)Galb3GlcNAcb3Galb4Glc) that are

present on enterocytes of the small intestine [16].

Previously we elucidated the co-complex structure of the FedF lectin domain

with the blood group A type 1 hexasaccharide [17]. The carbohydrate ligand is

interacting in an extended conformation at a shallow binding site on the FedF

surface via an extensive hydrogen bond network. In addition we identified a

polybasic loop, adjacent to the blood group binding site, which was shown a

prerequisite for enterocyte binding although not required for glycan recognition

in solution. Upon interaction of FedF with blood group antigen carrying

sphingolipids, two positively charged lysine residues on this so called D0-E loop,

identified by site-directed mutagenesis, we predicted to come into close proximity

to the membrane. Both were shown be required for the FedF–glycosphingolipid

interaction in proximity of the lipid bilayer and are expected to provide selectivity

towards membrane-associated A/H determinants whilst evading binding to

soluble A/H antigens on glycoproteins present in mucosal secretions.
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After birth, suckling piglets are protected from F18+ STEC by specific

antibodies in the sow milk. Vaccination of the sow can enhance the protection

and so far several maternal vaccines are available on the market [18]. At weaning

this lactogenic immunity is lost and together with the stress associated with the

weaning period the piglet will become highly vulnerable to infections by enteric

pathogens. Previously, antibiotics were widely employed as prophylaxis treatment

during piglet weaning, but the recent ban of such therapy in the European Union

has urged the development of alternative treatments. These include the

administration of zinc oxide, organic acids, probiotics, prebiotics, antibodies and

vaccines [1, 18, 19], but none provide a satisfying protection against ETEC and

STEC caused disease. In addition, F18 fimbriae have a limited capability in

stimulating the immune response after oral vaccination [18, 20].

In this study we identified specific nanobodies that could block attachment

mediated by F18 producing E. coli. The inhibitory mechanism of four unique

nanobodies that completely abolished adherence was investigated and shown to

differ amongst them. Either the binding was prevented by competing for the

carbohydrate binding site or a conformational change was induced in the critical

D0-E loop. In the near future these nanobodies will be expressed in plants and

used as a feed supplement against the economically important ETEC and STEC

infections.

Materials and Methods

Generation and selection of anti-FedF15–165 nanobodies

The complete protocol of nanobody generation and selection by panning has

recently been described thoroughly [21]. In short, a llama was immunized six

times with 330 mg of purified FedF15–165 (see below) over a period of 6 weeks.

Lymphocytes from the anti-coagulated blood of the immunized llama were

employed to prepare cDNA that served as a template to amplify the open reading

frames coding for the variable domains of the heavy chain antibodies. The PCR

fragments were subsequently ligated into the pHEN11 phage display vector

referred as pHEN4C in Conrath et al. [22]. The pHEN11 contains the

chloramphenicol acetyltransferase gene replacing the beta-lactamase gene present

in pHEN4. After transformation into E. coli TG1 cells, FedF15–165-specific

nanobodies were selected by phage display [23]. After selection, phages were

eluted by incubating the FedF15–165-coated wells with with 100 mM triethylamine

(pH 10) for 10 min. After two rounds of panning, 96 individual colonies were

selected and grown in 2X TY medium supplemented with chloramphenicol

(25 mg/ml) and induced with 1 mM isopropyl b-D-1-thiogalactopyranoside

(IPTG, Thermo Scientific)) for expression of soluble periplasmic nanobodies. The

periplasmic extract was next subjected to an ELISA to confirm the selected

nanobodies are indeed recognizing the purified FedF15–165. After the selection

rounds the nanobody genes were PCR amplified using primers Lumio6 (59-

GGGGACCACTTTGTACAAGAAA GCTGGGTATTAGTGATGGTGATG-
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GTGGTGTGAGGAGACGGTGACCTGGGTCCCCTGGCC-39) and Lumio7 (59-

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAGAAGGAGATATACCATG

AAATACCTATTGCCTACGGCAGCCGCTGGATTGT-39) to introduce a His-tag

at the C-terminus of the nanobodies. The resulting PCR fragments were inserted

in the pDONR221 Gateway entry vector (Invitrogen) using the BP clonase enzyme

(Invitrogen). Subsequently, the resulting plasmids were recombined into the

pDESTR4-R3 plasmid, together with the araC activator and the pBAD promoter

(pGV5159) and the green fluorescent protein encoded by the gfp gene (pENT105),

in a MultiGateway reaction using the LR plus clonase enzyme (Invitrogen). The

gfp gene was amplified from a GFP positive strain [24]. After transformation in

CaCl2-competent E. coli DH5a, colonies were selected on LB-agar plates

containing ampicillin (100 mg/ml). Transformants were PCR screened with

primers Aida9b (59-GCGAAATTAATACGACTCACTATA-39) and pET-rv (59-G-

GTTATGCTAG TTATTGCTCAGCG-39).

