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Abstract

Background and Objective: The determination of warfarin, RS/SR- and RR/SS-

warfarin alcohols in oral fluid may offer additional information to the INR assay. This

study aimed to establish an optimized sampling technique providing the best

correlation between the oral fluid and the unbound plasma concentrations of these

compounds.

Materials and Methods: Samples of non-stimulated and stimulated oral fluid, and

blood were collected from 14 patients undergoing warfarin therapy. After

acidification, analytes were extracted with a dichloromethane/hexane mixture and

determined by HPLC with fluorescence detection. Plasma samples were also

ultrafiltered for the determination of the unbound fraction. The chromatographic

separation was carried out in isocratic conditions with a phosphate buffer/methanol

mobile phase on a C-18 reversed-phase column. The absence of interfering

compounds was verified by HPLC-ESI-Q-TOF.

Results: Stimulation generally increased the oral fluid pH to values close to blood

pH in about 6 minutes. The concentration of warfarin and RS/SR-warfarin alcohols

in oral fluid followed the same trend, whereas the concentration of RR/SS-warfarin

alcohols was not affected. Six minute stimulation with chewing gum followed by

collection with a polyester swab was the best sampling procedure, with a good

repeatability (RSD ,10%) and relatively low inter-subject variability (RSD 530%) of

the oral fluid to plasma ratio. This procedure provided strong correlations between

the measured oral fluid and unbound plasma concentration of warfarin (r 5 0.92, p

,0.001) and RS/SR-warfarin alcohols (r 5 0.84, p ,0.001), as well as between

stimulated oral fluid and total plasma concentration of warfarin (r 5 0.78, p ,0.001)

and RS/SR-warfarin alcohols (r 5 0.81, p ,0.001).
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Conclusion: The very good correlation between oral fluid and unbound plasma

concentration of warfarin and RS/SR-warfarin alcohols suggests that oral fluid

analysis could provide clinically useful information for the monitoring of

anticoagulant therapy, complementary to the INR assay.

Introduction

Warfarin [3-(a-acetonylbenzyl)-4-hydroxycoumarin] (WAR, Figure 1A) is the

most common anticoagulant drug prescribed for the treatment of many diseases

(e.g. atrial fibrillation and pulmonary embolism) [1]. WAR has a narrow

therapeutic range (2 ,INR ,3) [2] and is prone to interferences (from other

drugs and food) that may enhance or reduce the anticoagulation effect [3, 4].

WAR is metabolized in the liver by the cytochrome (CYP) P450 to inactive

hydroxylated metabolites (OH-WAR) (major pathway) and by ketone reductases

to RS/SR-warfarin alcohols and RR/SS-warfarin alcohols (WAROHs, Figure 1B)

[5]. WAROHs have a limited anticoagulant activity with a half maximal inhibitor

concentration (IC50) of 12.5 mM (IC50 of WAR is 2.2 mM) [6].

The anticoagulant activity of WAROHs may be an additional variable involved

in the anticoagulant mechanism of WAR [7], but there is little pharmacological

data concerning these metabolites.

Evaluation of the anticoagulation level by the international normalized ratio

(INR) is the primary assay used to monitor WAR therapy [8]. When a patient

begins WAR therapy, blood sampling and INR monitoring should be performed

on a daily basis until the value falls within the therapeutic range. Then the INR

should be checked two or three times a week for one to two weeks, then once

every two weeks or a month provided that the values permanently lie within the

correct therapeutic range [9, 10].

The main problems with this approach are the large variability in the subjects’

responses to treatment and the delayed anticoagulant effect of WAR (<72 hours)

[9], which risk the onset of hemorrhagic events. The social and economic costs

related to the frequent access of patients to anticoagulation centers are further

drawbacks to this therapy.

The determination of WAR and its active metabolites (WAROHs) in oral fluid

samples (OF) could offer additional information to the INR assay, because the OF

concentration of WAR is expected to mirror the concentration of unbound WAR

in plasma (the fraction determining the pharmacological efficacy [11]) and could

anticipate the INR variations. Finally, compared to blood and its derivatives, OF is

easily collected, has a low risk of infection, and does not need specially-trained

personnel to administer it [12]. For example, this approach was successfully

applied by Knott et al to evaluate the interaction between phenytoin and valproate

in patients undergoing epilepsy therapy [13].

