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Abstract

Liver damage caused by radiotherapy is associated with a high mortality rate, but

no established treatment exists. Adipose-derived mesenchymal stem cells

(ADSCs) are capable of migration to injured tissue sites, where they aid in the

repair of the damage. Hepatocyte growth factor (HGF) is critical for damage repair

due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This

study was performed to investigate the therapeutic effects of HGF-overexpressing

ADSCs on radiation-induced liver damage (RILD). ADSCs were infected with a

lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD) rats received

60Gy of irradiation to induce liver injury and were immediately given either saline,

ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant

reduction in apoptosis was observed in the HGF-overexpressing ADSC group

compared with the RILD group, as assessed by terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) staining. Scanning electron

microscopy showed chromatin condensation after irradiation, which was

ameliorated in the group that received ADSCs and was reversed in the group that

received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated

radiation- induced liver fibrosis through down regulation of a-SMA and fibronectin.

Hepatocyte regeneration was significantly improved in rats treated with ADSCs

compared with rats from the RILD group), as assessed by Ki-67

immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an

even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs

completely blocked the radiation-induced increase in the enzymes ALT and AST.

The effect of mitigating RILD was compromised in the ADSC + shHGF group
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compared with the ADSC group. Altogether, these results suggest that HGF-

overexpressing ADSCs can significantly improve RILD in a rat model, which may

serve as a valuable therapeutic alternative.

Introduction

Radiotherapy is one of the major effective treatments for primary or metastatic

liver cancers. However, normal liver tissues, especially those in active metabolic

and regeneration states, will experience collateral damage, which poses a vital

limitation to the application of radiotherapy [1]. Irradiation can result in distinct

metabolic alterations in hepatic functions and induce the carbonylation of specific

liver enzymes. The oxidation of liver enzymes may underlie some radiation-

induced alterations in hepatic function [2]. In addition to impaired liver function,

increased apoptotic cell proportion, decreased hepatocyte number and fibrosis

were also observed in irradiated livers [3]. Approximately 5 to 10 percent of the

patients who receive a radiation dose in excess of 30Gy develop radiation-induced

liver damage (RILD) [4, 5, 6]; when the dose is increased to 43Gy, the prevalence

of RILD increases to 50% [7]. Currently, treatment for RILD is not well

established. Although the use of anticoagulants and steroids has been suggested,

and although supportive treatments seem to have shown some positive efficacy, a

substantial fraction of the patients will eventually die from liver failure [8].

A large number of studies have drawn attention to mesenchymal stem cells

(MSCs) due to their potential for tissue repair in a wide range of tissue types.

Moreover, MSCs specifically migrate to radiation-injured tissues due to the

activation of molecular pathways that up regulate the expression of chemokines

[9]. Therefore, MSC therapy may be a promising therapeutic approach to

improve radiotherapy-induced tissue injury. The mechanisms of MSC radio-

protections against liver damage consist of trophic effects, anti-oxidative and

vasculature protection [10]. Among various mesenchymal stem cell lines, adipose-

derived stem cells (ADSCs) appear to be a preferable source for cell-mediated

therapy. ADSCs are highly self-renewing multipotent mesenchymal cells [11] that

are abundantly available and can be easily harvested [12]. Furthermore, ADSCs

have been proven to have a profound impact on the improvement of liver injuries

[13, 14, 15] as well as on other types of tissue injury [16, 17]; therefore, ADSCs are

one of the best candidate cell lines to use as vector cells to rescue liver tissue

injured by irradiation.

ADSCs can secrete many growth factors, such as hepatocyte growth factor

(HGF), and contribute to tissue remodeling through paracrine mechanisms rather

than by cellular differentiation [18, 19]. Of these growth factors, HGF is a

multifunctional tissue growth factor and a vital cytokine for the promotion of

hepatocyte regeneration [20]. HGF also plays an indispensable role in the

prevention of tissue fibrosis and apoptosis [21, 22, 23]. In fact, apoptosis and
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tissue fibrosis are among the pathologic consequences that can result from

irradiation. Zhu et al. reported that ADSCs that overexpress HGF exerted a better

therapeutic effect in a rat model of acute myocardial infarction [24]. Cai et al. [25]

suggested that the efficacy of ADSCs in the repair of ischemic tissue is

compromised by the down regulation of HGF expression; they demonstrated that

paracrine support accounts for a substantial portion of the in vivo benefit

produced by ADSCs. This evidence suggested to us that an elevation in the

expression of HGF may enhance the therapeutic potential of ADSCs. Similarly,

the mesenchymal stem cells from human umbilical cord blood over-expressing

hepatocyte growth factor prevent liver damages in rats [26]. In addition, lentiviral

vectors, which outperform traditional therapeutic vectors in their endurance and

efficiency, could introduce permanent and high expression of HGF in ADSCs.