Expression, isolation and purification of the different FedF binding

nanobodies

An overnight preculture of E. coli WK6 cells harboring the pDESTR4-R3 vector

with insert encoding for 6xHis-tagged nanobodies was used to inoculate lysogeny

broth (LB) media [25] (1:100) supplemented with 100 mg/ml ampicillin. Bacterial

cells were grown at 310 K, induced at OD600 nm of ,0.8 with arabinose (0.2%),

100 mg/ml ampicillin was added and the cell cultures incubated overnight at

310 K while shaking. The cell pellet was harvested by centrifugation at 6238 rcf for

15 minutes at 277 K. Extraction of periplasmic proteins was performed by

suspending 1 g of wet cell pellet in 4 ml of 20 mM Tris-HCl pH 8, 2 mM EDTA,

30% (w/v) sucrose buffer. The mixture was left on ice for 30 minutes, centrifuged

at 17418 rcf for 20 minutes at 277 K, and the cell pellet resuspended in 20 mM

Tris-HCl pH 8.0 (4 ml/g pellet). The mixture was incubated half an hour on ice

and centrifuged at 17418 rcf for 20 minutes at 277 K. The supernatant (5

periplasmic extract) was collected and kept at 277 K until further purification.

To purify the different nanobodies 1 M NaCl was added to the filtrated

periplasmic extract and subsequently loaded on a pre-packed Ni-NTA column

(GE Healthcare) equilibrated in 20 mM Tris-HCl pH 8, 1 M NaCl. The column

was washed with Tris-HCl pH 8, 1 M NaCl until all unbound contaminants were

removed and eventually bound nanobodies were eluted by applying a stepwise

gradient to 1 M imidazole. Elution fractions were analysed on purity with SDS-

PAGE and dialyzed into the appropriate buffer solution.

In vitro villous adhesion assay

F18 seronegative pigs, weaned at the age of 3–4 weeks, were transported to the

stables of the Faculty of Veterinary Medicine (UGent). Upon arrival, they were

orally given colistin (promycine pulvis; 1000 iu/mg; doses 0.1 g/kg) for 3

successive days to prevent or clear an infection with F18-positive E. coli which
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might occur at weaning. Pigs were euthanized by an overdose of Nembutal

(60 mg/kg intravenously). The villi were prepared as previously described [26].

Briefly, a 20 cm long intestinal segment was excised of the mid jejunum at the

moment of slaughter and washed twice with Krebs–Henseleit buffer (0.12 M

NaCl, 0.014 M KCl, 0.001 M KH2PO4, 0.025 M NaHCO3, pH 7.4) and once

with the same buffer containing 1% (v/v) formaldehyde for 30 min at 4 C̊.

Subsequently, the villi were gently scraped from the mucosa with a glass slide and

stored in Krebs–Heinseleit buffer at 4 C̊. When used for testing, villi were

resuspended in PBS supplemented with 1% (w/v) D-mannose (Fluka) to prevent

adhesion by type 1 pili.

An in vitro adhesion assay on small intestinal villous enterocytes was performed

as previously described [27]. The wild type F18-positive E. coli strain 107/86 was

mixed together with either 16 phosphate-buffered saline (PBS) buffer or one of

the twelve different FedF-specific nanobodies (final concentration of 10 mg/ml)

and tested for binding to villi by adding 46108 bacteria to an average of 50 villi in

a total volume of 500 ml of PBS, followed by incubation at room temperature for

1 h while being gently shaken. Villi were examined by phase-contrast microscopy

at a magnification of 6006 and the number of bacteria adhering along 50 mm

brush border was quantitatively evaluated by counting the number of adhering

bacteria at 20 randomly selected places, after which the mean bacterial adhesion

was calculated. Adhesion tests were performed in triplicate on intestinal villi of

two different piglets.

Expression and purification of FedF15–165

The N-terminal lectin domain of FedF comprising residues 15 to 165 (FedF15–165)

was over expressed and purified as earlier described [28]. In short, plasmid

pEXP62 was introduced in C43 (DE3) E. coli cells and grown in lysogeny broth

(LB) supplemented with 100 mg/ml ampicillin at 37 C̊ until the OD600 reached

1.0 and then induced with 1 mM IPTG. Induction was allowed to proceed during

3 h at 37 C̊, after which periplasmic proteins were collected by administering an

osmotic shock. To purify FedF15–165 the cleared periplasmic extract was loaded

onto a Source 30S cation exchange column equilibrated in 20 mM Tris-HCl

pH 7.5 and eluted by a NaCl gradient to 0.5 M. Elution fractions were analyzed

on purity with SDS-PAGE and dialyzed into the appropriate buffer solution.

