
RESEARCH ARTICLE

Combination of Cyclopamine and
Tamoxifen Promotes Survival and
Migration of MCF-7 Breast Cancer Cells –
Interaction of Hedgehog-Gli and Estrogen
Receptor Signaling Pathways
Maja Sabol1., Diana Trnski1., Zvonimir Uzarevic2, Petar Ozretic1, Vesna Musani1,
Maja Rafaj1, Mario Cindric1, Sonja Levanat1*

1. Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia, 2. Faculty of Education, Josip
Juraj Strossmayer University of Osijek, Osijek, Croatia

*levanat@irb.hr

. These authors contributed equally to this work.

Abstract

Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found

upregulated in breast tumors. Estrogen receptor alpha (ERa) signaling has a key

role in the development of hormone-dependent breast cancer. We aimed to

investigate the effects of inhibiting both pathways simultaneously on breast cancer

cell survival and the potential interactions between these two signaling pathways.

ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine,

a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERa inhibitor) treatment.

Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes

short-term survival of cells, and increased migration. We found upregulated Hh-Gli

signaling under these conditions and protein profiling revealed increased

expression of proteins involved in cell proliferation and migration. Therefore, even

though Hh-Gli signaling seems to be a good potential target for breast cancer

therapy, caution must be advised, especially when combining therapies. In addition,

we also show a potential direct interaction between the Shh protein and ERa in

MCF-7 cells. Our data suggest that the Shh protein is able to activate ERa

independently of the canonical Hh-Gli signaling pathway. Therefore, this may

present an additional boost for ER-positive cells that express Shh, even in the

absence of estrogen.
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Introduction

Breast cancer is a heterogeneous disease divided into three major subtypes with

differing response to therapy: the hormone receptor-positive (with either estrogen

receptor (ER) or progesterone receptor (PR) expression), the HER-2 amplified,

and the triple-negative cancer (ER-negative, PR-negative and HER2-negative). For

ER-positive tumors, therapy is mostly based on inhibition of estrogen synthesis or

inhibition of estrogen receptor activity, for example tamoxifen is commonly used.

However, many of the patients do not respond to endocrine treatment or develop

acquired resistance [1].

The Hedgehog-Gli (Hh-Gli) signaling pathway is involved in embryonic

development of mammary buds [2], and the pathway genes are expressed in the

mammary gland during postnatal development [3]. Aberrant activation of the

pathway is associated with tumorigenesis and developmental malformations. The

pathway is initiated with binding of the ligand Hedgehog (Sonic, Indian or Desert

Hh) to its transmembrane receptor Patched (Ptch). Ptch relieves its repression of

Smoothened (Smo), causing a phosphorylation cascade and the release of

transcription factor Gli from Suppressor of Fused (SuFu). Gli translocates to the

nucleus, where it initiates target gene transcription. Hh-Gli pathway target genes

are involved in proliferation and differentiation, cell survival, self-renewal,

angiogenesis, and pathway autoregulation [4–6].

Hh-Gli signaling pathway hyperactivation has previously been detected in

breast tumors [7–9]. PTCH1 gene was found downregulated due to promoter

hypermethylation [10, 11]. SHH promoter is frequently hypermethylated in the

normal breast and this methylation is lost in breast tumors [12]. SHH is one of the

signature genes associated with poor prognosis of inflammatory breast cancer

[13]. Mutations in PTCH1, SMO and SHH genes have been examined in breast

cancer: some studies found mutations [14, 15], while others did not [16, 17].

However, biallelic Pro1315Leu (C3944 T) PTCH1 polymorphism was found

associated with breast cancer risk when combined with oral contraception [18].

Loss of heterozygosity of the PTCH1 gene is found in 30% of breast cancer

patients [10]. The effects of cyclopamine, a Hh-Gli pathway inhibitor, on breast

cancer have already been addressed in several studies. It was shown to cause

growth inhibition mediated by apoptosis of some breast cancer cell lines [7, 19],

while cells derived from normal breast tissue are not responsive to cyclopamine

[20]. The Hh-Gli signaling pathway has been implicated in tamoxifen resistance.

It was shown that a small molecule SMO inhibitor GDC-0449 can improve the

outcome of tamoxifen-resistant tumors. Addition of tamoxifen to GDC-0449 had

additional benefits in vitro but not in vivo [21]. Recently, cyclopamine was shown

to have anti-proliferative, anti-invasive and anti-estrogenic potency in human

breast cancer cells by suppressing the MAPK/ERK signaling pathway.

Cyclopamine decreased ERa protein levels in MCF-7 cells and the authors

speculate that combining cyclopamine with anti-estrogen therapies could lower

the doses and side-effects [22].

Hh-Gli and Estrogen Receptor Signaling Interaction
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Here we show a surprising, unfavorable effect of combined inhibition of Hh-Gli

signaling and ERa in human ER-positive breast cancer cells and the potential

underlying mechanism. In addition we also show a new, non-canonical

interaction between the Hh-Gli and ERa signaling pathways.

Materials and Methods

Cell culture experiments

MCF-7 (ATCC, HTB-22) and SkBr-3 (ATCC, HTB-30) breast cancer cell lines

were a kind gift from Dr. Sanja Kapitanović. Both cell lines were maintained in

DMEM supplemented with 10% fetal bovine serum (FBS) and were mycoplasma-

free.

MTT assay: cells were plated in 96-well plates 24 hours before treatment, in

quadruplicates for each tested concentration: cyclopamine 0.5–7.5 mM (Toronto

Research Chemicals, Toronto, Ontario, Canada), tamoxifen 1–10 mM (Toronto

Research Chemicals). Combined treatments were with either cyclopamine for

48 h followed by tamoxifen for 48 h, tamoxifen for 48 h followed by cyclopamine

for 48 h, cyclopamine + tamoxifen simultaneously for 48 h, cyclopamine +
tamoxifen simultaneously for 96 h. Competition experiments: compounds were

added simultaneously and MTT assay was performed after 48 h.