Given the implications of this research, we hypothesized that ADSCs that

overexpress HGF can inhibit apoptosis of hepatocytes, reverse liver fibrosis and

promote the regeneration of hepatocytes in a rat model of RILD. The mechanism

involved may be modulated through the secretion of HGF due to its multiple

biological functions. Therefore, in the current study, we assessed whether ADSCs

that overexpress HGF could alleviate liver damage induced by irradiation.

Furthermore, we examined whether this amelioration was mediated through HGF

expression.

Materials and Methods

Isolation and Culture of Adipose-Derived Stem Cells

All procedures were approved by the animal care committee of People’s Hospital,

Peking University (Permit Number: 201301). Sprague-Dawley rats weighing

approximately 180 to 200 g were euthanized using CO2 upon termination of the

study. The procedures were performed as previously reported with some

modifications [27, 28]. Briefly, aseptically harvested rat adipose tissue was

extensively washed with phosphate-buffered saline, finely minced, and digested

for 60 min at 37 C̊ with type I collagenase (Sigma, St. Louis, USA). The cell

suspension was then neutralized with Dulbecco’s Modified Eagle’s medium

(DMEM, Gibco, USA) containing 10% fetal bovine serum (Gibco, New York,

USA), and 100 U/mL penicillin/streptomycin. After filtration through a 70-mm

filter and centrifugation at 1500 rpm for 5 min, the pellet was resuspended. The

cell suspension was plated in 75-cm2 cell culture flasks (Corning, New York, USA)

and maintained at 37 C̊ in a humidified atmosphere of 5% CO2; the medium was

changed every 2 days. ADSCs were passaged at 80% confluence with 0.25%

trypsin at 37 C̊, and all cells were used for analysis at passages three to five.

ADSC Surface Antigens Measured by Flow Cytometry

Cells at passage three were digested, washed with PBS and incubated with

antibodies against rat CD31-PE (BD Biosciences, New Jersey, USA), CD34-PE
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(Santa Cruz, Dallas, USA), CD45-FITC (BD Biosciences, New Jersey, USA), and

CD90-PE (BD Biosciences, New Jersey, USA), as well as with isotype IgG1-PE (BD

Biosciences, New Jersey, USA) and isotype IgG1-FITC (BD Biosciences, New

Jersey, USA) for 30 min. Cells were then washed and centrifuged at 1500 rpm for

5 min. Finally, cells (56105/ml) were suspended in PBS and analyzed by flow

cytometry.

Construction of Recombinant Lentiviral Vectors

The plasmid encoding human HGF or shHGF was purchased from OriGene

(OriGene, Rockville, USA). The lentiviral vector system (GeneChem, Shanghai,

China) was composed of three parts for viral packaging, including the pGC-E1

vector, the pHelper 1.0 vector and the pHelper 2.0 vector. The full-length cDNA

of hHGF was cloned into the pGC-E1 vector by digestion with AgeI and ligation

of the resultant fragments into the AgeI site of the pGC-E1 vector (pGC-E1-

hHGF). PCR and DNA sequencing confirmed the accurate insertion of hHGF

cDNA. pHelper 1.0 plasmid DNA (15 mg), pHelper 2.0 plasmid DNA (10 mg), and

pGC-E1-hHGF, pGC-E1-shHGF or PGC-E1-Fluc plasmid DNA (20 mg) were co-

transfected into subconfluent 293T cells using Lipofectamine 2000 (Invitrogen,

Carlsbad CA, USA). Infectious lentiviruses were harvested 48 h post-transfection.

Viral vector titers of recombinant lenti-hHGF and lenti-shHGFwere measured by

fluorescence-activated cell sorting analysis of the 293T cells. The viral titer was 108

transducing units/ml of medium.

Infection of ADSCs with the Lentiviral Vectors

At the third passage, the cell medium was removed prior to the infection, and

then, ADSCs were incubated with lenti-hHGF, lenti-shHGF or lenti-GFP in

special polybrene-containing (5 mg/ml) growth medium. On the day of infection,

cells were plated along with lenti-HGF, lenti-shHGF or lenti-GFP at different

multiplicity of Infection (MOI) in serum-free growth medium containing 5 mg/ml

polybrene. Serum-containing growth medium was added after 4 h and then

replaced after 48 h. Subsequently, 4–5 days post-infection, reporter gene

expression was examined using fluorescence microscopy. ADSCs were plated in T-

75 flasks and infected at an MOI of 100 for transplantation. Finally, ADSC hHGF

and ADSC shHGF cells were passaged and prepared for cell transplantation.

Establishment of a Rat Model of Radiation-Induced Liver Damage

All animals were treated according to protocols approved by the animal care

committee of People’s Hospital, Peking University (Permit Number: 201301).

