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Abstract

A widely studied problem in systems biology is to predict bacterial phenotype from

growth conditions, using mechanistic models such as flux balance analysis (FBA).

However, the inverse prediction of growth conditions from phenotype is rarely

considered. Here we develop a computational framework to carry out this inverse

prediction on a computational model of bacterial metabolism. We use FBA to

calculate bacterial phenotypes from growth conditions in E. coli, and then we

assess how accurately we can predict the original growth conditions from the

phenotypes. Prediction is carried out via regularized multinomial regression. Our

analysis provides several important physiological and statistical insights. First, we

show that by analyzing metabolic end products we can consistently predict growth

conditions. Second, prediction is reliable even in the presence of small amounts of

impurities. Third, flux through a relatively small number of reactions per growth

source (,10) is sufficient for accurate prediction. Fourth, combining the predictions

from two separate models, one trained only on carbon sources and one only on

nitrogen sources, performs better than models trained to perform joint prediction.

Finally, that separate predictions perform better than a more sophisticated joint

prediction scheme suggests that carbon and nitrogen utilization pathways, despite

jointly affecting cellular growth, may be fairly decoupled in terms of their

dependence on specific assortments of molecular precursors.
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Introduction

Research into metabolism and physiology generally tries to uncover how an

organism’s internal state is determined by the environment to which the organism

is exposed. For example, one might ask which genes are up or downregulated as

microbes are grown on different nutrient sources [1–3]. Similarly, one might ask

how changes in nutrient availability and gene expression alter flux of metabolites

through the organism’s metabolic network [4–7]. One can also pose the inverse

question, however: If we know an organism’s physiological state, can we infer the

environment in which the organism is living or was grown? In some cases in vivo,

for example, it may be easier to measure the organism’s physiological state (as

defined, for example, by gene expression levels) than correctly identifying the

nutrients that the bacteria feed on. In such cases, one might want to predict the

bacterial growth conditions from the measured bacterial physiology.

Do we expect physiology, and in particular the internal metabolic fluxes, to be

predictive of the current environment? On the one hand, one could envision a

scenario where an organism can only assume a small number of distinct metabolic

states, and many diverse environments elicit the same physiological response. In

other words, the mapping from environment to metabolism is many-to-one.

Under this scenario, metabolism would not be particularly predictive of

environment. On the other hand, each environment might elicit an entirely

different metabolic response, i.e., the mapping from environment to metabolism

is one-to-one. Under this scenario, organismal physiology can be considered an

accurate reflection of the specific environment the organism resides in, and the

environment can be predicted accurately from the metabolic state. In reality, we

can expect the mapping between environment and metabolism to fall somewhere

between these two extremes. While there are probably many different metabolic

states an organism can assume, there will also be distinct environments that create

similar metabolic responses.

Metabolic modeling approaches generally ask the forward question, i.e., how

can we calculate the metabolic state as a function of the environment. For

example, flux balance approaches calculate the metabolic fluxes in an organism as

a function of input fluxes and the organism’s metabolic network [8–11]. More

sophisticated approaches might use kinetic or dynamic models [12, 13]. All these

modeling approaches are mechanistic approaches that mimic the chain of

causality in metabolism: environment and genetic architecture are given, and

metabolic state follows from the laws of physics and biochemistry. To ask the

inverse question, which metabolism corresponds to which environment, we have

to go against the chain of causality. Therefore, a mechanistic model is not the

most appropriate to ask this question. Instead, it makes more sense to use a

statistical approach to search for associations between metabolic states and

environmental conditions.

Here, we asked whether the internal metabolic fluxes in an in-silico model of

E. coli can predict the organism’s simulated growth environment. We first

calculated metabolic fluxes via FBA for a variety of environmental growth
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conditions. We then developed statistical models to predict the particular growth

conditions for a particular solution of the flux balance equation, using internal

metabolic fluxes as input. We found that prediction is possible with surprisingly

low error rates, even if a moderate amount of impurity is present in the simulated

growth media. We further found that carbon and nitrogen metabolisms seem to

be largely decoupled (prediction accuracy of a given carbon source does not

strongly depend on the presence of particular nitrogen sources and vice versa) and

that most carbon and nitrogen sources can be identified reliably from a small

number of predictive fluxes.

Results

2.1 Predicting growth conditions from simulated flux in E. coli
Our overarching question is to what extent the internal metabolic fluxes in an in-

silico model of E. coli encode the growth substrates. Are there distinct metabolic

states that reflect specific growth conditions? We addressed this question using the

following strategy (Fig. 1): (i) simulate metabolic fluxes under a variety of

different growth conditions (primarily distinct carbon and nitrogen sources); (ii)

develop regression models that relate growth conditions to the calculated

metabolic fluxes; (iii) evaluate how accurately the regression model can predict

growth conditions from fluxes, and identify the most predictive fluxes.