Gene expression studies: cells were plated into 6-wells in duplicates 24 h before

treatment, and treated with cyclopamine (2.5 mM), Shh protein (3 ng/ml, kind gift

from Dr. Anna Kenney) and tamoxifen (1 mM for MCF-7, which is the LD50

dose, or 5 mM for SkBr-3 (LD50 was not reached for SKBr-3, therefore a higher

dose was used)) for 24 h or cyclopamine + tamoxifen for 48 and 96 h.

Transfection experiments: cells were transfected with 1 mg of

pcDNA4nlSMtGLI1 plasmid expressing the Gli1 transcription factor (kind gift

from Dr. Fritz Aberger) using Lipofectamine reagent (Life Technologies, Carlsbad,

California, USA). Medium was changed after 5 h and specified wells were treated

with Shh protein (3 ng/ml); cells were collected 48 h later.

PTCH1 silencing: cells were transfected with 50 nM Silencer Select siRNA (Life

Technologies, s11442) or Silencer Negative Control #1 siRNA (Life Technologies)

using siPORT NeoFX (Life Technologies) transfection reagent. Medium was

changed after 24 h, and cells were collected after 24 or 48 h.

Wound healing assay

MCF-7 cells were grown to confluence in 24-well plates and serum starved over

night. The following day monolayers were wounded with a plastic 200 ml pipette

tip and washed with medium to remove detached cells. The wounds were allowed

to close in medium without any treatment or in the presence of 10 mM

cyclopamine, 10 mM tamoxifen or both drugs together. Images were taken at the 0

and 26 h time points. The wounds were photographed at 10x magnification, on

the Olympus CKX41 inverted microscope linked to an Olympus E330 camera
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(Olympus, Shinjuku, Tokyo, Japan). Images were analyzed using the TScratch

software, developed by the Koumoutsakos group (CSE Lab), at ETH Zürich [23].

Each time point was normalized to the 0 h image area and reported as the

percent of open wound area. For the comparison of open wound areas between

different treatments a one-way ANOVA with Newman-Keuls post hoc test for

multiple pairwise comparisons was used. Two-tailed p value less than 0.05 was

considered statistically significant. Statistical analysis was performed with

GraphPad Prism 6 for Windows, version 6.05 (GraphPad Software, San Diego,

California, USA).

Transwell migration assay

To assay the migration of cells, 56104 cells in 500 ml of serum-free medium were

seeded onto 8-mm pore Transwell Inserts (Corning, Corning, NY) in the absence

of any treatment or in the presence of 10 mM cyclopamine, 10 mM tamoxifen or a

combination of cyclopamine and tamoxifen. The lower chambers were filled with

1 ml of complete medium. After 48 h the cells that had not migrated were wiped

off the upper side of the filter using a cotton swab. Migrated cells were fixed with

4% paraformaldehyde/PBS for 10 minutes and subsequently stained with crystal

violet for 1 h. Images of five independent fields per insert were taken at 20x

magnification using the Olympus BX51 microscope, and the number of migrated

cells was counted. For the comparison of the number of migrated cells between

different treatments a one-way ANOVA with Newman-Keuls post hoc test for

multiple pairwise comparisons was used.

Quantitative real-time PCR (qRT-PCR)

RNA extraction and qRT-PCR were performed as previously described [24], with

primers ERa F 59-CAGATGGTCAGTGCCTTGTTGG-39, R 59-

CCAAGAGCAAGTTAGGAGCAAACAG-39 [25] and RPLP0, PTCH1 and GLI1

[26, 27]. Expression was normalized using RPLP0 housekeeping gene and relative

fold change was calculated using the 22DDCt formula.

Immunofluorescent staining

Immunofluorescent staining and confocal microscopy were performed as

previously described [24]. The following primary antibodies diluted 1:100 were

used: rabbit polyclonal anti-Hh (Santa Cruz Biotechnology, Dallas, Texas, USA,

sc-9024), mouse monoclonal anti-ERa (Santa Cruz Biotechnology, sc-8002). For

quantification of nuclear staining, three visual fields of magnification 60–100x

were examined and cells were counted (non-treated (NT) N579; Shh treatment

N5124). Quantification of nuclear staining was obtained by determining the

percent of cells showing positive ERa nuclear staining. For colocalization analysis

of Shh and ERa, confocal images were examined using the Manders’ coefficient

plugin of the ImageJ software (v 1.45e) for colocalization of green and red signals
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(red N55; green N55) [28]. The difference in nuclear staining and co-

localization between untreated samples and each treatment was tested using one-

way ANOVA with Dunnett’s post hoc multiple comparisons test.

Co-Immunoprecipitation

For co-immunoprecipitation experiments Protein G Dynabeads (Life

Technologies) were coated with 5 mg anti-ERa antibody per sample and cell

lysates were immunoprecipitated as per manufacturer’s instructions (Invitrogen,

Rev. 005). Dynabeads without bound antibody were used as negative control.

Samples were eluted with 1x loading buffer and heated 10 min at 70 C̊ before

analysis on Western blot.

Western blot

Fifty mg of protein (determined by Bio-Rad Protein Assay; Bio-Rad, Hercules,

California, USA) was loaded on SDS-polyacrylamide gel, transferred to a

nitrocellulose membrane and blocked in 5% milk. Primary antibodies (diluted

1:250) for Shh and ERa were the same as for the immunofluorescence experiment,

additionally goat polyclonal anti-Ptch1 (Santa Cruz Biotechnology, sc-6147) and

rabbit polyclonal anti-Gli1 (Santa Cruz Biotechnology, sc-20687) were used. Actin

(Santa Cruz Biotechnology, sc-1616, goat polyclonal, diluted 1:500) was used as

loading control. After washing, membranes were incubated with the appropriate

secondary HRP-conjugated antibody (Santa Cruz Biotechnology). Proteins were

visualized using Super Signal West Pico and Femto reagents (Thermo Fisher

Scientific, Waltham, Massachusetts, USA).