Sixty 6-week-old, male Sprague-Dawley rats weighing approximately 180 to 200 g

were intraperitoneally anesthetized with 3 ml of 10% chloral hydrate per kilogram

of body weight. The hepatic region of each rat was determined using an ultrasonic

detector and was marked on the skin. Rats received whole-liver irradiation with a

single dose of 60Gy (dose rate of 215.22 cGy/min) using a HFY-YC Co-60
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cirradiator (REVISS, Buckinghamshire, UK). The other parts of the body were

protected from the irradiation by lead shielding [29]. Animals were randomly

divided into four groups. Group 1 (n515) consisted of rats that received 60Gy of

whole liver irradiation and was defined as the RILD group. The remaining three

groups (n515) were given multiple caudal vein injections of ADSCs, ADSCs

infected with lenti-HGF or ADSCs infected with lenti-shHGF (16107 cells in

0.3 ml PBS for each rat) immediately after irradiation and were defined as the

ADSC group, the ADSC + lenti-hHGF group and the ADSC + lenti-shHGF group,

respectively. Another group of ten rats without irradiation or therapy served as

controls.

Detection of Apoptosis by Transmission Electron Microscopy

The liver samples were fixed in 3% glutaraldehyde for 6–8 h at 4 C̊. The samples

were post-fixed in 0.1 M phosphate buffer containing 1% osmium tetroxide for

2 h at 4 C̊, dehydrated in ascending grades of acetone, infiltrated and embedded

in Araldite CY212 and polymerized at 60 C̊ for 72 h. Thin (60–70 nm) sections

were cut with an ultra-microtome. The sections were mounted on copper grids

and stained with uranylacetate and lead citrate and were observed using a

Morgagni 268 D transmission electron microscope (FEI Company, Portland

Oregon, USA).

Detection of Apoptosis by TUNEL Staining

Liver specimens were paraffin-embedded after fixation in paraformaldehyde for

24 h. Tissues were collected, cryopreserved, and sectioned for histologic staining.

Radiation-induced cell apoptosis was assessed by TUNEL staining using an in situ

cell death detection kit (Roche Applied Science, Indianapolis IN, USA) according

to the manufacturer’s protocol. Briefly, tissue sections were fixed in 4%

paraformaldehyde for 10 min followed by washing in PBS and blocking with 3%

H2O2 in methanol for 10 min. After permeabilization with a solution containing

0.1% Triton X-100 and 0.1% sodium citrate, sections were labeled with 25 mL of

TUNEL reaction mixture containing a 1:2 dilution of enzyme for 2 h at 37 C̊ in a

humidified chamber. Signals were then converted into horseradish peroxidase and

were visualized. Five randomly selected areas were chosen during the microscopic

examination for comparisons between each experimental group.

Histologic Liver Evaluation

The hepatic specimens were fixed in 4% paraformaldehyde and embedded in

paraffin. Liver sections were stained with hematoxylin-eosin or were subjected to

Masson’s trichrome stain and immunohistochemistry with antibodies against GFP

(Abcam, Cambridge, UK), fibronectin (Abcam, Cambridge, UK), a-SMA (Santa

Cruz, Dallas, USA), CK-7 (Abcam, Cambridge, UK), CK-19 (Proteintech,

Chicago, USA) and Ki-67 (Abcam, Cambridge, UK).
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Real-Time Quantitative Reverse Transcriptase-Polymerase Chain

Reaction (RT-PCR) Analysis

To measure the levels of HGF mRNA, total RNA (50 ng) was isolated from cells

using TRIzol reagent (Invitrogen, Carlsbad CA, USA). Real-time RT-PCR was

performed using a QuantiTect SYBR Green RT-PCR kit (QiagenInc, Valencia CA,

USA), and specific primers were chosen according to the manufacturer’s

suggested conditions. The levels of mRNA were normalized to control.

ELISA

Four days after transfection, the supernatants of multiple transfected ADSCs were

collected and centrifuged at 1500 rpm for 5 min at +4 C̊ and then stored at

280 C̊. Liver tissue weighing approximately 100 mg was rapidly excised

immediately after the animals were killed and rinsed in PBS. After homogeniza-

tion with a glass rod, the tissues were centrifuged at 4000 rpm for 10 min at +4 C̊.

The supernatants were collected and stored at 280 C̊. The amounts of HGF in the

tissue supernatants and cell supernatants were measured using a commercial

ELISA kit (R&D, Minneapolis MN, USA) according to the manufacturer’s

instructions.

Serum Liver Enzymes

Blood samples were collected 2 days post-irradiation. Serum alanine amino-

transferase (ALT) and aspartate aminotransferase (AST) activities were assessed

using a commercial kit (BioVision, Milpitas, USA). Ten microliters of each serum

sample were used according to the manufacturer’s protocol.

Western Blot

A western blot was used to measure the protein expression of collagen-I. The total

protein was extracted from the liver specimen with lysis buffer and protease

inhibitor cocktails; then, SDS and PAGE gels of the cell lysates were probed with

collagen-I antibodies (Santa Cruz, Dallas, USA). The detection was performed

using enhanced chemiluminescence. A quantitative analysis was performed by

scanning the blots and calculating the relative intensities in relation to the

corresponding actin signal using Quantity One (Bio-Rad, Hercules CA, USA).