Microscale thermophoresis (MST)

Microscale thermophoresis is an immobilization-free technique for the analysis of

biomolecules interacting in solution [29–31]. Saturation binding experiments

were performed using a NanoTemper Monolith NT.115 instrument

(NanoTemper Technologies). In MST an infrared-laser produces precise

microscale temperature gradients within thin glass capillaries that are filled with

the two binding partners. Molecules move along these temperature gradients and

any change of the hydration shell of proteins due to changes in their primary,
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secondary, tertiary and/or quaternary structure affects the thermophoretic

movement. FedF15–165 was fluorescently labeled via surface exposed amine groups

with NT647 and the concentration was kept constant (150 nM) while varying the

concentration of nanobodies, ranging from 1.28 mM to 0.04 nM. Afterwards 3–

5 ml of the samples were loaded into glass capillaries (Monolith NT TM

Capillaries) and the thermophoresis analysis was performed (LED 100%, IR laser

50%). The interaction was measured in HBS buffer (20 mM HEPES pH 7.4,

150 mM NaCl, 0.005% Tween20) and data was analyzed using the NT Analysis

software (NanoTemper Technologies).

Formation, crystallization and structure determination of the

complexes between FedF15–165 and different inhibitory nanobodies

Complexes between FedF15–165 and the different nanobodies were obtained by

adding an excess of FedF15–165 to the appropriate nanobody and subsequently load

the mixture on a pre-packed Ni-NTA column (GE Healthcare). The FedF15–165-

nanobody complexes will be retained on the column as only the nanobodies

possess a C-terminal 66 His-tag. Elution of the complexes was performed by

stepwise addition of 1 M imidazole.

The FedF15–165-NbFedF6, FedF15–165-NbFedF7 and FedF15–165-NbFedF9 co-

complexes were dialyzed to 20 mM HEPES pH 7.5, 50 mM NaCl; concentrated

and set up for crystallization (1:1 stoichiometry protein/well solution). Initial hits

were further optimized to conditions that produced well-diffracting crystals.

FedF15–165-NbFedF6 (16 mg/ml) readily crystallized against a solution containing

160 mM NaCl, 80 mM Bis-Tris pH 5.5 and 20% PEG-3350; FedF15–165-NbFedF7

(7 mg/ml) against a solution 1 M (NH4)2 SO4, 90 mM Na-citrate pH 4.0; and

finally FedF15–165-NbFedF9 (10 mg/ml) produced good diffracting crystals when

set up against 2 M (NH4)2 SO4, 5% PEG-400 and 100 mM MES pH 6.5. The

crystals were flash-cooled to 100 K in their crystallization solution supplemented

with 15% glycerol for data collection. A single wavelength data was collected and

data were processed with XDS and Xscale of XDS [32] and prepared with

Pointless and Scala from the CCP4 suite [33]. Data were phased by molecular

replacement [33] using coordinates of the previously determined FedF15–165

structure (PDB code 4B4P) and a random nanobody obtained from the PDB

database (PDB code 2X1O). The models were further improved using the graphics

program COOT [34] and refined using Refmac with TLS refinement [33] against

the native dataset. Crystal parameters and data processing statistics for all

structures are summarized in Table 1. The electron density maps of the

interaction interface are shown in S5 Figure.

Surface plasmon resonance measurements

SPR experiments were carried out using a Biacore T200 instrument (GE

healthcare). The surface of a CM5 sensor chip was activated with a 1:1 mixture of

0.1 M N-hydroxysuccinimide (NHS) and 0.4 M 1-ethyl-3-(3-dimethylamino-
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propyl) carbodiimide hydrochloride (EDC). After activation of the surface the

glycoconjugate human serum albumin-blood group A type 1 hexaose (HSA-A6-1)

(10 mg/ml) (IsoSep AB, Sweden) in 10 mM sodium acetate, pH 4 was injected to

flow cell 2 (FC2) to be immobilized on the sensor surface via primary amine

groups. As a control the same amount of HSA was immobilized on FC1. Residual

unreacted active ester groups were blocked with 1 M ethanolamine-HCl, pH 8.5.

A constant amount of FedF15–165 (25 mM) was either alone or mixed with two-

fold excess of the different nanobodies (50 mM) in HBS buffer (10 mM HEPES,

150 mM NaCl, 1 mM EDTA, 0.005% Tween20, pH 7.4) injected over the chip

surface at a flow rate of 10 ml/min at 25 C̊.

Table 1. Data collection, crystal parameters, and refinement statistics for the co-complexes of FedF15-165 with
NbFedF9, NbFedF6 and NbFedF7.