A biochemical network can be treated as a system that takes up the nutrients

from the environment and converts them into useful metabolic precursors such as

amino acids, nucleotides, and lipids. These environmental nutrients are brought

into the cell via exchange reactions, which simply take up a molecule of a specific

metabolite and place it into cell. Any metabolic flux model contains a substantial

number of such exchange reactions. Within a cell, the metabolites are transferred

via transport reactions. Clearly, predicting environmental growth conditions from

fluxes through these exchange or transport reactions would be trivial, and it

would not be a reflection of what information the internal metabolic state of the

cell holds about the external environment. To address this issue, we discarded all

transport and exchange reactions in our regression analysis. In our model (the

iAF1260 metabolic model of the E. coli K-12 MG1655 strain [14]), this amounted

to 939 reactions among a total of 2382 distinct reactions. We also discarded the

biomass composition reaction, and thus were left with a total of 1442 reactions for

regression analyses.

Further, to make the task of predicting growth conditions from fluxes more

difficult and more realistic, we introduced background impurities in all simulated

environments. Each environment consisted of a set of primary metabolites

(usually one carbon and one nitrogen source) plus a small quantity of randomly

chosen other metabolites. We varied the number of metabolites serving as

impurities to evaluate how sensitive the regression model was to the amount of

chemical noise present in the environment. Impurities were selected at random

from a set of 174 carbon and 78 nitrogen sources used previously with the E. coli
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model [9]. A different set of random impurities was chosen for each individual

FBA calculation. We set the maximum uptake rate of individual impurities to 1/

100th of the maximum uptake rate for the main growth sources, and we tuned the

amount of chemical noise in our simulations by changing the number of

Fig. 1. Flowchart outlining our analysis approach. We use the E. coli FBA model iAF1260 to generate metabolic fluxes under a variety of conditions. We
then use multinomial classificaton via regularized regression to develop a model that can predict the chosen growth conditions from the metabolic fluxes. We
find that prediction works generally well, even when there are chemical impurities in the growth environment. We further find that most growth conditions can
be identified based on a small number of key reactions.

doi:10.1371/journal.pone.0114608.g001
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impurities. Throughout this work, we refer to background chemical noise of n
carbon sources and n nitrogen sources as n C/N impurities. (We generally chose

an equal number of nitrogen and carbon sources as impurities, except in two

analyses where we used either only carbon or only nitrogen sources as impurities.)

We first wanted to test how well prediction might perform in a best-case

scenario. To this end, we selected seven carbon and seven nitrogen sources

(Table 1) that generated substantially distinct flux patterns in the absence of

impurities. We assessed the similarity of flux patterns by k-means clustering of

fluxes obtained for all 174 carbon and 78 nitrogen sources (see online data

repository). We simulated fluxes for environments containing all pairwise

combinations of the seven carbon and seven nitrogen sources, plus impurities. For

each amount of impurity and training data-set size, we generated 100 replicates of

each pairwise combination, for a total of 4900 sets of flux values (see Table 2 for

an overview of all simulations performed). We discarded solutions that we

considered to be non-viable (see Methods). We subdivided the remaining sets of

flux values into two groups, a training data set and a test data set. We then fit a

regularized regression model to the training data set and subsequently evaluated

how well the model could predict growth conditions from fluxes on the test data

set.

We considered two alternative approaches to prediction, joint prediction and

separate prediction. Under joint prediction, we considered all 49 pairwise

combinations of the seven carbon and seven nitrogen sources as distinct

outcomes, and we trained a single model to predict one of those 49 possibilities.

Under separate prediction, we trained two separate models, one for the seven

carbon sources and one for the seven nitrogen sources. Overall, both prediction

approaches worked quite well. Even at relatively high numbers of impurities, we

could correctly identify the main carbon and nitrogen sources in over 80% of the

cases (Fig. 2). And for very few impurities, i.e. 1 C/N, the misclassification rate fell

below 5%. Note that by random chance, we would expect a correct prediction

only one time out of 49, i.e., by random chance the misclassification rate would be

98%.

To understand where the misclassifications are coming from, we plotted

heatmaps that show the actual growth sources and the predicted sources at two

different numbers of impurities (1 C/N and 10 C/N). At 10 C/N, a number of

carbon sources are predicted as either acetate or pyruvate (Fig. 3). A closer look at

the key reactions unique to these sources revealed that the reactions either are near

the site of entry into the TCA cycle or within the TCA cycle. The role of TCA cycle

is to generate energy, precursors for amino acids, and cofactors such as NADH.

This means that under any environmental conditions, there may need to be some

flux in the reactions that enter the TCA cycle. So, as the number of distinct

impurities increases, the flux resulting from these impurities is seen through these

common reactions and hence observations get mispredicted as acetate or

pyruvate.

In a direct comparison, however, the separate prediction models always

outperfomed the joint prediction models (Fig. 2). The performance gap was
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Table 1. Substrates used as primary carbon and nitrogen sources.

Carbon sources Nitrogen sources

D-glucose Ammonia

Pyruvate Adenine

Glycerol Cytidine

Acetate Putrescine

D-ribose L-glycine

D-fructose L-alanine

D-sorbitol L-glutamine

doi:10.1371/journal.pone.0114608.t001

Table 2. Summary of all simulations performed.