Statistical Analysis

SPSS Statistic software (IBM Corporation, New York, USA) was used for the

general statistical analysis. All data were presented as the mean ¡ SD. Significant

differences in the numerical data between the groups were determined by one-way

ANOVA, after which a comparison between the groups was performed using the

LSD test. Values of p,0.05 were considered statistically significant.
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Results

Construction of HGF Gene-Modified ADSCs

After 4–5 hours in culture, a few dispersed cells were observed to be adherent on

the bottom of the dish (Fig. 1A). Cells began to grow quickly after 3days and

developed long spindly processes, occupied a small volume, and did not grow in

any particular direction. The observations of cell morphology under a light

microscope fit the characteristics of ADSCs. After the third passage, FACS analysis

was used to verify the phenotype. The results showed that our cultured cells were

positive for CD90 (99%) but were negative for expression of CD34 (0.02%), CD45

(0.03%) and CD31 (0.02%) (Fig. 1B).

ADSCs were divided into four groups at passage three and were transfected

with lentivirus carrying HGF-GFP, shHGF-GFP or GFP alone. We used

fluorescence microscopy to observe expression of the reporter gene. GFP-

expressing ADSCs were observed under a microscope (Fig. 1C); the transfection

efficiency was 100%.

To further verify that the lentivirus was successfully transfected into ADSCs,

RT-PCR was used to detect mRNA levels 4 days after transfection. The results

demonstrated that the expression of HGF in the lenti-HGF group was clearly

higher than that in the lenti-GFP group (9588.60¡1189.53 vs. 1.00¡0.32,

p,0.05) (Fig. 1D); in the lenti-shHGF group, the expression of HGF, consistent

with our expectations, was distinctly lower than that of the control group

(0.16¡0.01 vs. 1.00¡0.05, p,0.05) (Fig. 1D). ELISA demonstrated that the

expression of HGF in the cell culture supernatant in the lenti-HGF group was

obviously higher than that in the lenti-GFP group (17181.8¡900.4 vs.

372.2¡11.8 pg/ml, p,0.05) (Fig. 1E).

HGF Gene-Modified ADSCs Migrate to Damaged Tissue Sites

TUNEL staining revealed an increased level of apoptosis in the RILD group

(Fig. 2A). The number of TUNEL-positive hepatocytes in the RILD group was

significantly higher than that of the control group (3.7¡0.8 vs. 1.5¡0.2, p,0.05)

(Fig. 2B). Electron microscope images showed changes typical of cellular

apoptosis in tissues from the RILD group 2 days post-irradiation. Liver fibrosis

was observed 8 weeks after 60 Gy-irradiation by HE-staining of tissues from the

RILD group, which was not observed at that time in the control group (Fig. 2C).

A biopsy showed shrunken livers with irregular edges in rats from the RILD

group. Furthermore, we tagged the GFP marker to trace the in vivo distribution of

ADSCs after transplantation. By the 7th day post-transplantation, the majority of

the GFP-positive cells were concentrated around the portal region. The mean

density of the GFP-positive cells was 37.33¡33.13/mm2 by day 7. However, by

day 15, the GFP-positive cells began to migrate into the hepatic lobule region. The

density of the GFP-positive cells was 23.33¡19.96/mm2 by day 15. By day 30, the

GFP-positive cells could still be observed in both the portal and lobule regions.

The density of the GFP-positive cells was 6.50¡5.06/mm2 by day 30 (Fig. 2D),
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Fig. 1. Construction of HGF gene-modified ADSCs. (A) Micrographs of cultured ADSCs at passage three. (B) Surface antigens of ADSCs were analyzed
by flow cytometry. Freshly cultured ADSCs were positive for CD90 (99%), but not for CD31 (0.02%), CD34 (0.02%), or CD45 (0.03%). (C) Infection efficiency
4 days post-infection. GFP-expressing ADSCs were detected and counted using fluorescence microscopy. The infection efficiency was 100%. (D)
Expression of HGF mRNA as detected by RT-RCR 4days post-transfection. (E) Expression of HGF protein as detected by ELISA 4days post-transfection.
*p,0.05.

doi:10.1371/journal.pone.0114670.g001

Fig. 2. HGF gene-modified ADSCs migrate to damaged tissue sites. (A) TUNEL staining of liver sections from the control group and liver sections from
the RILD group 2 days post-irradiation. Arrows indicate hepatocytes that are positive for TUNEL staining. (B) Quantification of TUNEL-positive cells. Five
fields were randomly selected from each specimen, and the number of TUNEL-positive cells was determined (6400). (C) HE stain of liver specimens
obtained from the control group and from the RILD group 60 days after irradiation. Arrow indicates vacuolar degeneration in liver. (D) ADSCs expressing
GFP were detected in rat liver 7, 14 and 30 days after transplantation (1006). Arrows indicate cells positive for GFP staining. (E) HGF was detected by
ELISA in rat liver 2 weeks after transplantation. *p,0.05.

doi:10.1371/journal.pone.0114670.g002
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and an ELISA showed that HGF protein expression in the livers of rats that

received unmodified ADSCs was lower than in rats that received HGF-

overexpressing ADSCs; however, HGF protein expression was lower in rats in the

lenti-shHGF + ADSC group (Fig. 2E).