Warfarin and Warfarin Alcohols in Oral Fluid

PLOS ONE | DOI:10.1371/journal.pone.0114430 December 5, 2014 2 / 23



Ghimenti et al, suggested the existence of a correlation between OF

concentration of WAR and INR in patients with OF pH > 7.2 (r 5 0.84, p

,0.001), but the limited number of patients with this pH value did not lead to a

statistically firm conclusion [14]. Nevertheless, this result confirmed that OF pH

plays an important role in the diffusion process of WAR from blood to oral fluid

across the salivary gland membrane. OF concentrations of basic and acidic drugs

(such as WAR, pKa 5 5.15 ¡ 0.04 at T 5 25 C̊) [15]) are largely dependent on

variations of the OF pH [16] and an optimized method for stimulated OF sample

collection is required [17]. In fact, the stimulated secretion of OF increases the

concentration of bicarbonate ions, which determine higher pH values and a

moderate buffering effect [18]. Thus, the oral fluid/plasma concentration ratio

(OF/P) should be more constant in stimulated than in non-stimulated OF [16].

There are several methods for collecting non-stimulated (draining, spitting,

suction and adsorption into swab) and stimulated (with chemical or masticatory

stimulus) OF samples [19]. The OF secretion can be stimulated by applying a few

drops of citric acid (0.1–0.2 mol/L) directly onto the tongue, or chewing paraffin

wax, parafilm, rubber bands or chewing gum. After stimulation, the OF can be

spat out, suctioned or absorbed [19]. For hydrophilic drugs, different salivary flow

rates obtained with different sampling methods may influence the measured drug

concentration in OF, as a more effective stimulation leads to a larger dilution of

the sample [20, 21].

Based on this background information, we developed a reliable analytical

method for the determination of WAR and both diastereoisomers of WAROHs in

OF samples by high performance liquid chromatography with fluorescence

detection (HPLC-FLD), which included cleanup and pre-concentration steps.

Instrumentation needed for HPLC-FLD is typically available in the clinical

laboratories, and so the use of this technique fosters the transfer of research results

to the clinical routine. The method was then applied to samples from patients

undergoing WAR therapy. We compared stimulated and non-stimulated OF

samples in order to find the right sampling conditions to obtain the best

correlation between OF and plasma concentrations of unbound WAR, RR/SS-

warfarin and RS/SR-warfarin alcohols.

Figure 1. Structures of WAR (A) and WAROHs (B) * asymmetric center.

doi:10.1371/journal.pone.0114430.g001
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Materials and Methods

Statement of ethics

Ethical permission was obtained from the Ethics Committee of the Azienda

Ospedaliero-Universitaria Pisana. Patients undergoing WAR therapy and

nominally healthy subjects who volunteered to join the project gave written

informed consent prior to their participation.

Study subjects

Fourteen patients (9 males, 5 females) undergoing WAR therapy were recruited.

The enrolled subjects were treated for atrial fibrillation (AF, 60%), deep vein

thrombosis (DVT, 10%) or were mechanical or biological heart valve bearers

(MHV, 30%). Their average age was 67 ¡ 14 years (range, 38–87 years) and the

average WAR dose was 25.50 ¡ 15.50 mg/week (range, 1.25–48.75 mg/week).

INR values varied from 1.8 to 3.7, with an average value of 2.6 ¡ 0.6. The Mann-

Whitney test did not highlight statistically significant gender differences (p ,0.05)

for any of the above parameters. Twenty nominally healthy subjects who were not

taking any drug also contributed to the project by providing control OF samples.

Chemicals

Racemic WAR, i.e. 3-(a-acetonylbenzyl)-4-hydroxycoumarin sodium salt (purity

> 98.0%), sodium borohydride (purity > 98.0%), sodium hydroxide solution,

sulfuric acid (purity > 99.9%), phosphoric acid 85 wt% in H2O (purity >

99.9%), ethanol (purity > 99.5%) and deuterated methanol were purchased from

Sigma Aldrich (Italy). Sodium phosphate monobasic (purity > 99.0%),

potassium phosphate dibasic (purity > 99.0%), dichloromethane (purity >

99.5%), hexane (purity > 95.0%), formic acid (purity > 99.5%), acetonitrile and

methanol were purchased from Sigma Aldrich at HPLC grade. The certified buffer

solutions at pH 5 3, 4, 5, 6 and 7 were purchased from Sigma Aldrich (Italy) to

calibrate the pH-meter daily.