Growth condition Replicates Total observations Impurities Viable observationsa Training data size
Test data
size

5 C/N 4860 486 2430

10 C/N 4836 483 2418

1 C/N 4893 1223 2447

5 C/N 4860 1215 2430

10 C/N 4836 1209 2418

1 C/N 4893 2446 2447

5 C/N 4860 2430 2430

10 C/N 4836 2418 2418

Maltose, 7N 100 700 1 C/N 695 NAb 695

20 C/N 699 NAb 699

Cytosine, 7C 100 700 1 C/N 602 NAb 602

20 C/N 700 NAb 700

Excess N, normal C 100 4900 1 C/N 4865 2432 2433

(7N, 7C)

Excess C, normal N 100 4900 1 C/N 4848 2424 2424

(7C, 7N)

min. abs. flux 100 4900 10 C/N 4139 2069 2070

(7C, 7N)

only C impurities 100 4900 20 C 4396 2198 2198

(7C, 7N)

only N impurities 100 4900 20 N 4898 2449 2449

(7C, 7N)

2 27144 1 C/N 25140 12596 12544

Each row details the growth conditions used for flux balance analysis (FBA) and the sizes of training and test data sets for inverse prediction of growth
conditions from simulated phenotypes.
aViable observations include only those observations with a biomass value above the viability threshold of 0.558.
bModels were trained on the 7C, 7N data set with 1 C/N impurity, 2446 data points.

doi:10.1371/journal.pone.0114608.t002
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virtually independent of the number of impurities, but it did depend more

strongly on the size of the training data set. In particular for smaller training-set

sizes, independent prediction performed much better. We assume that the

advantage at small sizes of training data sets arose because the independent

prediction had effectively seven times more data to train than the joint prediction.

For example, if the training data set was so small that it contained only one

observation for each of the 49 joint conditions, it couldn’t be used at all to train

the joint model. However, two independent models (either carbon sources only or

nitrogen sources only), there would be seven observations for each of the seven

carbon or nitrogen sources.

Next, we looked into understanding the role of excess resources on prediction

results. Above, we used the conventional maximum uptake rate of 20 mmol

gDW21 hr21 that is generally used for carbon and nitrogen sources in FBA

studies. To determine to what extent our results depended on this choice, we

artificially increased the uptake rates of the carbon source to a maximum of

1000 mmol gDW21 hr21 while keeping the nitrogen source at the normal rate,

Fig. 2. Misclassification rate versus number of impurities and amount of training data. For joint prediction, each data point corresponds to training/
testing a new regression model. Similarly for separate prediction, each data point corresponds to training/testing two separate new regression models. (A)
The misclassification rate increases as the number of impurities increases. (B) The misclassification rate decreases as the size of the available training data
increases. In all cases, separate prediction out-performs joint prediction.

doi:10.1371/journal.pone.0114608.g002
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and vice versa. These simulations can be considered as conditions of excess carbon

(when maximal carbon uptake is artificially increased) or excess nitrogen (when

maximal nitrogen uptake is artificially increased). S1 and S2 Figures show the

realized uptake rates for these simulations.

When predicting growth conditions from the final fluxes, we obtained similar

results as before, i.e., individual prediction performed better than joint prediction.

For an artificially high uptake rate for nitrogen but with a normal uptake rate for

carbon sources, the misclassification rate with separate prediction was 10%, while

Fig. 3. Probability of misclassification of C and N sources. For each heat map, the actual C or N source is plotted along the x-axis and the predicted one
is plotted along the y-axis. The gray level of squares indicates the fraction of times a given C or N source was predicted, with white corresponding to 0% and
black corresponding to 100%. (A, B) C sources predicted from models with 1 and 10 C/N impurities, respectively. (C, D) N sources predicted from models
with 1 and 10 C/N impurities, respectively. In most cases, prediction is accurate (near-black squares along the diagonal). Prediction accuracy declines with
the number of C/N impurities, as expected. For C sources, most misclassifications lead to a prediction of acetate, or, to a lesser degree, pyruvate. A similar
pattern does not exist for N sources.

doi:10.1371/journal.pone.0114608.g003
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the misclassification rate with joint prediction is 26%, at an amount of impurities

of 1 C/N and with a training data size of ,2450 replicates. Separately predicting

carbon resulted in 151 mispredictions compared to 109 mispredictions for

nitrogen. In combination, there were 250 mispredictions using separately trained

models. Joint prediction resulted in 638 mispredictions. Similarly, for artificially

high uptake rates for carbon sources and normal uptake rates for nitrogen

sources, the misclassification rate under separate prediction was 3.8% while the

misclassification rate under joint prediction was 14%. Joint prediction resulted in

324 mispredictions. Separate prediction resulted in a combined misprediction

from C and N sources of 94 mispredictions (64 C and 32 N, respectively). Clearly,

prediction rates were better for separate prediction compared to joint prediction

even with larger training data sizes, which was not the case for normal uptake rates

for both sources. It seems that the more one source becomes available in excess,

the more separate prediction outperforms joint prediction.

Since individual prediction seemed to work well, we next tested whether we

could use this approach to predict growth conditions chosen from the

comprehensive list of 174 carbon and 78 nitrogen sources. Joint prediction in this

case was infeasible, since we would have had to train a model to distinguish

between 174|78~13572 distinct conditions. To test independent prediction in

this case, we generated simulated fluxes for all pair-wise combinations of carbon/

nitrogen sources for two replicates. We used one replicate (78 carbon observations

and 174 nitrogen observations respectively for each of carbon and nitrogen

sources) to train the regression model and we used the second replicate to evaluate

the prediction accuracy of the model. We found that the misclassification rate for

carbon sources was 86% and the misclassification rate for nitrogen sources was

37%. In combination, the two models identified the correct carbon/nitrogen

combination 8.7% of the time. By random chance, we would have expected

1=13572~0:007%.