HGF Gene-Modified ADSCs Inhibit Radiation-Induced Apoptosis of

Hepatocytes

Two days after irradiation, five rats from each group were sacrificed to evaluate

hepatocyte apoptosis. Electron microscopy was used to observe apoptotic cell

morphology, and TUNEL staining was performed to quantify the apoptosis.

Electron microscopic scans of liver specimens from rats from the lenti-HGF +
ADSC group and from the ADSC group showed significant improvements in

nuclear morphology (Fig. 3A). Only slight chromatin condensation was observed

in rats from the ADSCs group. The transplantation of ADSCs that overexpressed

HGF nearly reversed the apoptotic damage induced by the irradiation. In contrast,

in rats from the HGF-knock out group and rats from the RILD group, the liver

cells exhibited swollen endoplasmic reticula and Golgi apparatus. TUNEL staining

(Fig. 3B) showed that hepatocyte apoptosis was significantly decreased in rats

from the ADSC group compared with rats from the RILD group (5.0¡0.8 vs.

10.2¡1.7, p,0.05) (Fig. 3C). The number of TUNEL-positive cells was even

lower in rats from the lenti-HGF + ADSC group than rats from the ADSC group

(2.7¡0.6 vs. 5.0¡0.8, p,0.05). The number of TUNEL-positive cells in rats from

the lenti-shHGF + ADSC group was also decreased compared with rats from the

RILD group (7.5¡0.8 vs. 10.2¡1.7, p,0.05), but the anti-apoptotic effect was

not equal to that observed in the ADSC group (7.5¡0.8 vs. 5.0¡0.8, p,0.05)

(Fig. 3C).

These data indicated that HGF mediates the anti-apoptotic effects of ADSCs in

this rat model of radiation-induced liver damage.

HGF Gene-Modified ADSCs Ameliorate Radiation-Induced Liver

Fibrosis

Because radiation induces fibrosis in the liver, we performed fibrosis detection

assays to determine whether ADSCs that overexpress HGF can mitigate fibrotic

changes induced by the radiation. Histological examination of liver sections from

RILD animals showed liver congestion and hepatocellular ballooning. All three

groups that were treated with ADSCs showed amelioration in hepatocellular

ballooning. HGF gene-modified ADSCs even abrogated the vacuolar degeneration

caused by the irradiation (Fig. 4A). To demonstrate the extracellular collagen

deposits in the liver tissue, we performed Masson’s trichome staining. Our results

demonstrate that radiation can induce collagen deposition in the portal and

perisinusoidal regions. However, liver cirrhosis, which is characterized by the

formation of a pseudolobule, was not observed 60 days after irradiation.

Compared to that of the RILD group, the collagen deposit in the ADSC group was

HGF Gene-Modified ADSCs Ameliorate Radiation Induced Liver Damage

PLOS ONE | DOI:10.1371/journal.pone.0114670 December 12, 2014 9 / 20



reduced. Almost no collagen accumulation was observed in the lenti-HGF +
ADSCs groups (Fig. 4B). Western blot was used to quantify the protein expression

(Fig. 4C). A significant up-regulation of collagen-I protein expression was

observed in rats from the RILD group after irradiation (0.33¡0.09 vs. 0.06¡0.07,

p,0.05), but this protein was significantly reduced in rats from the lenti-HGF +
ADSC group (0.12¡0.07 vs. 0.33¡0.09, p,0.05) (Fig. 4D). The activation of

hepatic stellate cells is a major event that is associated with the process of liver

fibrosis, and a-SMA is up-regulated during the activation of these cells. As

revealed in Fig. 4E, there were few a-SMA positive regions in the control group. In

contrast, considerable a-SMA-positive regions can be seen around the

perisinusoidal areas in the RILD group, whereas the treatment of HGF over-

expressing ADSCs attenuated the expression of a-SMA and fibronectin compared

to that of the RILD group. Immunohistochemical staining for fibronectin revealed

that radiation-induced liver fibrosis was mitigated by the administration of

ADSCs and lenti-HGF + ADSCs (Fig. 4E).