FedF15-165-NbFedF9 FedF15-165-NbFedF6 FedF15-165-NbFedF7

Wavelength 1.00 0.98 0.98

Beamline SLS PX III Diamond IO4 Soleil Proxima 2

Space group C 2 2 21 P 32 2 1 P 21 21 21

a, b, c (Å) 52.6, 103.0, 114.5 101.4, 101.4, 62.8 30.3, 78.6, 108.9

a, b, g (˚) 90, 90, 90 90, 90, 120 90, 90, 90

Resolution (Å) 46.95-1.57 (1.66-1.57) 87.8-2.51 (2.64-2.51) 44.77-1.88 (1.98-1.88)

No. of unique reflections 42810 (5989) 13039 (1868) 21548 (2703)

CC(1/2) 99.8 (56.1) 99.5 (79.3) 99.8 (74.3)

Rmeas (%) 14.4 (183.7) 18.7 (102.9) 11.2 (95.1)

Average I/sI 11.1 (1.0) 12.6 (2.7) 11.2 (2.1)

Completeness (%) 98.6 (95.5) 99.9 (99.4) 97.4 (85.6)

Multiplicity 9.7 (9.5) 10.9 (10.8) 5.7 (5.3)

Wilson B-factor 15.3 22.5 25.3

Rwork/Rfree(%) 19.5/22.6 20.0/25.4 18.6/22.6

average B-factor (Å2) 14.9 15.6 21.8

R.m.s. deviations

Bond lengths (Å) 0.020 0.016 0.019

Bond angles (˚) 1.968 1.869 1.994

No. Atoms (except H)

Protein 2213 2001 2049

Water 228 57 88

Residues in allowed regions 99.1 98.8 99.2

(%) of Ramachandran plot

PDB entry 4W6Y 4W6W 4W6X

aRmeas 5 Sh (nh/nh-1) Sl |Ihl - ,Ih.|/Sh Sl ,Ih., where nh 5 the number of observations for reflection h,Ihl
5 the intensity for observation l of reflection h, and ,Ih. 5 the average intensity for reflection h.
bStatistics for outer resolution shell are given in parenthesis.
cRwork 5 Shkl ||Fobs | - |Fcalc ||/Shkl |Fobs |.
dRfree is defined as above but calculated for 5% of randomly chosen reflections that were excluded from the
refinement.

doi:10.1371/journal.pone.0114691.t001
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Ethics statement

Animal vaccination and experimentation was performed in strict accordance with

good animal practices, following the EU animal welfare legislation and after

approval of the local ethical committees [Committee for the Use of Laboratory

Animals at the Vrije Universiteit Brussel and the Committee of the Faculty of

Veterinary Medicine at the Universiteit Gent (EC 2014/02)]. Every effort was

made to minimize animal suffering.

Accession numbers

Atomic coordinates and structure factors have been deposited in the Protein Data

Bank as identifiers 4W6W, 4W6X and 4W6Y.

Results

Nanobodies efficiently inhibit attachment of F18 fimbriated

bacteria to piglet enterocytes in vitro

A purified truncate (residues 15–165) of the FedF tipadhesin (FedF15–165)

corresponding to the N-terminal lectin domain, where the binding capability to

blood group type 1 antigens was shown to reside [17], was used to generate

specific nanobodies [35]. Despite the smaller size of nanobodies compared to

conventional antibodies they confer high affinity and antigen specificity, high

stability and solubility, and are easy and inexpensive to produce [36]. A llama was

immunized with FedF15–165 and specific nanobodies were selected by panning the

immune library, derived from the llama peripheral blood lymphocytes, in two

consecutive rounds using the phage display technology [21]. In total twelve

nanobodies specific for FedF15–165 were obtained and further used to screen for

their inhibitory capacity in an in vitro adherence assay on piglet enterocytes. The

wild type E. coli strain 107/86 expressing F18 fimbriae [14] was incubated with

each of the twelve different nanobodies and then added to the villi of piglets. The

amount of bacteria adhering to the villi lining were counted, the results are

summarized in Fig. 1 and showed that three categories of nanobodies could be

distinguished. The adherence of the first group of nanobodies (NbFedF2,

NbFedF3, NbFedF4, NbFedF8 and NbFedF11) remains unchanged compared to

the control sample without added nanobody. In a second category, binding was

reduced compared to wild type binding but still residual binding to the piglets

enterocytes remained (NbFedF1, NbFedF5 and NbFedF10). A third group of

nanobodies leads to the (near) complete loss of attachment of the wild type strain

107/86 to piglet villi (NbFedF6, NbFedF7, NbFedF9 and NbFedF12). Sequence

alignment of these four inhibitory nanobodies reveals great sequence variability

between them in all three complementary determining regions (S1 Figure),

hinting that varying epitopes are recognized by these nanobodies. Microscale

thermophoresis was used to determine the in solution affinity between FedF15–165

and the four inhibitory nanobodies (Fig. 2). Nanobodies NbFedF6, NbFedF7,

Inhibitory Nanobodies against F18 Fimbriae

PLOS ONE | DOI:10.1371/journal.pone.0114691 December 11, 2014 8 / 20



NbFedF9 and NbFedF12 recognize FedF with low nanomolar affinity (Kd’s of

3.57, 5.25, 1.58 and 29.02 nM, respectively), which is up to a thousand fold higher

affinity in comparison with the interaction between FedF and the natural

occurring glycan ligand blood group A type 1 hexasaccharide (2.9 mM) [17]. In

the next sections we further characterized the three best inhibiting nanobodies

(NbFedF6, NbFedF7 and NbFedF9) by X-ray crystallography.