All the results presented so far were obtained with a simple maximization of the

biomass reaction. FBA can also be carried out with different optimization

functions, and the equilibrium fluxes that are found will depend on the specific

optimization function chosen. To confirm whether our approach would work

under different optimization schemes, we carried out additional simulations in

which we maximized biomass and then subsequently minimized the absolute sum

of fluxes, holding the maximal biomass value constant. Then we performed the

regression analysis as described above. We carried out this analysis for the case of

7 distinct C and 7 distinct N growth substrates, 10 C/N impurities, and individual

prediction of C and N sources. We found a combined misclassification rate of

23%, relative to 15% using only the biomass maximization. (See S3 Figure for

prediction results for individual C and N sources.)

2.2 Identifying the predictive fluxes

The previous subsection has shown that a regularized regression model is capable

of predicting the primary carbon and nitrogen sources used from steady-state

Predicting Growth Conditions from Metabolic Fluxes
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metabolic fluxes. We next wanted to investigate how exactly the regularized

regression model carries out this task. For each flux balance simulation, the

resulting flux data set contains 1443 flux values, corresponding to 1443 reactions

that are not transport reactions. One of these reactions is the biomass reaction,

which we excluded from the regression modeling. Thus, we have 1442 predictor

variables in the regression model. In this situation, a standard regression model

would have to determine 1443 regression coefficients, one per reaction plus an

intercept. By contrast, the regularized regression model we employed sets most

regression coefficients to zero and retains only a small number of non-zero

coefficients. (The exact number of non-zero coefficients is determined through

the choice of a tuning parameter, which is selected by cross-validation. See

Methods for details.) Thus, we can consider the fluxes with non-zero regression

coefficients as predictive fluxes. Those are the fluxes whose state is actually used for

prediction.

To gain mechanistic insight into predictive reactions, we mapped them onto

the E. coli central metabolism (Figs. 4 and 5, S1 and S2 Tables). Note that each of

the metabolic maps is meant to highlight only the central carbon metabolism in

the E. coli metabolic network. We found that each carbon or nitrogen source had a

few reactions that were predictive of that growth source, and these reactions

generally made physiological sense. For example, using acetate as the carbon

source unsurprisingly isolated TCA cycle entry as a predictive reaction (Fig. 4).

The key reactions identified for D-glucose utilization were glucose 6-phosphate

dehydrogenase (G6PDH), glucose-6-phosphate isomerase (PGI) and 6 phospho-

gluconolactonase (PGL), required enzymes in the glycolytic and pentose

phosphate pathways [15]. Similarly, sorbitol (the singly reduced alcohol of D-

glucose) and fructose each possessed predictive reactions in the relative vicinity of

the glycolytic pathway (Fig. 4). Mapping nitrogen sources to the central

metabolism revealed a similar trend. For example, L-alanine as a growth source

had predictive reactions near its site of entry into the three and four carbon

metabolism of the TCA cycle (Fig. 5).

At an impurity number of 1 C/N and using the largest training data size (see

Fig. 2), there were 72 key reactions discriminating 7 carbon sources and 72 key

reactions discriminating 7 nitrogen sources. So, on average, the regression models

required 10.3 predictive reactions per carbon or nitrogen source. We found a

moderate amount of overlap among the two sets of 72 reactions. 44 reactions

appeared in both regression models resulting in 100 unique key reactions for 7 C

and 7 N sources. Lists of the predictive reactions for each growth source are

provided in S1 and S2 Tables.

We also analyzed how the regression model performed when some of the key

predictive reactions were removed. As mentioned above, there were 100 unique

reaction IDs for individual prediction of carbon and nitrogen sources at the lowest

number of impurities and with the largest training data set analyzed. We

eliminated each of these 100 reactions at a time as predictors in the regression

model, trained a new model separately for both the carbon and nitrogen sources,

and calculated the prediction accuracy. We combined the results of individual

Predicting Growth Conditions from Metabolic Fluxes
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predictions to calculate the prediction accuracy of the combination of the sources.

With the exception of the reaction ‘‘glucose 6-phosphate isomerase’’ (PGI), the

misclassification rate remained unchanged when we eliminated any of the other

99 reactions before model fitting. PGI catalyzes a reaction that produces fructose-

6-P from glucose-6-P, and knock-out of the PGI gene causes diminished growth

rate [16]. The reaction PGI catalyzes is reversible, but the forward reaction occurs

most of the time unless concentrations of fructose-6-P are very high. Thus, PGI

seems to be critical to distinguish glucose from fructose as growth source.

However, more generally, the specific set of reactions used for successful

prediction was not unique.

Finally, we asked whether we could predict growth substrates simply on the

basis of flux through the entry points of the metabolites into the metabolic

network, i.e., based on first set of reactions past transport. For the 7 C and 7 N

substrates we considered, there are 38 such post-transport reactions (Table 3).