Proteomic profiling by 2D-gel electrophoresis and mass

spectrometry

Sample preparation

Cells were seeded in four 10 cm dishes for each treatment. After 24 h cells were

treated with a combination of 5 mM cyclopamine and 10 mM tamoxifen in culture

medium without serum for 48 h. The cells were then harvested at 4000 g

(Tehtnica, Centric 400, Železniki, Slovenia) for 6 min, washed five times in

10 mM tris (hydroxymethyl) aminomethane (Tris)-sorbitol buffer, pH 7 and

lysed with TissueRuptor (Qiagen, Venlo, Netherlands). The DNA and RNA were

removed after treatment with DNase I and RNase A. The reconstituted proteins

were precipitated overnight at 220 C̊ with ice-cold acetone and centrifuged for

20 min at 5000 g [29]. The proteins were resuspended in rehydration solution for

isoelectric focusing (IEF) containing 7 M urea, 2 M thiourea, 4% 3-[(3-

cholamidopropyl)-dimethylammonio]-1-propanesulfonate hydrate (CHAPS) and

1% dithiothreitol (DTT) (w/v). Protein concentration in solution was estimated

with Bradford protein assay.
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Two-dimensional electrophoresis

Immobilized pH gradient strips (IPG; 17 cm, non-linear, pH 3–10) were

rehydrated for 14 h with 350 mL of rehydration solution containing 7 M urea,

2 M thiourea, 4% CHAPS, 1% DTT (w/v) and 1.5 mg/mL of total protein. The

IEF was carried out with a Protean IEF Cell (Bio-Rad) with a low initial voltage

and an applied voltage gradient up to 7000 V. The total V6t product applied was

90 000 Vh for each strip at 20 C̊. The strips were equilibrated in equilibration

buffer containing 20 mM DTT, 50 mM Tris adjusted to pH 6.8, 6 M urea, 2%

sodium dodecyl sulfate (SDS) (w/v), 30% glycerol (v/v) and 0.01% bromophenol

blue (BPB) (w/v) on a tilt table for 15 min. The solution was discarded and the

same equilibration buffer solution without the addition of DTT and with the

addition of 25 mM iodoacetamide was used for a 15 min protein alkylation

reaction. The strips were placed on a 1 mm thick 12% polyacrylamide gel and

sealed with 0.1% (w/v) agarose in SDS-electrophoresis buffer containing 0.01%

(w/v) BPB. In the second dimension, the electrophoresis was run for 1 h at 15 mA

per gel and then at 20 mA for 600 Vh. The electrophoresis was terminated after 30

mA per gel until the BPB reached the bottom of the gel. Tris-glycine running

buffer containing 25 mM Tris, 190 mM glycine and 0.1% (w/v) SDS was used in

the second dimension. Obtained gels were stained with Coomassie brilliant blue

(CBB) G-250 stain [30].

Differential display analysis

Differential display analysis of the gel data sets was undertaken by comparing

images of control gel (non-treated cell cultures) with the gel of treated cells

(combination of cyclopamine and tamoxifen). Densitometry analysis was

performed with image analysis software (Discovery Series PDQuest 2-DE analysis

software package version 7.4.0.) integrated with a VersaDoc 4000 Imaging System

(Bio-Rad). Master gels were used to obtain the differences between protein

profiles of non-terated and treated cell cultures.

In-gel digestion

Differentially displayed protein spots were excised from 2-DE gels into small

pieces and subjected to in-gel digestion with trypsin according to Shevchenko et al

[31].

Data analysis and protein identification

Samples were mixed with a-cyano-4-hydroxycinnamic acid 1:5, v/v (5 mg/mL;

Fluka, Switzerland) and spotted onto a metal plate. MS acquisition was performed

with a 4800 Plus MALDI TOF/TOF analyzer (Applied Biosystems, Carlsbad,

California, USA) equipped with a 200 Hz, 355 nm Nd:YAG laser. Ions were

analyzed in reflectron mode using positive polarity. The instrument parameters

were set using the 4000 Series Explorer software (version 3.5.3, Applied

Biosystems). Mass spectra were obtained by averaging 1000 laser shots covering a

mass range of m/z 900 to 4000. MS/MS of the 10 most intense precursor signals
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from MS spectra was achieved by 1 keV collision energy in positive ion mode with

air as a collision gas and by averaging 1600 laser shots.

Data were analyzed using ProteinPilot (ProteinPilotTM Software 4.5., 2012 AB

SCIEX) [32] for searching against the NCBI database using the Homo sapiens

taxonomy. The search parameters allowed for two missed cleavage, trypsin

digestion with a peptide tolerance50.3 Da and MS/MS tolerance50.5 Da. Only

significant scores (greater than 39, p,0.05) for the peptides defined by a Mascot

probability analysis were considered to be confidently identified peptides/

proteins.

Results

MCF-7 and SkBr-3 cells are responsive to cyclopamine and

tamoxifen treatment – combination shows unusual adverse effects

Both the ER-positive MCF-7 and the ER-negative SkBr-3 show expression of Hh-

Gli pathway components. The major difference between the two cell lines was the

expression of Shh and ERa, while the MCF-7 cell line expressed Shh and ERa both

on gene and protein (Shh-N, 19 kDa) level, SkBr-3 cells showed low levels of SHH

and ERa gene expression and no expression at protein level (Fig. 1A, B). SkBr-3

cells also showed no expression of GLI1 (Fig. 1A).