WAROHs were obtained in our laboratory by quantitatively reducing a racemic

WAR standard solution with sodium borohydride [22, 23]. The HPLC-FLD

separation of the reduced solution revealed that the reaction with sodium

borohydride was completed and WAROHs were generated. The product of

reduction was confirmed by comparing the 1H NMR and 13C NMR spectra of

WAR and WAROHs [23]. The concentration of each diastereoisomer (i.e. RR-SS

and RS-SR) in the stock solution of WAROHs was estimated by analyzing HPLC-

UV-Vis signals. Assuming the same instrumental sensitivity for the two

compounds, which is a reasonable hypothesis for such similar molecules, and

given that the ratio of the areas of the two signals was equal to 1, the solution was

considered to contain equimolar amounts of RR-SS and RS-SR. The absence of

additional peaks made us conclude that the synthetized compound did not show

impurities. HPLC grade water was produced by a Milli-Q Reagent Water System

(Millipore, USA).
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Instrumentation

HPLC-FLD analysis was carried out using a Jasco HPLC system equipped with an

autosampler (AS 2055), a quaternary low-pressure gradient pump (PU 2089), a

fluorescence detector (FP 2020), and an ultraviolet detector (UV 2070). The

column temperature was controlled by a thermostat (HT 3000, ClinLab). The

HPLC-FLD system was controlled using ChromNAV software from Jasco.

The chromatographic separation of WAR and WAROHs was carried out on a

C-18 reversed-phase column Poroshell EC-C18 (Agilent, 10064.6 mm, 2.7 mm)

connected to a guard column TC-C18 (Agilent, 12.5 6 4.6 mm, 5 mm).

A few selected OF samples were also analyzed by an Agilent HPLC-ESI-Q-TOF

system to compare the analytical methods. The LC-MS analyses were carried out

using a 1200 Infinity HPLC coupled to a 6530 Accurate-Mass Quadrupole Time-

Of-Flight (Q-TOF) mass spectrometer with a Jet Stream ESI interface (Agilent

Technologies, USA). The HPLC system was controlled by MassHunter software

from Agilent. Chromatographic separation of WAR and WAROHs was carried

out on a C-18 reversed-phase column Zorbax Extend-C18 (Agilent, 5062.1 mm,

1.8 mm) connected to a guard column Eclipse Plus (Agilent, 12.564.6 mm,

5 mm).

A pH 1100 bench pH-meter (Eutech Instruments, Singapore) was used to check

the pH of the mobile phase.

A centrifuge Centrifugette 4206 (ALC, Italy) and a Centrifuge 5804 R equipped

with an A-4-44 swinging bucket rotor (Eppendorf, Italy) were used for sample

centrifugation.

All data were analyzed using GraphPad Prism v.6 from GraphPad Software Inc.

Experimental conditions

HPLC-FLD separation of WAR and WAROHs in extracted OF and plasma

samples as well as in centrifuged plasma samples was carried out in isocratic mode

with a mobile phase consisting of 30% methanol and 70% phosphate buffer

25 mM at pH 5 7, at a flow rate of 0.7 mL/min, injection volume 25 mL.

Fluorescence detection was performed at excitation and emission wavelengths of

310 and 390 nm, respectively. The total HPLC-FLD run time was 26 minutes.

HPLC-ESI-Q-TOF determination of WAR and WAROHs was carried out in

isocratic mode with a mobile phase of 35% acetonitrile and 65% water containing

1% formic acid at a flow rate of 0.25 mL/min at 25 C̊, injection volume 4 mL. The

ESI operating conditions were: drying gas (N2, purity.98%): 350 C̊ at 10 L/min;

capillary potential 4.5 KV; nebulizer gas 35 psig; sheath gas (N2, purity.98%):

375 C̊ at 11 L/min. The fragmentor was kept at 100 V and the collision energy

(CID) for the MS/MS experiments was 20 V. The collision gas was nitrogen

(purity 99.999%). High-resolution MS and MS/MS spectra were achieved in

positive mode in the range 100-350 m/z. The protonated molecular ions [M+H]+

with m/z 311.1 and 309.1 were monitored for WAROHs and WAR identification,

respectively. The total HPLC-ESI-Q-TOF run time was 10 minutes. The linear

regression of the peak area versus concentrations was fitted over the concentration
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range of 1–1000 ng/mL for both WAR and WAROHs. The seven-point calibration

curves (n 5 3 at each concentration) were evaluated by the Deming regression

analysis, and the best-fit models were (the slope values are reported with the

corresponding standard deviation): y 5 (540 ¡ 10) x, (R25 0.999) for RR/SS-

warfarin alcohols, y 5 (1110 ¡ 10) x, (R25 0.998) for RS/SR-warfarin alcohols

and y 5 (1740 ¡ 10) x, (R25 0.999) for WAR.

Five aliquots of a blank oral fluid sample spiked with 0.5 ng/mL of both WAR

and WAROHs were treated according to the optimized procedure and then

analyzed by HPLC-ESI-Q-TOF. The LOD and LOQ values were calculated, in

accordance with IUPAC guidelines [24], as three and ten times the standard

deviation (sb) of the low level ‘‘spiked blank’’, and resulted in: 0.7 and 2 ng/mL for

both WAR and RS/SR-warfarin alcohols, and 0.3 and 1 ng/mL for RR/SS-warfarin

alcohols.