Thus, we built a regression model that contained only these 38 reactions as

predictors for the growth substrates. At 1 C/N impurities, we obtained a

Fig. 4. Predictive reactions (in red) for four carbon sources, mapped onto the E. coli central metabolism. Reactions in distinct parts of the metabolism
are predictive for different carbon sources. A list of the predictive reactions can be found in S1 Table.

doi:10.1371/journal.pone.0114608.g004
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combined misclassification rate of 6%, relative to 2.16% using the entire

metabolic model. Similarly, at 10 C/N impurities, the combined misclassification

rate was 25%, relative to 15% using the entire set of internal fluxes. This result

suggests that the growth substrates are non-trivially encoded in more central parts

of the metabolic network. Just knowing the flux through post-transport reactions

is not as useful for predicting growth substrates as knowing the flux through the

most predictive reactions, wherever they fall inside the metabolic network.

2.3 Predicting novel metabolites

Next, we wanted to determine how the prediction would perform on previously

unseen carbon or nitrogen sources. We first obtained simulated flux measure-

ments using maltose as the carbon source and using either of the seven nitrogen

sources used earlier. We generated simulated flux data for 100 replicates and at

impurity numbers of 1 C/N and 20 C/N. This resulted in 700 observations. After

eliminating replicates with very low biomass (see Methods), 695 and 700 viable

Fig. 5. Predictive reactions (in red) for four nitrogen sources, mapped onto the E. coli central metabolism. Reactions in distinct parts of the
metabolism are predictive for different nitrogen sources. A list of the predictive reactions can be found in S2 Table.

doi:10.1371/journal.pone.0114608.g005
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flux measurements remained at 1 C/N and 20 C/N impurities, respectively. We

used all these observations for testing. Note that we trained the model using the

carbon/nitrogen sources in Table 1. When we tested individual prediction of

either carbon or nitrogen sources, we found that maltose was classified as glucose

over 85% of the time. Since maltose is a disaccharide formed from two units of

glucose, this prediction is reasonable. At the same time, the seven nitrogen sources

were predicted correctly over 95% of the time. However, when we tried to predict

using the joint model, we found that using an unknown carbon source had a

substantial effect on the model’s ability to predict nitrogen sources. 33% of the

growth conditions (231 cases) were predicted to be sorbitol/putrescine. Sorbitol is

a reasonable choice considering the model had never seen maltose. (Sorbitol is the

singly reduced alcohol of glucose.) However, of the 231 cases, only 98 had actually

been grown on putrescine, so the joint model’s prediction of the nitrogen source

was misled by the unknown carbon source.

For 20 C/N impurities, there were 699 viable flux measurements. At this

amount of chemical noise, maltose was predicted as glucose 68% of the time,

while the correct nitrogen source was predicted 81% of the time. For both low and

high numbers of impurities, individual predictions seem to outperform joint

prediction. Further, separate prediction is more likely to correctly predict all the

known growth sources while predicting the unknown ones to their nearest known

compound.

Next, we did simulations to test how an unseen nitrogen source gets predicted

with the above models. For this, we used cytosine as a nitrogen source and either

of the 7 carbon sources used earlier. Note that cytosine is one of the 4 bases

founds in DNA and RNA. We used 2 numbers of impurities, 1 C/N and 20 C/N,

Table 3. Post transport/exchange reactions that first metabolize a given substrate.

Substrate Reactions

D-glucose PGI, G6PDH2r, PGMT

Pyruvate PDH, LDH, PYK, ME1, ME2

Glycerol GLYCDx, GLYK

Acetate ACKr, ACS

D-ribose RBK, RPI TKT1

D-fructose FRUK, F6PA, PFK

D-sorbitol SBTPD

Ammonia ALLTAMH, DAPAL, HMBS, SADH

Adenine ADD, ADPT

Cytidine CYTD, CYTDH, CYTDK2

Putrescine GGPTRCS, PTRCTA, SPMS

L-glycine GLYAT, GLYCL, GLYTRS

L-alanine ALAR, ALATA_L, ALATA_L2

L-glutamine GLNX, GLUN, GLUSy

Instead of using all internal reactions in the regression model, we also considered a regression model that contained only the post-transport reactions listed
here.

doi:10.1371/journal.pone.0114608.t003
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and we generated 100 replicates for each case for testing. At 1 C/N, there were 602

viable flux measurements, i.e., for these measurements biomass was greater than

the threshold used in this study. Interestingly, all 98 non-viable flux measurements

were for Cytosine + Acetate sources. For the viable flux measurements, only 5

carbon sources were wrongly predicted (,0.01% misclassification). Interestingly,

in all cases, the nitrogen source cytosine was predicted as ammonia. This result

may be due to a reaction that directly liberates the exocyclic amine of cytosine as

ammonia.

At 20 C/N impurities, all the 700 flux measurements were viable (biomass

greater than threshold). In this case, 27 carbon sources were incorrectly predicted

(,0.04% misclassification rate). The nitrogen source cytosine is predicted as

ammonia in 78.8% of cases and as adenine in all other cases.

Discussion

We have developed a method for making predictions regarding bacterial growth

conditions from known simulated metabolic fluxes. We generated fluxes using the

complete E. coli metabolic network model for 7 carbon and 7 nitrogen sources.

Then, we divided the data into training and test sets and employed machine

learning with a generalized linear framework to train a model to predict growth

conditions. We found that even in growth environments contaminated with other

nutrient sources, we could make reliable predictions regarding the primary

composition of the growth media. Our prediction technique worked well on

pairwise combinations of carbon and nitrogen sources, and it could also

extrapolate to previously unseen metabolites.