MCF-7 cells were responsive to both Hh-Gli signaling downregulation with

cyclopamine, and ERa inhibition with tamoxifen, which both decreased MCF-7

cell proliferation. Both treatments had a significantly weaker effect on the ER-

negative SkBr-3 cell line (Fig. 2A–D). To determine the effects of a combined

treatment on cell proliferation, cells were treated with cyclopamine and tamoxifen

in four different combinations: cyclopamine for 48 h followed by tamoxifen for

48 h, tamoxifen for 48 h followed by cyclopamine for 48 h, cyclopamine +
tamoxifen simultaneously for 48 h and 96 h (Fig. 2E, F). In most cases, the

combined effect was very similar to the effect of tamoxifen alone. However, a

short-term combined treatment did not cause significantly decreased proliferation

in MCF-7 cells (Fig. 2E).

We tested the possible competition of cyclopamine and tamoxifen in both cell

lines: cells were treated with a constant concentration of one compound,

combined with a range of increasing concentrations of the second compound. For

SkBr-3 cell line, there was no significant difference in compound activity (data not

shown). In the MCF-7 cell line, however, increasing concentrations of the second

compound increased short-term cell survival; regardless of the order of

administration (Fig. 3). This suggests that even though cyclopamine and

tamoxifen alone show inhibitory effects on MCF-7 cells, when administered

together they counter each other’s effects.

Hh-Gli and Estrogen Receptor Signaling Interaction
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Combined cyclopamine and tamoxifen treatment alters Hh-Gli

signaling pathway activity in MCF-7 cells and promotes cell

migration

Prior to investigating the combined effect of cyclopamine and tamoxifen, we first

tested the effect of cyclopamine and tamoxifen alone on the Hh-Gli signaling

pathway. Both cell lines showed a similar response when treated with

cyclopamine. 24 h after treatment with cyclopamine PTCH1 and GLI1 expression

was downregulated in the MCF-7 cell line and PTCH1 was downregulated in

SkBr-3, suggesting pathway inhibition (Fig. 4A). Tamoxifen treatment upregu-

lated PTCH1 and GLI1 expression in MCF-7 cells, while PTCH1 levels remained

unchanged in the SkBr-3 cell line (Fig. 4B).

Although some pathway components are expressed, the pathway shows a low

level of activity in SkBr-3 cells, but with downregulation possibility with

cyclopamine, which may be carried out through other pathway effectors such as

Gli2 or Gli3 that were not tested in this study.

Combined treatment with cyclopamine and tamoxifen showed a different effect

on ER-positive and ER-negative cell line. ER-positive MCF-7 cell line showed

increased Hh-Gli signaling after short-term treatment. Even though the level of

PTCH1 mRNA was still elevated after long-term treatment, a decreasing tendency

was visible compared with short-term treatment. This is confirmed by the level of

Ptch1 protein, which was decreased 40% after long-term combined treatment

compared with non-treated cells. ERa protein level showed no change after

shorter treatment but declined after longer treatment (Fig. 4C). SkBr-3, however,

showed generally downregulated Hh-Gli signaling after combined treatment

regardless of treatment duration (Fig. 4D).

Wound induced migration assay was performed to test whether the

combination of cyclopamine and tamoxifen has an effect on the ability of MCF-7

cells to migrate, in addition to the effects on Hh-Gli signaling and cell

Fig. 1. Basal gene expression levels of Hh-Gli pathway components and ERa in MCF-7 and SkBr-3 cell
lines normalized relative to expression of the housekeeping gene RPLP0 and shown as 22DCt values
on logarithmic scale (A); Expression of ERa and SHH proteins in MCF-7 and SkBr-3 cell lines (B).

doi:10.1371/journal.pone.0114510.g001
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proliferation. Cyclopamine or tamoxifen alone had no effect on the wound closing

rate, compared with the wound closing in the absence of any treatment. On the

other hand, combined treatment with cyclopamine and tamoxifen accelerated the

wound healing process compared with non-treated conditions and with

cyclopamine or tamoxifen alone (Fig. 4E, F). To confirm the obtained results a

transwell migration assay was performed. This assay confirmed no effect of either

cyclopamine or tamoxifen alone on the migration rate when compared with the

non-treated cell migration rate. It also confirmed a higher migration capacity of

MCF-7 cells treated with a combination of cyclopamine and tamoxifen compared

Fig. 2. Cell viability after tamoxifen (A,B), cyclopamine (C,D) or combined treatment (E,F) in MCF-7 and SkBr-3 cell lines. Tamoxifen and
cyclopamine each inhibit proliferation of MCF-7 cells in a dose dependent manner (A,C). When administered simultaneously, they cause a short term
survival effect in MCF-7 cells (C+T 48 h) – pointed out with arrow, whereas long term simultaneous treatment induces strong cell death in these cells (C+T
96 h). Combination treatment of cyclopamine for 48 h followed by tamoxifen for 48 h (C 48 h RT 48 h) or vice versa (T 48 h RC 48 h) showed an effect
similar to tamoxifen alone (E). Tamoxifen and cyclopamine show only a mild inhibitory effect on SkBr-3 cell proliferation at longest exposures (B,D) while
combined treatment has no pronounced effect (F).

doi:10.1371/journal.pone.0114510.g002
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with non-treated cells or cells treated with cyclopamine or tamoxifen alone

(Fig. 4G, H). The increase in the migration capacity was even higher when

analyzed with the transwell migration assay in comparison with the wound

healing assay.