Nanobody NbFedF9 inhibits attachment by steric occlusion of the

FedF carbohydrate binding site

Crystallization trials of the NbFedF9-FedF15–165 co-complex were set up in order

to obtain structural information about the inhibitory mechanism of NbFedF9.

These efforts resulted in the elucidation of the FedF15–165- NbFedF9 structure to a

resolution of 1.5 angstrom using molecular replacement with the earlier

determined apo-FedF15–165 structure (PDB identifier 4B4P). NbFedF9 interacts

along the side of the FedF immunoglobulin-like fold (Fig. 3 left) by exclusively

hydrogen bond formation, either directly by the interaction between residues of

both NbFedF9 and FedF15–165 or indirectly with intermediary water molecules (S2

Figure). All but one of the interactions between NbFedF9 and FedF15–165 are

governed by CDR3, which is more expanded in nanobodies compared to their

VHVL antibody counterpart. Important direct interactions that stabilize the

complex are hydrogen bonds between the side chains of His88 (FedF) and Tyr114

(NbFedF9), Arg117 (FedF) and Glu101 (NbFedF9), Glu122 (FedF) and Arg112

Fig. 1. Blocking the attachment of F18 positive E. coli to piglet enterocytes by nanobodies. Nanobodies directed against the N-terminal domain of the
FedF tipadhesin (FedF15–165) were assayed in an in vitro adherence test of wild type F18-positive E. coli strain 107/86 to piglet intestinal enterocytes. As a
negative control PBS buffer was added instead of nanobody. Bacterial cells adhering to villi were counted under a microscope and plotted as a percentage
of wild type binding.

doi:10.1371/journal.pone.0114691.g001
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(NbFedF9), Glu96 (FedF) and Arg108 (NbFedF9) (S2 Figure). As well two direct

interactions involving only main chain atoms are formed, more precisely between

the amide group of Ile94 (FedF) and the carboxyl group of Arg108 (NbFedF9) and

between the carboxyl group of Gly92 (FedF) and the amide group of Ser110

(NbFedF9) (S2 Figure). When the structure of the previously elucidated co-

complex between FedF15–165 and the blood group A type 1 hexasaccharide (A6-

1)[17] is overlaid on the NbFedF9-FedF15–165 complex it shows clearly how the

binding sites for the glycan A6-1 and NbFedF9 on the surface of FedF are

overlapping (Fig. 3 right; S3 Figure). Amino acid residues His88 and Arg117 on

the FedF surface have been shown to be crucial in mediating the attachment of

F18-fimbriated bacteria towards enterocytes in a mutational study [17]. In the

FedF- NbFedF9 crystal structure these residues are involved in the formation of

hydrogen bonds with NbFedF9 and thus unable to interact with the A6-1 ligand

Fig. 2. Inhibitory nanobodies recognize FedF15–165 with low nanomolar affinity. Microscale thermophoresis (MST) was employed to determine the in
solution affinity between Nb-FedF6, Nb-FedF7, Nb-FedF9 and Nb-FedF12 with FedF15–165. (A) Typical MST measurement showing the interaction between
Nb-FedF6 and FedF15–165. Data points are indicated by black diamonds, the fit by the NT Analysis software is shown as a red line. (B) Overview on the
determined dissociation constants (KD) for the indicated Nb-FedF15–165 interactions.

doi:10.1371/journal.pone.0114691.g002
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(Fig. 3; S3 Figure). All together the presented co-complex structure demonstrates

how NbFedF9 inhibits the attachment of F18 fimbriated E. coli to villi by directly

competing with the carbohydrate binding site on the surface of FedF.

Nanobodies NbFedF6 and NbFedF7 inhibit attachment by inducing

local conformational changes in FedF

Crystal structures of the complexes between FedF15–165 and both NbFedF6 and

NbFedF7 were as well obtained to a resolution of respectively 2.5 Å and 1.7 Å

(Fig. 4). In both elucidated complexes the nanobodies are occupying an

overlapping epitope formed by strands D9 and D0 at the interface between the two

b-sheets of FedF (Fig. 4). Nearly all interactions between NbFedF6 and FedF are

mediated by the CDR3 loop. In the NbFedF7-FedF complex the contribution of

CDR3 to the total binding affinity is even more pronounced as the other CDRs are

not involved in any direct hydrogen bond formation at all. Direct hydrogen bond

interactions that stabilize the NbFedF6-FedF15–165 complex are Arg45 (NbFedF6)

and Ala96 (FedF), Ser54 (NbFedF6) and Gln84 (FedF), Phe100 (NbFedF6) and

both Gly92/Asn81 (FedF), Tyr102 (NbFedF6) and Asn81 (FedF), Gln109

(NbFedF6) and both Gly98/Ala96 (FedF), Ala110 (NbFedF6) and Gly94 (FedF)