It was surprising to us that given the same number of observations in the

training set, separate prediction of nutrients always performed better than joint

prediction. There are two likely explanations for this result. First, making joint

predictions requires discriminating between 49 different pairwise combinations.

By contrast making individual predictions only requires discriminating 7 different

conditions in two different sets. Thus, one possible explanation for the lack of

predictive power is that we simply did not have the appropriate level of training

data. Indeed adjusting the amount of training data appears to have a dramatic

effect on joint prediction in particular (Fig. 2). On the other hand, such an issue

represents an important experimental concern. Often the size of the training set,

being experimentally determined, is just as limiting as the size of the testing set. As

a result, our analysis indicates employing a separate prediction strategy will

generally be more useful for experimental application. Second, although the

mechanism is not completely clear to us, separate prediction may gain additional

power due to the physiology of the organism. For example, if the initial,

metabolite-unique, steps of metabolic entry are often predictive (as they appear to

be), running independent predictions would be expected to perform better per

amount of data; in essence such a prediction strategy makes the assumption that

pathways for the various metabolites are largely disconnected. By contrast, if one
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were using a single metabolite as a combined carbon and nitrogen source, we may

expect an independent prediction strategy to perform relatively poorly as the

independence assumption is not satisfied.

Although the background chemical noise can have a dramatic affect on model

accuracy, the misclassification rate remained acceptably low even with 10

randomly picked C/N impurities. The addition of these impurities revealed one

interesting and unexpected physiological hypothesis about the E. coli metabolism.

Namely, as the environmental chemical noise increases from 1 C/N to 10 C/N,

our model increasingly predicts acetate and pyruvate as the default carbon

sources. Due to its centrality in terms of energy and precursor-molecule

production, for any input growth source the reactions that lead to the TCA cycle

or the reactions within the TCA cycle should have some reasonable amount of

reaction flux. In other words, acetate and pyruvate as default nutrient sources may

not be so surprising when one considers their central role in the TCA cycle—

which is essentially the center of bacterial metabolism.

To verify that the observed default carbon-source misclassification was not an

artifact of nutrient limitation (carbon versus nitrogen), we increased the uptake

rates of carbon source artificially high while keeping nitrogen source at normal

uptake and vice versa. This ensures limiting conditions for one source and non-

limiting for the other. These simulations did not alter our earlier conclusion that

separate prediction performs better than joint prediction.

In addition to these simulations, we carried out three further analyses. First,

instead of using all the metabolic reactions in the iAF1260 model, we used only

the post-transport reactions in the regression model, as the earlier analysis had

suggested that the key reactions for a growth substrate seemed often to be at the

substrate’s entry point into the metabolic network. However, this approach lead

to poorer predictions than did the approach of initially using all metabolic

reactions in the model and letting the LASSO technique select the predictive ones.

This finding confirms that the growth substrates are non-trivially encoded in the

internal fluxes of the metabolic network. Second, instead of using equal numbers

of carbon and nitrogen impurities, we also considered using only carbon or only

nitrogen impurities. When only carbon (or nitrogen) impurities were present,

prediction of nitrogen (or carbon) sources had higher sensitivity than when there

was a mixture of C/N impurities. Finally, we considered an alternative

optimization protocol where we minimized the absolute sum of fluxes on the FBA

solution obtained by maximizing biomass. Under this protocol, prediction

accuracy was somewhat lowered relative to our default protocol. However,

prediction remained possible at accuracies way above random guessing.

Our regression model had a relatively large feature space (1442 reactions)

compared to the number of observations used to train the model (,480 to

,2450). Therefore, efficient feature reduction was crucial to obtain reliable

models. We prevented over-fitting during feature selection by employing

regularized regression via the LASSO [17]. This method has previously been used

successfully in other biological applications, for example to predict gene

regulatory networks [18], to identify SNPs in GWAS studies [19], or to classify
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structural images of the brain using MRI data [20–22]. Alternative statistical

methods one could consider in future work include graphical LASSO [23] and

Ising Markov Random Field models [24]. We chose the standard LASSO because

it provides a relatively simple and particularly robust framework for feature

reduction. Thus, considering the large size of our simulation model, we were able

to achieve a remarkbly small number of source-predicting reactions.

Our work is conceptually related to the work by Brandes et al. [25]. They used

FBA combined with measured gene-expression data to identify candidate

nutrients that likely caused the observed differences in gene-expression patterns.

Their approach was based on the idea that gene-expression patterns can be

expressed as flux limits, and that the biomass production rate would be larger for

better candidate nutrient matches to the actual nutrient on which the microbe was

grown. It is well established that gene expression levels reflect environmental

growth conditions in microbes [26, 27]. By contrast to Brandes et al. [25], who

used a metabolic-modeling approach to identifying likely nutrients, our approach

to predicting the growth environment was purely statistical. Thus, we are asking

whether the physiological state of an organism contains sufficient information in

principle to make inferences about the growth environment. Our results indicate

that this is indeed the case, though it remains to be tested how well our results

carry over to experimental systems.