Proteomic profiling of cells treated with cyclopamine and

tamoxifen versus non-treated cells

Differential protein expression analysis was conducted to identify the profile of

expressed proteins in cells treated with a combination of cyclopamine and

tamoxifen. These differentially expressed proteins may explain the effects of the

combined treatment with cyclopamine and tamoxifen on cell proliferation and

migration. The identified proteins are listed in Table 1. Images of the obtained 2-

D gels are shown in S1 Figure. As opposed to cells treated with a combination of

drugs, non-treated cells mostly show expression of proteins involved in response

to topologically incorrect and unfolded proteins; carbohydrate and amino acid

metabolism, gene transcription, RNA processing and translation. Interestingly, the

heat shock protein 27 (HSP27) is expressed in both non-treated cells and those

treated with a combination of cyclopamine and tamoxifen. However, the protein

is shifted in the 2-D gel of treated cells compared with its localization in the 2-D

gel of non-treated cells, which could indicate a posttranslational modification

after treatment. Additionally, the GRP78 precursor protein, which is a known

survival factor [33] that can mediate signaling pathways that lead to proliferation

and invasion [33, 34] was expressed only in treated cells. Also, two proteins that

can be linked with upregulation of proliferation and migration showed an increase

in expression in treated cells, namely prohibitin and keratin 8 [35, 36]. Together

these results indicate that certain proteins involved in tumor cell survival and

migration are upregulated or possibly activated.

Fig. 3. Effect of cyclopamine and tamoxifen combination on MCF-7 cell proliferation. When tamoxifen is in higher concentrations, and cyclopamine in
lower concentrations, MCF-7 cell viability is decreased. However, when cyclopamine concentration is increased (with tamoxifen concentration remaining
constant) cell viability increases (A). Similar effect can be seen vice-versa, when cyclopamine concentration is constant and tamoxifen concentration is
increased (B) as measured by MTT assay after 48 h.

doi:10.1371/journal.pone.0114510.g003
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Fig. 4. Effects of cyclopamine (A) and tamoxifen (B) on Hh-Gli pathway gene expression in MCF-7 and SkBr-3 cells. The Hh-Gli pathway is
upregulated after short-term combined treatment in MCF-7, but the effect is negated after longer treatment. On the Western blot image, band quantification
relative to actin and non-treated cells is denoted below the bands. (C). The effect of combined treatment on SkBr-3 cell line is weak (D). Gene expression
levels are shown on graph as relative fold change relative to non-treated conditions with reference value 1 pointed out with emboldened bar. Only combined
cyclopamine and tamoxifen treatment induces migration in MCF-7 cells. Representative images of the wound healing assay at 0 and 26 h (after processing
with TScratch software [23]) are shown for non-treated conditions (NT; N516), cyclopamine treatment (CYC; N516), tamoxifen treatment (TAM; N514) and
combined treatment with cyclopamine and tamoxifen (C+T; N512) (E). Quantitative analysis of the percentage of open wound areas is shown on the graph,

Hh-Gli and Estrogen Receptor Signaling Interaction
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Shh regulates ERa expression in MCF-7, but not SkBr-3 cell line

Since inhibition of ERa with tamoxifen affected Hh-Gli signaling we wanted to

establish whether there is cross-talk between these two pathways. Therefore, both

cell lines were treated with Shh protein. MCF-7 cells responded to stimulation

with exogenous Shh protein by Hh-Gli pathway activation (Fig. 5A, C) whereas

the ER-negative cell line did not respond to Shh stimulation (Fig. 5B).

Interestingly, short-term Shh treatment also had an effect on ERa expression in

ER-positive cell line, which was increased (Fig. 5D, F), but this effect was relatively

quickly negated 48 h post-treatment (Fig. 5D). In the SkBr-3 cell line there was no

upregulation of ERa in response to Shh protein, but rather a slight down-

regulation (Fig. 5E).

To check whether the effect of Shh on ERa is mediated via the canonical Hh-Gli

signal transduction, cells were transfected with GLI1. After transfection and

additional Shh stimulation, Gli1 and Ptch1 gene and protein expressions were

elevated in MCF-7 cells (Fig. 6C, S2 Figure), whereas ERa was upregulated in

MCF-7 cell line only after exogenous Shh stimulation (Fig. 6A). On the protein

level ERa expression decreased after GLI1 transfection, but an increase was visible

after Shh addition, compared with only transfected cells (Fig. 6C). This suggests

that ERa regulation is not mediated transcriptionally via Gli1 transcription factor,

but rather directly by Shh protein.

Even though the transfection was successful in SkBr-3 cells, shown by

upregulation of GLI1 and PTCH1 expression (S2 Figure), it had no effect on ERa
gene expression which was expected since there is only a low basal level of ERa
mRNA expression and no ERa protein production in these cells (Fig. 6B).

To confirm a direct impact of Shh protein on ERa we silenced PTCH1, the

primary Shh receptor, which would cause an increase in free, unbound Shh

protein that could in turn interact with ERa and increase its activity. The effect

was induction of ERa expression in MCF-7 cells, suggesting Shh protein has a

direct effect on ERa. (Fig. 6D, F) For SkBr-3 cell line, sufficient knockdown of

PTCH1 was achieved 48 h post-transfection (Fig. 6E) and the effect on ERa was

downregulation of gene expression (Fig. 6G).

Shh protein interacts with ERa
To verify whether Shh has a direct effect on ERa, cells were treated with Shh

protein, for 48 h and localization of Shh and ERa was visualized. Non-treated

cells showed Shh staining in a granular pattern in the cytoplasm, mostly

surrounding the nucleus, while ERa was scattered in the cytoplasm and stronger

in the nuclei. Shh treatment caused an interesting effect: co-localization of Shh

(*) P,0.05 (F). Transwell migration assay confirmed increased migration capacity of cells after combined cyclopamine and tamoxifen treatment.
Representative images of migrated cells after 48 h are shown for non-treated conditions (NT; N515), cyclopamine treatment (CYC; N515), tamoxifen
treatment (TAM; N515) and combined treatment (C+T; N515) (G). Quantitative analysis of the relative number of migrated cells (analyzed relative to non-
treated cells) is shown on graph, (*) P,0.0001 (H).

doi:10.1371/journal.pone.0114510.g004
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Table 1. Differentially expressed proteins in MCF-7 cells treated with cyclopamine and tamoxifen compared with non-treated control cells.