Fig. 3. NbFedF9 inhibits the binding of F18 fimbriated E. coli to piglet enterocytes by occupying the carbohydrate binding site on the FedF
surface. Left: structure of the complex between the inhibitory NbFedF9 (green) and FedF15–165 (b-strands, a-helices and loops are colored respectively
cyan, red and grey), which shows NbFedF9 interacting at the side of the FedF fold. The three complementary determining regions (CDRs) of NbFedF9 are
colored respectively in orange, purple and yellow. Right: overlay of the NbFedF9-FedF15–165 structure with the previously elucidated structure of the co-
complex between FedF15-165 and the blood group A type 1 hexasaccharide [17]. Both the carbohydrate ligand and NbFedF9 compete for the same binding
site on the FedF fold. Blood group A type 1 hexasaccharide is depicted in stick model with carbon, oxygen and nitrogen atoms colored respectively purple,
red and blue.

doi:10.1371/journal.pone.0114691.g003
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(S4 Figure). In the NbFedF7-FedF complex Trp111 is inserted in a deep

hydrophobic groove on the FedF surface with optimal shape complementary and

as well forms a direct interaction with Ser79; other important interactions are

Ser100 (NbFedF7) and Thr46 (FedF), Asn101 (NbFedF7) and both Asn81/Gly92

(FedF), Ser102 (NbFedF7) and Gln91 (FedF), Ala110 (NbFedF7) and Gly94

(FedF), Asn113 (NbFedF7) and Ser44 (FedF) (S4 Figure). Although a near

identical epitope is targeted by NbFedF6 and NbFedF7 they differ significantly in

the sequence of their CDR3 loop (S1 Figure) and the residues involved in the

recognition of the epitope on the FedF surface. Both nanobody NbFedF6 and

NbFedF7 are interacting distant from the A6-1 binding site (Fig. 5), thus contrary

to the inhibitory complex between FedF- NbFedF9 in which NbFedF9 directly

competed with the blood group antigen binding site. When superimposing the

crystal structures of the FedF-A6-1 complex with the NbFedF6/7-FedF complex it

shows how both nanobodies induce a conformational change in the D0-E loop

(Fig. 5). The D0-E loop is displaced more outwards relative to the A6-1 binding

site by the CDR3 loop of the nanobody and thereby pushed slightly upwards

relative to the FedF surface. The conformation of none of the amino acid residues

identified in our earlier study to interact with the A6-1 ligand is affected

significantly [17]. To confirm that both nanobodies can still bind the ligand we

Fig. 4. Overview of the binding of inhibitory nanobodies NbFedF6 and NbFedF7 on the surface of the F18 fimbrial adhesin FedF. Nanobodies
NbFedF6 and NbFedF7 (green) are interacting with a near identical epitope at the interface of the two b-sheets that make up the immunoglobulin-like fold of
FedF15–165 (b-strands, a-helices and loops are colored respectively cyan, red and grey). The three complementary determining regions (CDRs) are colored
respectively in orange, purple and yellow.

doi:10.1371/journal.pone.0114691.g004
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performed an inhibition experiment using surface plasmon resonance. FedF was

mixed with a fixed concentration of the different inhibitory nanobodies and

injected over a chip on which a human serum albumine-A6-1 glycoconjugate was

immobilized. As could be expected NbFedF9 completely abolished the binding of

FedF with A6-1 (Fig 6). On the contrary when adding an excess of nanobodies

NbFedF6 and NbFedF7, and as well nanobody NbFedF12, FedF was still able to

fully or partially interact with the A6-1-HSA glycoconjugate (Fig. 6), and in

addition these nanobodies are not altering the binding kinetics of the interaction.

These results demonstrate the conformational change induced by the nanobodies

NbFedF6 and NbFedF7 cannot completely explain their inhibitory capacity. This

is despite their full binding inhibition in a biological context, when FedF is

binding membrane-embedded sphingolipids. The D0-E loop harbors two

positively charged lysine residues that we identified previously to add non-specific

binding affinity in proximity to the membrane [17]. By targeting this loop and

changing its conformation we could thus block the affinity of F18 fimbriated

bacteria towards membrane imbedded glycosphingolipid receptors. Either this

inhibitory effect stems from the disruption of the conformation of the critical D0-

E loop, or another possibility that cannot be excluded is that NbFedF6 and

NbFedF7 upon binding impart steric hindrance with the nearby phospholipid

bilayer.