Fig. 3. Evaluation of hepatocyte apoptosis 2 days after irradiation. (A) Images of hepatocytes from an electron microscope (68200). (B) TUNEL
staining of liver specimens from all five groups (6400). (C) Quantification of cells that were positive for TUNEL staining: five random fields (2006) were
selected from within each liver section, and TUNEL-positive cells were counted. Data are expressed as the mean ¡ SD. *p,0.05.

doi:10.1371/journal.pone.0114670.g003
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Fig. 4. Histological examination of the liver 60 days after irradiation. (A) Histopathology of liver sections stained with hematoxylin-eosin (HE) (4006).
(B) Masson’s trichome stain of liver sections. (C) Expression of collagen-I in rat livers detected by western blot. (D) Quantification of collagen-I protein
expression detected by western blot, *p,0.05. (E) Histopathology of liver sections immunostained with antibodies to fibronectin (FN) and a-SMA (4006).
Arrows indicated positive stain of fibronectin (in the images of FN) and a-SMA (in the images of a-SMA).

doi:10.1371/journal.pone.0114670.g004
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HGF Gene-Modified ADSCs Promote Hepatocyte Regeneration

after Irradiation

Radiation initiates cellular apoptosis and eventually results in parenchymal cell

loss and fibrosis. The reduction in the cell population was histologically observed

after irradiation. Ki-67 is a nuclear antigen that is used to detect proliferating cells

(Fig. 5A). Five random fields (2006) were selected from within each liver section,

and Ki-67-positive cells were counted. Ki-67-positive cells were seldom observed

in sections from the RILD group (1.3¡0.3) or in sections from the control group

(0.3¡0.02). On the contrary, the regeneration of hepatocytes labeled with the Ki-

67 antibody was shown in all three groups that received cell therapy. The number

of Ki-67-positive cells was significantly increased in rats from the ADSC group

compared to rats from the RILD group (5.7¡0.8 vs. 1.3¡0.3, p,0.05); however,

the number of Ki-67-positive cells in rats from the ADSC group was lower than in

rats from the lenti-HGF + ADSC group (5.7¡0.8 vs. 8.3¡0.6, p,0.05) but higher

than in rats from the lenti-shHGF + ADSC group(5.7¡0.8vs. 3.4¡0.7, p,0.05)

(Fig. 5B).

These results indicated that ADSCs can improve hepatocyte regeneration after

irradiation. HGF-overexpressing ADSCs demonstrated an even better efficacy in

the regeneration of hepatocytes, and the inhibition of HGF expression

substantially weakened the ability of the ADSCs to promote hepatocyte

regeneration.

HGF Gene-Modified ADSCs Improve Liver Function after

Irradiation

A biochemical analysis of the liver function index was also performed to assess the

protective efficacy of ADSCs against radiation-induced liver damage. The results

showed a rise in the levels of ALT from 32.4¡4.2 units/L (control) to

60.8¡7.2 units/L and a rise in AST from 67.2¡12.5 units/L (control) to

174.2¡28.4 units/L 2 days post-irradiation. Notably, treatment with HGF-

overexpressing ADSCs completely blocked the radiation-induced increase in the

enzymes ALT (37.8¡4.8 units/L vs.60.8¡7.2; Fig. 6A) and AST (87.4¡14.4 vs.

174.2¡28.4; Fig. 6B). Treatment with ADSCs partially decreased the levels of ALT

(42.7¡5.3 units/L) and AST (109.7¡15.6 units/L) compared with the RILD

group, which was not treated with ADSCs (p,0.05). The levels of ALT

(50.4¡7.4 units/L) and AST (145.4¡19.5 units/L) were also lower in rats from

the lenti-shHGF + ADSC group compared with rats from the RILD group but

were higher than the levels in rats from the ADSC group. These data suggested

that the administration of lenti-HGF + ADSC prevented radiation-induced liver

injury.
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Discussion

In this study, we investigated the therapeutic potential of HGF-overexpressing

ADSCs on RILD. It was demonstrated that HGF-overexpressing ADSCs are better

than unmodified ADSCs for mediation of a significant therapeutic effect in the

treatment of radiation-induced rat liver damage. This mediation occurred

through anti-apoptotic and anti-fibrotic mechanisms as well as through the

promotion of hepatocyte regeneration. Inhibition of HGF expression compro-

mised the effects of ADSCs, which indicated that HGF, at least in part, plays a

crucial role in the therapeutic effect exerted by ADSCs on RILD.

RILD, which is pathologically characterized by veno-occlusive disease (VOD),

manifests after exposure of the liver to radiation. Dosages that varied from 260

cGy to 60 Gy were used to generate RILD in previous studies. In this study, we

compared 30 Gy and 60 Gy to observe the resulting liver damage and chose a dose

of 60 Gy to establish liver damage in our model. The liver exhibits hepatic sinus

congestion, hepatocyte necrosis, apoptosis and loss of parenchymal cells in the

early stages after irradiation. Then, fibrous tissue accumulates and eventually

develops into irreversible liver fibrosis. Therefore, the prevention of apoptosis and

fibrosis is key to alleviating RILD.