2-D gel of control MCF-7 cells

No Protein Description GI Accession Score General Functions

1 Heat shock protein 90-alpha gi|32488 142 N Molecular chaperone that promotes the maturation, structural maintenance and
proper regulation of specific target proteins involved i.e. in cell cycle control and signal
transduction

Heat shock protein 90-beta gi|194378142 130

2 Ezrin gi|11276938 110 N Involved in connections of major cytoskeletal structures to the plasma membrane N In
epithelial cells, required for the formation of microvilli and membrane ruffles on the
apical pole

3 KHSRP protein gi|54648253 145 N Role in mRNA trafficking N Gene expression activation

4 Heat shock protein 75 gi|2865466 100 N Involved in maintaining mitochondrial function and polarization N Negative regulator
of mitochondrial respiration able to modulate the balance between oxidative
phosphorylation and aerobic glycolysis

6 TATA-binding protein-asso-
ciated factor 2N isoform 2

gi|4507353 52 N RNA and ssDNA-binding protein with roles during transcription initiation at distinct
promoters

7 Alpha-tubulin gi|340021 232 N Tubulin is the major constituent of microtubules

8 Pyrroline-5-carboxylate
dehydrogenase

gi|1353248 81 N Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from
proline or ornithine, to glutamate

UDP-glucose 6-dehydrogen-
ase isoform 1

gi|4507813 72 N Involved in the biosynthesis of glycosaminoglycans

10 Translation initiation factor
4A–III

gi|496902 144 N Core component of the splicing-dependent multiprotein exon junction complex N
mRNA processing N mRNA splicing N mRNA transport N Nonsense-mediated mRNA
decay N RNA processing N Translation regulation

11 Glutamate dehydrogenase 1,
mitochondrial precursor

gi|4885281 64 N Cellular amino acid biosynthetic process N Converts L-glutamate into alpha-
ketoglutarate

12 Alpha-enolase isoform 1 gi|4503571 119 N Multifunctional enzyme that, as well as its role in glycolysis, plays a part in various
processes such as growth control, hypoxia tolerance and allergic responses

14 Laminin-binding protein gi|34234 170 N Required for the assembly and/or stability of the 40 S ribosomal subunit N Also
functions as a cell surface receptor for laminin N Plays a role in cell adhesion to the
basement membrane and in the consequent activation of signaling transduction
pathways

16 Keratin 10 gi|28317 51 N Structural protein which forms the intermediate filament

17 Heat shock protein 27 gi|35182 124 N Involved in stress resistance and actin organization N Negative regulation of apoptotic
process N Positive regulation of angiogenesis N Positive regulation of blood vessel
endothelial cell migration

Proteins with $2 times lower expression in MCF-7 cells treated with cyclopamine + tamoxifen compared with control cells

No Protein Description GI Accession Score General Functions

18 far upstream element-binding
protein 1

gi|17402900 172 N Regulates MYC expression

19 far upstream element-binding
protein 1

gi|17402900 172 N Regulates MYC expression

20 Heterogeneous nuclear ribo-
nucleoprotein H

gi|5031753 116 N Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes
which provide the substrate for the processing events that pre-mRNAs undergo
before becoming functional N pre-mRNA alternative splicing regulation

21 Elongation factor 1 alpha gi|31092 40 N Promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes
during protein biosynthesis

22 Tu translation elongation
factor, mitochondrial, isoform
CRA_b

gi|119572383 148 N Promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes
during protein biosynthesis

23 C protein gi|306875 97 N Protein C is a vitamin K-dependent serine protease that regulates blood coagulation
by inactivating factors Va and VIIIa in the presence of calcium ions and phospholipids
N negative regulation of apoptotic process N post-translational protein modification

26 Triosephosphate isomerase gi|136066 75 N carbohydrate metabolic process
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2-D gel of MCF-7 cells treated with cyclopamine + tamoxifen

No Protein Description GI Accession Score General Functions

28 GRP78 precursor, partial gi|386758 133 N Involved in the correct folding of proteins and degradation of misfolded proteins N
Cellular protein metabolic process N Cellular response to antibiotic N Cellular response
to glucose starvation N Negative regulation of apoptotic process N Positive regulation of
cell migration

29 Heat shock protein 27 gi|662841 91 N Involved in stress resistance and actin organization N Negative regulation of apoptotic
process N Positive regulation of angiogenesis N Positive regulation of blood vessel
endothelial cell migration

Proteins with $2 times higher expression in MCF-7 cells treated with cyclopamine + tamoxifen compared with control cells

No Protein Description GI Accession Score General Functions

31 Keratin 8, isoform
CRA_a

gi|119617057 76 N Plays a role in maintaining cellular structural integrity and also functions in signal
transduction and cellular differentiation

32 Prohibitin isoform 1 gi|4505773 308 N Role in human cellular senescence and tumor suppression N Antiproliferative activity
is reported to be localized to the 39 UTR N Positive regulation of cell proliferation and
migration

General Functions are obtained from the UniProt and NCBI Gene databases. Protein numbers correspond to the numbers marked on the 2-D gels (Figure
S1). Numbers in the table correspond to spot numbers denoted on the 2-D gel images; missing numbers in the table are unidentified proteins or proteins with
score less than 39.