Fig. 5. Conformational change induced inhibition of adhesion by nanobodies NbFedF6 and NbFedF7. Superimposition of the FedF-blood group A
type 1 hexasaccharide (A6-1) co-complex structure (colored yellow) with the co-complex structures of FedF-NbFedF6 (A) and FedF-NbFedF7 (B) (b-
strands, a-helices and loops are colored respectively cyan, red and grey). Both NbFedF6 and NbFedF7 induce a conformational change in the D0-E loop
that is protruding from the FedF surface thereby reorienting the loop outwards from the A6-1 binding site. A6-1 is depicted in stick model with carbon, oxygen
and nitrogen atoms colored respectively purple, red and blue.

doi:10.1371/journal.pone.0114691.g005
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Discussion

Adhesion of pathogens to receptors presented on the host tissue is the first crucial

step in the initiation of infection. Often this goal is attained by hair-like surface

organelles termed fimbriae or pili that enable the bacteria to reach distant located

receptors without the immediate need for cell-cell contact. Enterotoxigenic E. coli

and Shiga toxin producing E. coli strains causing respectively post-weaning

diarrhoea and edema disease are important pathogenic strains and cause massive

havoc in livestock. In order to infect piglets these strains express the F18 fimbriae

on their cell surface that interacts via the two-domain FedF tipadhesin with ABO

blood group type 1 determinants presented on glycosphingolipids. The molecular

details on the FedF-blood group antigen interaction have been unraveled and

directed mutagenesis together with in vitro binding assays demonstrated a

polybasic D0-E loop adjacent to the carbohydrate binding site is required for to

Fig. 6. Nanobodies that induce a conformational change in the D0-E loop do not inhibit the attachment of FedF towards the A6-1 carbohydrate.
Consecutive injections of either FedF15–165 or FedF15–165-nanobody complexes over the sensor chip surface carrying an immobilized A6-1-human serum
albumin glycoconjugate were performed. Nanobody NbFedF9, shown in the crystal structure to bind in the FedF carbohydrate binding site, completely
blocks the FedF-A6-1 interaction. In contrary, nanobodies NbFedF6, NbFedF7 and NbFedF12 only slightly or not at all inhibit the binding of FedF on the A6-
1 coated surface. The crystal structures show how NbFedF6 and NbFedF7 induce a conformational change in the D0-E loop but do not steric compete with
A6-1 binding.

doi:10.1371/journal.pone.0114691.g006
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the FedF–glycosphingolipid interaction in proximity of the lipid bilayer [17]. The

D0-E loop was proposed to direct selectivity towards membrane-associated blood

group determinants and thus evades the binding to soluble glycoproteins that

contain ABH blood group antigens, and are present in mucosal secretions. In this

study we generated nanobodies that could block the attachment of F18 fimbriated

E. coli cells to piglet villi in an in vitro cell binding assay. The co-complex crystal

structures revealed the inhibitory action of these nanobodies, either they steric

compete with the blood group antigen binding site on the FedF surface

(NbFedF9) or they induced a conformational change in the crucial D0-E loop

(NbFedF6, NbFedF7 and NbFedF12). This result highlights the importance of the

critical D0-E loop in mediating attachment of F18 fimbriae with membrane

localized receptors, although steric hindrance with the near membrane bilayer

cannot be left out.

The FedF adhesin is highly conserved in isolates from different countries [37],

and none of the amino acid variability within these isolates coincides with the

epitope recognized by the different inhibiting nanobodies. Since these epitopes are

highly conserved the nanobodies we described can be broadly used over different

countries to neutralize the binding of F18 fimbriated ETEC and STEC strains on

the villi of piglets and alleviate the symptoms caused by these infections. Oral

administration of purified antibodies to the intestinal tract can be limited by the

harsh acidic environment of the stomach [38]. In Virdi et al. (2013) we showed

protection of weaned piglets by oral passive immunization with anti-F4 fimbriae

nanobodies fused to the Fc domain of pig IgA by producing these fusion

antibodies in A. thaliana seeds and administrating these crushed seeds as a feed

supplement [39]. During transit through the gastrointestinal tract these fusion

nanobodies are protected and can functionally realize their protective effect as

evidenced by a progressive decline in shedding of F4-positive bacteria, a

significantly lower immune response to F4 fimbriae and a higher weight gain

compared to piglets in the non-treated control group [39]. It is anticipated that

the anti-FedF nanobodies described in this paper can in a similar way be grafted to

the Fc domain of pig IgA and produced in plant seeds to act as prophylactic

agents. Both F4 and F18 positive strains have a high prevalence in post-weaning E.

coli infections in piglets. The most effective protection against ETEC and STEC

infections is therefore expected to come from passive immunization regimens that

combine both anti-F4 and anti-FedF Fc fused nanobodies. F4 fimbriae have their

adhesive capability build into the polymerizing subunit, resulting in the exposure

of several hundreds of interaction sites across the fimbrial length. In contrast F18

fimbriae have a single tip-adhesin FedF that confers binding properties and thus

less interaction surfaces need to be blocked to obtain a protective effect.

The usage of fusion nanobodies has a number of advantages over more

conventional prophylactic treatments, like the use of vaccines [18] or small

molecule compounds. Initially the generation of transgenic plants is labor

intensive and costly, but afterwards production will be inexpensive and

straightforward. Nanobodies feature a high affinity towards their respective

antigens, whereas organic compounds often require several intensive rounds of
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structure-based chemical optimization to attain a reasonable binding affinity.