Mesenchymal stem cells originate from mesoblastic stem cells. They are able to

self-renew and differentiate into various cell types, such as osteocytes, adipocytes,

chondrocytes, and myocytes, in different inducing environments. MSCs are the

main cell type involved in tissue repair. When a tissue injury occurs, bone

Fig. 5. Assessment of hepatocyte proliferation. (A) Histological analysis of liver sections stained with a Ki-67 antibody (4006). Arrow indicates
hepatocytes that are positive for Ki-67 staining. (B) Quantification of Ki-67-positive cells. Five random fields (4006) were selected from within each liver
section, and the number of Ki-67-positive cells was counted. Data are expressed as the mean ¡ SD. *p,0.05.

doi:10.1371/journal.pone.0114670.g005
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marrow-derived stem cells (BMSCs) migrate to the location of the damage where

they participate in tissue repair [30]. Based on increasing experimental evidence,

MSCs are now accepted as an ideal cell line for tissue repair. Of the various

mesenchymal stem cell lines, ADSCs have been considered one of the most viable

Fig. 6. Analysis of liver function index. Serum levels of ALT (A) and AST (B) 2 days after irradiation are
shown. *p,0.05.

doi:10.1371/journal.pone.0114670.g006
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potential therapies for tissue injury due to their abundance and easy access [12].

ADSCs resemble BMSCs in both their self-renewal and differentiation potential.

Research has revealed that ADSCs express the same surface markers as BMSCs

[31]. Similarly, in this study, ADSCs were shown to express CD90 but did not

express CD31, CD34, or CD45, which was consistent with previous studies.

Many studies have demonstrated that MSCs have considerable effects on liver

injury [10, 13, 32]. A number of different mechanisms contribute to the

therapeutic effects that are exerted by MSCs, which can differentiate into

functional hepatic cells and also produce a series of growth factors and cytokines

that can ameliorate liver injury. Aurich et al. demonstrated that both MSC-

derived hepatocytes and MSCs can be engrafted into the recipient liver and

express HepPar1 and albumin, which are typical features of differentiated human

hepatocytes [33]. Recent studies have reported that MSCs can produce some

antiapoptotic cytokines, such as stromal-cell-derived factor-1 and vascular

endothelial growth factor, which efficiently reduce the apoptosis of recipient cells

via the stromal cell-derived factor-1/CX chemokine receptor-4 axis [34, 35, 36].

Furthermore, MSCs can secrete several cytokines, such as interleukin 1 receptor

alpha (IL-1Ralpha), IL-6, IL-8, granulocyte colony-stimulating factor (G-CSF),

nerve growth factor, and hepatocyte growth factor, and these cytokines improved

hepatocyte function, as indicated by changes in the levels of biochemical

parameters upon MSC transplantation [37]. Moreover, MSCs were more resistant

to reactive oxygen species in vitro, reduced oxidative stress in recipient mice, and

accelerated the repopulation of hepatocytes after liver damage, suggesting a

possible role for paracrine effects [38]. Additionally, clinical trials have

demonstrated that MSC injection can be used for the treatment of liver diseases

with satisfactory therapeutic effect and tolerability [39, 40]. However, there have

been few studies that have focused on the therapeutic potential of ADSCs for

RILD.

ADSCs can help to inhibit apoptosis through the regulation of proteins

involved in apoptosis. Liu [41] found that ADSCs prevented cell apoptosis via an

increase in Bcl-2 expression, which exerted anti-apoptotic effects in a rat cerebral

ischemia reperfusion injury model; additionally, ADSCs ameliorate inflammatory

reactions, reduce apoptosis and mitigate renal ischemia reperfusion injury

through the up-regulation of TNF-a and Bcl-2 [42]. Through the secretion of

many protective cytokines, ADSCs treated with low levels of oxygen can also

decrease the number of apoptotic myocardial cells, which may be associated with

activation of the JNK signaling pathway [43]. In our study, ADSCs bestowed anti-

apoptotic effects in a rat model of RILD, which has not been investigated in

previous studies.

MSCs potentially reverse liver fibrosis. MSCs have the potential to reverse the

fibrotic process by inhibiting collagen deposition and transforming growth factor-

b1, Smad2, and a-SMA production. Inhibiting the transforming growth factor-

b1-Smad signaling pathway may account for the anti-fibrosis effect of MSCs [44].

The molecular mechanisms underlying the anti-fibrotic properties of MSCs can

mainly lie in the high expression levels of matrix metalloproteinases (MMPs),
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especially MMP-9, which may directly degrade the extracellular matrix and lead to

hepatic stellate cell apoptosis [45]. Moreover, Pan et al. reported that BM-MSCs

were able to attenuate liver fibrosis via the direct suppression of hepatic stellate

cell activation through the inhibition of delta-like 1 protein, a member of the

EGF-like family of homeotic proteins, in a CCL4-induced liver fibrosis animal

model [46]. However, few previous studies have focused on the effect of ADSCs

for the treatment of fibrosis caused by irradiation. In the liver, late stages of

radiation-induced injury is histologically characterized by both paracentral and

periportal fibrosis. The activation of hepatic stellate cells and collagen deposition

are usually involved in the process of liver fibrosis. In this study, we tested for the

expression of a-SMA, which is associated with the activation of hepatic stellate

cells. We also observed the expression of collagen-I and fibronectin in the liver.