One shortcoming of our statistical approach to predicting growth conditions is

that it cannot predict previously unseen nutrients, i.e., carbon or nitrogen sources

that were not used in the training data set. Nevertheless, we found that our

regression model made reasonable choices, such as predicting the previously

unseen maltose (a disaccharide consisting of two glucose molecules) as glucose. In

this context, it is comforting that separate prediction generally outperformed joint

prediction, since separate prediction was much more robust to previously unseen

nutrients. In particular, a previously unseen carbon source did not substantially

negatively affect prediction of a previously seen nitrogen source and vice versa.

Throughout this work, we have used basic flux balance analysis to predict the

bacterial phenotype. In principle, one could use more realistic models that

integrate regulatory information and/or signalling-pathway information with flux

balance analysis techniques [12, 28]. However, our study was a pure simulation

study, primarily aimed at testing to what extent a statistical approach could be

used to identify growth conditions from physiological measurements. Since our

results indicate that this approach is feasible, even with a relatively modest

number of observations in the training data set, a more useful next step would be

to try the same approach on experimental data, using measured mRNA or protein

abundances as features in the regression model.

Conclusions

We have found that predicting growth conditions from simulated metabolic flux

data is a computationally tractable problem. Of note, our data indicate that
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separately predicting carbon and nitrogen sources performs better than jointly

predicting them from paired input. Although this result is to some extent

influenced by the volume of training data, it very likely reflects the structure of the

metabolic reactions in the E. coli network. In addition, our results indicate that for

most input metabolites at least one predictive reaction commonly occurs near its

entry point into central metabolism. Finally, we found that the number of

reaction fluxes required to make accurate predictions is relatively small.

Materials and Methods

5.1 Flux Balance Analysis

We carried out flux balance analysis (FBA) using the COBRA toolbox [29] for

MATLAB. We used the iAF1260 model from the BiGG database [14]. In the

current iAF1260 model, there are 2382 reactions involving 1668 metabolites. The

biomass composition reaction is also included in the model. Except for the input

growth sources (carbon and nitrogen sources), we left all parameter settings at

their default for this model. The upper bounds on 2377 reactions is set to

1000 mmol gDW21 hr21. But for 5 reactions, i.e., ATPM, CAT, FHL, SPODM,

SPODMpp, the upper bound is set to 50 mmol gDW21 hr21. The lower bound

for the majority of reactions (nearly 1800) is set to 0 mmol gDW21 hr21, which

means that the flux cannot flow in the direction opposite to that specified in the

model (irreversibility constraint). A set non-growth associated maintenance

(NGAM) of 8.39 mmol gDW21 hr21 is used for the ATPM reaction (ATP

maintenance). The lower bounds of some exchange reactions is set to non-zero

values, i.e., these reactions by default are meant to uptake ions, carbon and

nitrogen sources, and so on. We used the default oxygen uptake rate

(218.5 mmol gDW21 hr21) in the iAF1260 model, but we changed the lower

bounds of glucose and ammonia to zero, except when we used these compounds

as carbon or nitrogen sources.

After setting up the constraints on transport fluxes as described in the previous

paragraph, we carried out FBA using biomass as the objective function. FBA finds

fluxes that are consistent with the given constraints and that maximize the

objective function. The FBA was performed with the function optimizeCbModel

in the COBRA toolbox, using default parameters. We considered all solutions with

a biomass flux below a threshold of 0.558 to be inviable. The choice of this

threshold value is explained in subsection ‘‘Impurities’’ below.

To understand if the choice of objective function affects the prediction of

growth substrates, we also carried out simulations with an additional level of

constraints. The additional constraint we imposed was minimization of the

absolute sum of fluxes on the solution obtained from prior biomass

maximization. This analysis was carried out using the function optimizeCbModel

(model, [],’one’), where model is the iAF1260 model with biomass reaction as

optimization function.
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5.2 Growth conditions

We initially carried out simulations on 49 growth conditions consisting of all

pairwise combinations of 7 carbon and 7 nitrogen sources (Table 1). The

compounds were selected from among the 174 carbon and 78 nitrogen sources

previously used in Feist et al. [9], and they were chosen to yield distinct flux

profiles, as assessed by k-means clustering of steady-state fluxes obtained using all

pair-wise combinations of the 174 carbon and 78 nitrogen sources. Of the 7

carbon sources chosen, none resulted in any growth when used as a growth

condition in the absence of a nitrogen source. By contrast, all nitrogen sources

except ammonia yielded growth when supplied in the absence of a carbon source.

Note that all of these remaining nitrogen sources do contain carbon atoms, thus

additional supply of carbon was not strictly necessary for growth on these

substrates.

For any given growth environment we simulated, we set the lower bound of the

exchange reactions corresponding to the carbon and nitrogen sources present to

220 mmol gDW21 hr21. This lower bound is commonly used in many studies

[9]. We set the lower bound of all other exchange reactions for carbon and

nitrogen sources to 0, except for impurities (see next subsection for details). For

each of the 49 pair-wise combinations of the 7 carbon and 7 nitrogen sources, we

generated 100 replicates, each with different, randomly chosen impurities. A

complete overview of all simulation conditions used is given in Table 2.

For conditions with excess carbon or nitrogen, we increased the maximum

uptake rate of one source while keeping the other one fixed. Thus, we changed the

lower bounds (uptake rate) of carbon sources to 21000 mmol gDW21 hr21 while

keeping the lower bounds of nitrogen sources at 220 mmol gDW21 hr21 and vice

versa.