Anti-adhesives designed against the FimH adhesin of type 1 pili, involved in the

disease process of uropathogenic E. coli, show low nanomolar binding affinities

[40–42] and were shown to be effective in an in vivo murine model upon oral

administration [43]. FimH is however exceptional as it features a deeply buried

mannose binding pocket that exhibits nanomolar binding strength towards its

natural carbohydrate ligands [44]. Difficulties arise when targeting more open,

shallow binding grooves as in the case for the PapG adhesin from P pili that are

involved in adherence to the kidney epithelium, thereby causing pyelonephritis

[45]. The most potent multivalent PapG inhibitor to date has an IC50 value of

only 2 mM [46, 47]. The majority of hitherto obtained crystal structures, including

FedF, fall into this last class that possess shallow carbohydrate binding grooves

and the macroscopic binding affinity of bacteria stems from the combined avidity

of individual weak interactions. Together these observations indicate the problems

associated with the approach of designing anti-adhesive organic compounds [48].

Nanobodies circumvent the long tedious and repetitive process of developing

optimized small molecule anti-adhesives and will in a short time span result in

nanomolar binding tools that block the unwanted attachment of bacterial lectins

to host tissue.

In conclusion, we have generated and characterized four nanobodies that

interfere with F18 fimbriae mediated attachment. The inhibitory mechanism has

been unraveled and demonstrates the nanobodies directly compete with the blood

group antigen binding site or induce a conformational change in the polybasic D0-

E loop. These nanobodies will in the near future be expressed in plant seeds to act

as a prophylactic agent to reduce the burden of ETEC and STEC infections in

intensive pig farming.

Supporting Information

S1 Figure. Sequence alignment of the four nanobodies that inhibit attachment

of F18 positive E. coli with piglet villi in vitro. Residues are colored according to

the sequence variability between the nanobody sequences, with residues colored

blue being the highest conserved and residues colored red exhibit the least

conservancy. The three complementary determining regions (CDR) are indicated

by green bars and named. Alignment was generated using CLC workbench.

doi:10.1371/journal.pone.0114691.s001 (TIF)

S2 Figure. Details on the interaction site of NbFedF9 and FedF15–165. NbFedF9

(yellow) binds at the side of the FedF fold (grey) and interacts solely by the

formation of hydrogen bonds. Either direct hydrogen bonds (dashed lines,

colored red) are formed by residues of both NbFedF9 and FedF15–165 or indirectly

by an intermediary water molecule (dashed lines, orange). Amino acid residues

involved in the interaction are named and indicated by either a black (NbFedF9)

or dark blue (FedF) label. Water molecules are depicted as spheres and colored

green. Interacting main chain and side chain atoms are depicted in stick
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representation with oxygen and nitrogen atoms colored respectively in red and

blue.

doi:10.1371/journal.pone.0114691.s002 (TIF)

S3 Figure. NbFedF9 directly competes with the sugar binding site on the FedF

surface. Shown is a comparison of the binding site of blood group A type 1

hexasaccharide (A6-1) (left) and NbFedF9 (right) on the FedF surface. Residues

His88 and Arg117 can be seen to interact both with NbFedF9 and A6-1, and these

residues are named. FedF is depicted in cartoon representation and colored gray,

whereas NbFedF9 and A6-1 are depicted in cartoon and stick representations,

respectively, and colored yellow. Interacting residues are shown in stick model

with oxygen and nitrogen atoms colored red and blue, respectively. Hydrogen

bonds are highlighted as red dotted lines.

doi:10.1371/journal.pone.0114691.s003 (TIF)

S4 Figure. Details on the interaction between FedF15–165 and NbFedF6 or

NbFedF7 that induce a conformational change in the D0-E loop. NbFedF6

(A)(B) and NbFedF7 (C)(D) are colored yellow and interact at the interface

between the two b-sheets of the immunoglobulin-like fold of FedF (grey). Direct

hydrogen bonds (dashed lines, colored red) are formed by residues of both

nanobodies and FedF15–165 or indirect hydrogen bonds by a connecting

intermediary water molecule (dashed lines, orange). Amino acid residues involved

in the interaction are named and indicated by either a black (nanobodies) or dark

blue (FedF) label. Water molecules are depicted as spheres and colored green.

Interacting main chain and side chain atoms are depicted in stick representation

with oxygen and nitrogen atoms colored respectively in red and blue.

doi:10.1371/journal.pone.0114691.s004 (TIF)

S5 Figure. Electron density maps of the interface of the different FedF15–165-

nanobody complexes. Electron density map at 1.6 sigma of the interaction

interface of the FedF15–165-NbFedF6, FedF15–165-NbFedF7 and FedF15–165-

NbFedF9 complexes.

doi:10.1371/journal.pone.0114691.s005 (TIF)
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