ADSCs were able to significantly mitigate radiation-induced liver fibrosis by

inhibiting the a-SMA, collagen-I and fibronectin expression. The appearance of

proliferating bile ductular structures is frequently observed in various chronic

liver diseases associated, including chronic hepatitis and cirrhosis. This process is

called the ‘‘ductular reaction’’ [47, 48]. In chronic liver disease, there is association

between ductular reaction (DR) and fibrosis [49]. In our study, however, we did

not observe observed any positive stain that represents ductular reaction in this

model. Meanwhile, most studies did not observe the manifestation of ductular

reaction in radiation induced liver injury model, too. This result may due to the

differences between different types of liver fibrosis. And further studies are needed

to determine whether this model was associated with expansion of the canals of

Hering by measuring the ductular reaction, and whether this was changed with

therapy.

As for the therapeutic mechanism of MSCs, previous studies tended to consider

differentiation as the primary way that these cells promote tissue repair. However,

with increasingly deeper insight, it has been accepted that differentiation and

paracrine mechanisms cooperate in the promotion of tissue repair; paracrine

mechanisms are thought to be even more crucial [30]. In a model of acute renal

failure, BMSCs were determined to have anti-inflammatory properties, and they

significantly improved the renal function of recipients through paracrine

mechanisms [50]. Through the secretion of cytokines, BMSCs play an important

role in the migration of endothelial and epithelial cells and in angiogenesis in the

promotion of skin lesions [51]. In accordance with these results, Cai [25] found

that the ability of ADSCs to promote angiogenesis was impaired after the

inhibition of HGF secretion, which implies that paracrine effects may be one of

the key mechanisms involved in tissue repair by ADSCs.

Currently, it is believed that MSCs secrete HGF, vascular endothelial growth

factor, epidermal growth factor, transforming growth factor (TGF)-b1, insulin-

like growth factor -1, MMP family proteins, and many other cytokines that are

used to repair injured tissue, among which HGF is closely related to the repair of

liver injuries. The expression of HGF would reactively increase after liver injury to

promote cell survival and regeneration. An in vivo study has shown that HGF

protects liver cells from injury via the promotion of hepatocyte proliferation and
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through the enhancement of hepatocyte resistance to liver toxicity. Moreover,

HGF also inhibits liver fibrosis and the apoptosis of hepatocytes. HGF, by binding

to its receptor c-met, activates the PI3K pathway, which stimulates the

downstream Akt pathway to inhibit cell apoptosis. HGF also inhibits the

activation of hepatic stellate cells and collagen deposition in the liver, which

reduces the amount of extracellular matrix and improves liver fibrosis by down-

regulating the expression of TGF-b1. As expected, in this study, we found that

HGF magnified the effect of ADSCs with respect to anti-apoptotic and anti-

fibrotic properties and the promotion of hepatocyte regeneration. Some studies

have shown that HGF not only is beneficial for liver injuries but can also

effectively improve irradiation-induced tissue damage. Through the inhibition of

hepatocellular apoptosis and the down-regulation of TGF-b1 expression, HGF can

significantly improve radiation-induced liver damage [52]. Additionally, research

has shown that HGF cannot only protect skin cells and endothelial cells from

irradiation but can also significantly enhance the generation of myocardial cell

proteins after gamma ray irradiation [53, 54]. HGF also plays a crucial role in the

mobilization, migration and homing of MSCs [55]. Therefore, in this study, we

enhanced the expression of HGF in ADSCs using a lentivirus and thus hoped to

achieve better therapeutic efficacy. HGF-overexpressing ADSCs displayed a better

therapeutic efficacy in the improvement of angiogenesis and heart function

compared with unmodified ADSCs when applied to a model of myocardial

ischemia [24]. The superiority of HGF-overexpressing ADSCs was also

demonstrated in a rat model of bladder outlet obstruction [56]. In this study,

compared with unmodified ADSCs, HGF-overexpressing ADSCs were more

effective in the treatment of radiation-induced liver damage. Nevertheless, ADSCs

can secrete other cytokines with multiple biological functions. Whether their

expression or inhibition can affect the efficacy of ADSCs on RILD remains

unknown, and as such, further studies are needed.

In this study, we found that ADSCs demonstrate significant therapeutic effects

in the treatment of RILD possibly through the prevention of apoptosis and liver

fibrosis and through the promotion of hepatocyte regeneration. HGF-over-

expressing ADSCs demonstrated even better therapeutic efficacy on RILD. HGF

demonstrated important effects in the treatment of irradiation-induced liver

damage and provides a novel method for the treatment of RILD in clinical

practice.
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