doi:10.1371/journal.pone.0114510.t001

Fig. 5. Effect of stimulation with Shh protein on pathway activity in MCF-7 (A,C) and SkBr-3 cells (B).
Gene expression levels are shown on graph as relative fold change relative to non-treated conditions with
reference value 1 pointed out with emboldened bar. Relative gene expression of ERa after treatment with Shh
protein (D,E). Non-treated cells (NT) have a relative value 1. ERa protein expression in MCF-7 cells increases
after treatment with Shh protein for 48 h (F) Protein bands were quantified and normalized relative to actin and
non-treated conditions and the relative values are denoted below each band.

doi:10.1371/journal.pone.0114510.g005
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and ERa in the cytoplasm of the cells (Fig. 7A). There was very little co-

localization of ERa and Shh in untreated cells, but after 48 h-treatment with Shh

protein there is significantly less nuclear staining of ERa (P50,0003) and ERa and

Shh co-localized in the cytoplasm (P,0.0001) (Fig. 7B). This suggests that Shh

acts directly on ERa, modifying its activity. Co-immunoprecipitation results

however, indicate an interaction of Shh and ERa proteins in general, regardless of

treatment with exogenous Shh protein (Fig. 7C). This is not unusual as the MCF-

7 cells produce high amounts of Shh protein. These results undoubtedly show an

interaction between Shh and ERa proteins, which is the first mention of direct

interaction between these two proteins. However, adding exogenous Shh protein

did not increase this interaction, as would be expected from the immunofluor-

escence data. It is possible that, since the MCF-7 cells already produce high

amounts of Shh protein, addition of exogenous protein has no influence on the

interaction rate. However, the fact that there is an obvious interaction between

these two proteins is a new and intriguing finding that needs to be investigated

further as it opens new possibilities in the aspect of Hh-Gli signaling research in

ER-positive breast cancer.

Fig. 6. Gene and protein expression levels after transfection with GLI1 (GLI1) and additional stimulation with Shh protein (GLI1+SHH). ERa gene
expression increases in MCF-7 cells only after additional Shh stimulation (A) while ERa gene expression does not change in SkBr-3 cells (B). Gli1, Ptch1
and ERa protein levels in MCF-7 cells after GLI1 transfection and additional Shh stimulation (C). Protein bands were quantified and normalized relative to
actin and non-treated conditions and the relative values are denoted below each band. Relative gene expression of PTCH1 (D, E) and ERa (F,G) after
silencing of PTCH1 gene in MCF-7 and SkBr-3 cell line. Efficient silencing (,30% of residual expression) was achieved 24 h post-transfection in MCF-7 cell
line, and 48 h post-transfection in SkBr-3 cell line.

doi:10.1371/journal.pone.0114510.g006
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Fig. 7. Immunofluorescent staining of MCF-7 cell line in non-treated cells (NT) and treated with Shh
protein detected by confocal microscopy. ERa is stained green (column 1), Shh is stained red (column 2),
nuclei are stained blue with DAPI (column 3), and the last column shows the overlay of signals. Yellow
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Discussion

The role of Hh-Gli signaling in breast cancer is still unclear, especially regarding

their association with steroid receptor signaling. To date the findings of Hh-Gli

component expression in breast cancer cell lines is contradictory, particularly for

Shh and Gli1. We found expression of Gli1 and Shh in the ER-positive cell line

(MCF-7), but Ramaswamy et al. on the other hand found no expression of Shh in

MCF-7 cells [21]. This inconsistency may be due to the fact that the authors

looked only at the expression of unprocessed Shh protein (45 kDa). This is

supported by the expression of SHH at the mRNA level which they did find. Two

other studies, on the other hand, did find Shh expression in MCF-7 cells [7, 37].

Also, some studies show high expression of GLI1 in ER-negative cell lines,

including SkBr-3 [20, 38], but in our hands GLI1 expression was not detectable in

SkBr-3 cells. Recently a study showed a positive correlation between ERa and GLI1

expression [39], supporting lower levels of GLI1 in the ER-negative cell line. Even

though these authors did find very low GLI1 expression in SkBr-3 it was much

lower than in MCF-7. Given the lower levels of GLI1 in MCF-7 cells that we

detected it is not surprising it was undetectable in SkBr-3.Cyclopamine has been

tested together with gefitinib in prostate cancer cell lines, where the combined

treatment induced a supra-additive inhibitory growth effect on serum-free and

serum-stimulated cell lines. This effect is established through cell cycle arrest in

G1 phase and increased apoptosis. Cyclopamine and gefitinib-treated cells showed

a decreased ability for invasion, and this effect was amplified in combined

treatment [40]. In other studies on prostate cancer cells cyclopamine used in

combination with ErbB inhibitors gefitinib or lapatinib showed a synergistic effect

[41, 42] and combination of docetaxel+cyclopamine+gefitinib induced more

intensive cell death compared to either treatment alone [43]. In cholangiocarci-

noma treatment with cyclopamine and MEK inhibitor U0126 showed an additive

effect, especially in cells with KRAS mutation [44].

Our results regarding the effect of cyclopamine on breast cancer cells are in

agreement with previous studies that have shown that cyclopamine inhibits

human breast cancer cell growth by increased apoptosis [19]. In a study by Che et

al. [22] cyclopamine was reported to have anti-proliferative, anti-invasive and

anti-estrogenic potency in human breast cancer. This is similar to our findings

which also showed the anti-estrogenic effect of cyclopamine, ERa gene expression

was downregulated after cyclopamine treatment.