Finally, we also carried out simulations on all pairwise combinations of all 174

carbon and 78 nitrogen sources previously used in Feist et al [9], again with

impurities as explained below. For this analysis, we only used two replicates for

each pairwise combination of carbon and nitrogen sources, one for training and

one for model evaluation.

5.3 Impurities

To make the simulation scenario more challenging and more realistic, we

incorporated different numbers of impurities (chemical noise) to the simulated

growth media. For this, we used a subset of the 174 carbon and 78 nitrogen

sources, previously used in Feist et. al [9]. We used different background impurity

numbers, ranging from 1 C/N to 10 C/N sources. For example, if we want to set

5 C/N impurities, we randomly picked 5 carbon and 5 nitrogen sources and set

their lower bounds to 20.2 mmol gDW21 hr21. Note that we generated the flux

data for a pairwise combination of 1 carbon and 1 nitrogen source along with the

background impurities as described above. We also did additional simulations

where we used only C or only N impurities. The bounds on the uptake rates for

these impurities was the same as before.
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For all the results described above, we used a biomass threshold to filter out

non-viable flux measurements. We calculated this threshold value using biomass

measurements at the lowest number of impurities (1 C/N), using all pairwise

combinations of the 7 carbon and 7 nitrogen sources chosen for the first analysis,

and with the largest training dataset size (,2450 replicates). We recorded the

biomass values for all these simulations, and used as lower threshold of viability

three standard deviations below the mean, which came out to 0.558.

5.4 Regularized regression

We predicted growth conditions using regularized multinomial logistic regression,

as implemented in the GLMNET package [30] for R. Unless specified otherwise

below, we used the standard settings of the GLMNET package.

After filtering for biomass, for each number of impurities, we used half of the

dataset as test set. We used subsets of the remaining half as training sets (i.e,

,245, ,490, ,2450 observations). On the training sets we fitted regularized

regression models via 3-fold cross validation, using the function cv.glmnet in the

GLMNET package. When using this function, we set a~1 to specify the least

absolute shrinkage and selection operator (LASSO). We set the parameter family

equal to ‘‘multinomial’’. The cross-validation procedure yielded the l value that

had the lowest misclassification rate under cross-validation (l is the tuning

parameter that controls the strength of the LASSO penalty introduced) as well as

the regression coefficients at that l. We then used the fitted models to calculate

the misclassification rate on the test set, using the function predict. We repeated

this step to calculate the misclassification rates at different numbers of impurities

(1 C/N, 5 C/N, 10 C/N) and different training data sizes (,245, ,490, ,2450

observations).

To guarantee that the LASSO model would converge, we imposed a minimum

threshold of 1026 on the magnitude of all flux values. Absolute flux values below

the threshold were set to zero before fitting the LASSO model.

5.5 Raw data and analysis scripts

All raw data and analysis scripts are available online in the form of a git repository

at https://github.com/clauswilke/Ecoli_FBA_input_prediction.

Supporting Information

S1 Figure. Scatter plot showing varying uptake amounts of C/N sources when

carbon is unlimited. We increased the upper bounds of the carbon sources and

plotted the uptake amounts of carbon and nitrogen sources. The color coding

reflects whether separate prediction could predict the carbon and nitrogen sources
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correctly for each replicate. Green: both C and N source are correctly predicted;

blue: only N source is correctly predicted; purple: only C source is correctly

predicted; red: neither source is correctly predicted.

doi:10.1371/journal.pone.0114608.s001 (EPS)

S2 Figure. Scatter plot showing varying uptake amounts of C/N sources when

nitrogen is unlimited. We increased the upper bounds of the nitrogen sources

and plotted the uptake amounts of carbon and nitrogen sources. The color coding

reflects whether separate prediction could predict the carbon and nitrogen sources

correctly for each replicate. Green: both C and N source are correctly predicted;

blue: only N source is correctly predicted; purple: only C source is correctly

predicted; red: neither source is correctly predicted.

doi:10.1371/journal.pone.0114608.s002 (EPS)

S3 Figure. Probability of misclassification, for FBA with and without

minimization of absolute fluxes. For each heat map, the actual C or N source is

plotted along the x-axis and the predicted one is plotted along the y-axis. The gray

level of squares indicates the fraction of times a given C or N source was

predicted, with white corresponding to 0% and black corresponding to 100%. (A,

C) Predictions performed on fluxes whose absolute values were not minimized

(default throughout this work). (B, D) Predictions performed on fluxes whose

absolute values were minimized. In all cases, we added 10 C/N impurities to the

growth environment.

doi:10.1371/journal.pone.0114608.s003 (EPS)

S1 Table. Key reactions identified to discriminate carbon sources. These

reactions were identified from a model trained to only predict carbon sources

(separate prediction). The model was trained on a data set obtained with 1 C/N

impurity and with training data-set size of ,2450 observations.

doi:10.1371/journal.pone.0114608.s004 (XLSX)

S2 Table. Key reactions identified to discriminate nitrogen sources. These

reactions were identified from a model trained to only predict carbon sources

(separate prediction). The model was trained on a data set obtained with 1 C/N

impurity and with training data-set size of ,2450 observations.

doi:10.1371/journal.pone.0114608.s005 (XLSX)
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