In the ER-positive breast cancer cell line, however, combined treatment with

cyclopamine and tamoxifen increased cell viability after short-term treatment, but

it was not seen in ER-negative cells. This effect was dose-dependent, and

staining shows areas of green and red signal co-localization (A). Shh-treated cells show significantly
decreased nuclear staining and increased co-localization of ERa and Shh compared to non-treated cells, as
determined by ImageJ software, (*) P,0.05. (B). Shh protein co-immunoprecipitates with ERa protein in MCF-
7 cells, both in non-treated conditions and after treatment with exogenous Shh protein for 48 h; NT5non-
treated, neg.ctrl.5negative control. Western blot of input proteins is provided as control for presence of the
proteins in cell lysates (C).

doi:10.1371/journal.pone.0114510.g007
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competition experiments have shown that higher concentrations of both

compounds are required for the survival effect. Short-term combined treatment of

MCF-7 cells upregulated the Hh-Gli signaling pathway and promoted cell

migration (Figs. 2–4).

To elucidate the effect of the combination of these two drugs on the profile of

expressed proteins we performed proteomic profiling of cells treated with a

combination of cyclopamine and tamoxifen as well as control non-treated cells.

This analysis revealed that a small but unique set of proteins is upregulated upon

combination treatment in comparison with non-treated cells. All of them have

been linked to cell proliferation and migration (Table 1). GRP78, a known

survival factor, has been known to mediate signaling pathways that lead to

proliferation an migration [33, 34]. Prohibitin was initially shown to block cell

proliferation [45], but this ability was attributed to its 39 untranslated region [46].

However, there is emerging evidence that prohibitin as a protein is required for

cell proliferation and adhesion [47]. This protein is also known for activating the

Raf-MEK-ERK signaling pathway and inducing cell migration [36, 48]. Another

protein found to be upregulated after treatment with cyclopamine and tamoxifen

is keratin 8. The data on the role of keratin 8 in cancer are inconsistent. Some

studies show that keratin 8 overexpression correlates with lower tumorigenicity,

invasiveness and motility [49], while others found it to be correlated with poor

prognosis, invasiveness and cell migration [35, 50, 51]. HSP27, which is expressed

under stressful conditions, is found both in treated cells and non-treated cells, but

the protein was shifted in relation to the protein in non-treated cells suggesting it

was modified. It has been found that the phosphorylated form of this protein

participates in stress resistance and act as a negative regulator of apoptosis and a

positive regulator of proliferation and migration [52–55]. This suggests that a

combination of these drugs potentially enhances the migration ability of these

cells, which is consistent with the results obtained by the wound healing and

transwell migration assays, showing that cells treated with the combination of

drugs have a higher migration capacity than the non-treated ones. Whether this

effect is related to the upregulation of the Hh-Gli signaling pathway remains to be

investigated. It should be looked into whether the Hh-Gli signaling pathway can

directly or indirectly affect the expression of these proteins.

Apart from Hh-Gli pathway being regulated by compounds affecting ERa
(tamoxifen), the communication works also in the other direction, from Hh-Gli

signaling to ERa. The link between ERa and Hh-Gli signaling pathways has been

addressed in previous studies. It was shown that upregulation of ERa by E2 also

upregulated Shh which canonically activated Hh-Gli signaling and Gli1 expression

in human breast cancer cells [37]. The same link was observed in ERa positive

gastric cancer [56]. In both studies the vice versa link was not observed. We on the

other hand, show a potential mechanism of ERa regulation through Hh-Gli

signaling. Although there may be a transcriptional link between Hh-Gli and

estrogen signaling via FoxM1 [25, 57], this does not seem to be the case here.

Transfection of GLI1 does not automatically induce transcription of ERa, like it

does of PTCH1; suggesting ERa expression is not regulated transcriptionally via
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Gli1. Only after exogenous addition of Shh protein there is an induction in ERa,

regardless of GLI1 levels. Our co-immunoprecipitation assay confirmed a direct

link between Shh and ERa proteins (Figs. 5–7). It is possible that the cholesterol

modification of the Shh protein plays a role in this interaction since cholesterol is

the precursor molecule for steroid hormones, but this remains to be analyzed.

This interaction may be the cause of upregulation of ERa activity and

consequently upregulation of ERa gene and protein expression. Silencing of

PTCH1 leads to a reduced number of receptor molecules on the membrane,

allowing increased binding of endogenous Shh to the ERa, which leads to

upregulation of ERa expression (Fig. 6), since ERa autoregulates its own

expression [58].

The mechanism which is responsible for the increased viability of ER-positive

cell line after combined treatment with cyclopamine and tamoxifen, in

comparison with either treatment alone, is not clear. We show that the Hh-Gli

signaling is upregulated and proteins involved in proliferation and migration

enhancement are expressed, but the link between them and the Hh-Gli signaling

remains to be elucidated. Although Hh-Gli signaling seems to be a good potential

target for breast cancer therapy, caution must be advised, especially when

combining therapies. We have demonstrated that combined treatment of

cyclopamine and tamoxifen may induce an opposite effect, providing cells with

short-term survival and increased ability to migrate, which may be deleterious for

the patient. On the other hand, we show a potential direct link between Shh and

ERa proteins. According to our results Shh can bind ERa and activate it. This

might be a mechanism that enhances survival of breast cancer cells with

expression of Shh, even in estrogen deficient conditions.

Supporting Information

S1 Figure. 2-D gels of non-treated control MCF-7 cells (A) and MCF-7 cells

treated with cyclopamine and tamoxifen (B). 2-D gel of MCF-7 cells treated with

a combination of cyclopamine and tamoxifen with indicated spots that have $2

times higher expression compared with control cells (C). 2-D gel of MCF-7 cells

treated with a combination of cyclopamine and tamoxifen with indicated spots

that have $2 times lower expression compared with control cells (D). Indicated

spots were used for further MS analysis. Results are shown in Table 1.

doi:10.1371/journal.pone.0114510.s001 (TIF)

S2 Figure. GLI1 and PTCH1 gene expression levels after transfection with GLI1

plasmid in ER-positive MCF-7 cells (A, C) and ER-negative SkBr-3 cells (B, D).

doi:10.1371/journal.pone.0114510.s002 (TIF)
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