Standard solutions and quality control samples

A phosphate buffer solution (PBS) (1 M, pH 5 7.0) was prepared by dissolving

17.90 g of sodium phosphate monobasic and 49.10 g of potassium phosphate

dibasic in water. This solution was diluted to 25 mM to obtain the PBS used for

the HPLC-FLD analyses and for the preparation of standard solutions.

Stock solutions of WAR (970 mg/mL) and WAROHs (1040 mg/mL) were

prepared by dissolving weighed amounts of the compounds in water and

methanol respectively. These solutions were used to prepare another stock

solution containing WAR (950 ng/mL) and WAROHs (1060 ng/mL) in PBS

25 mM, which was further diluted with PBS to obtain standard working solutions

of WAR and WAROHs at 1, 2, 5, 10, 20, 100 and 200 ng/mL. The standard

solutions, protected from light and stored at 4 C̊, were stable for more than two

months [23].

Pooled patient oral fluid samples (PPOFSs) were obtained by pooling samples

from 14 patients undergoing WAR therapy, whereas pooled control oral fluid

samples (PCOFSs) were obtained from 20 volunteers not taking WAR. Pooled

samples allow to bring into experiments the high variability between different

individuals, maximizing the inclusion of potentially interfering compounds. For

this reason, they allow to perform a much more severe test compared to the use of

single patients’ samples with a limited experimental effort.

Aliquots of a PCOFS were spiked with known amounts of WAR and WAROHs

to obtain pooled standard oral fluid samples (PSOFSs) at different concentration

levels. PSOFSs were stored at 280 C̊, and were checked for stability over a period

of two months and after thaw-freeze cycles.

Octanol-Water partition coefficient (Kow) and dissociation constant

of RR/SS- and RS/SR-warfarin alcohols

The LogKow value at pH 5 7 of both diastereoisomers of WAROHs was

determined using the standardized OECD guidelines [25]. Briefly, a standard
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working solution of WAROHs (1000 ng/mL, C1) was prepared in triplicate in the

PBS buffer (25 mM at pH 5 7) and then mechanically stirred with an equal

volume (4 mL) of 1-octanol at 25 C̊ for 24 hours. The phase separation was

obtained at room temperature by centrifuging at 5000 rpm for 5 min. The

concentration of RR/SS-warfarin alcohols (C2) and RS/SR-warfarin alcohols (C3)

in the aqueous phase was determined by the HPLC-FLD method. The

concentration in the organic phase was calculated by subtracting C2 and C3 from

C1. LogKow at pH 5 7 is expressed as the ratio of the compound concentration in

the organic phase to that in the aqueous phase.

The dissociation constant (pKa) value of RR/SS- and RS/SR-warfarin alcohols

was measured using a modified version of the method proposed by Manderscheid

M and Eichinger T [26]. In brief, a standard working solution of WAROHs

(1060 ng/mL) was prepared in a PBS buffer (25 mM at different pH value) and

then analyzed in triplicate by HPLC-FLD. This approach is based on the different

chromatographic behaviour of dissociated and non-dissociated forms of each

compound at different pH values of the mobile phase. The pH was lowered in

steps of 1 unit and ranged from 7.0 to 3.0. To reach the required pH, different

aliquots of H3PO4 (85 wt% in H2O) were added to the mobile phase. The

resulting pH was further checked by a pH-meter.

The capacity factor to pH variation ratio (Dk’/DpH) of both diastereoisomers

was determined with different contents of organic modifiers (Rwt%: 40, 50 and 60)

in the methanol-PBS mobile phase. The cosolvent dissociation constant (psKa)

value was calculated by equation 1 [27]:

psKa~pH-
Log k’HA-k’ð Þ

k’-kA
ð1Þ

where k’HA and k’A are the capacity factors of non-dissociate and dissociate forms,

respectively. The pH and k’ values were defined as the corresponding point with a

minimum slope in the Dk’/DpH plot. From the traditional plot of psKa vs Rwt%,

the best aqueous pKa value of RR/SS- and RS/SR-warfarin alcohols was obtained

by extrapolating at zero organic content.

Sample collection

Oral fluid sample collection

The patients took WAR at about 6 PM and did not take any food or beverages

within 1 h prior to OF collection. OF samples were collected in a quiet room

between 7 and 10 AM just after a blood sample had been taken using a

biocompatible roll-shaped polyester Salivette swab (Sarstedt, Germany).

Non-stimulated OF samples were collected by asking the subjects to place the

swab in the mouth, between the gum and cheek, and to keep it steady for 10 min

(no chewing or movements, procedure 1). To obtain stimulated OF samples two

procedures were tested on different days. The subjects rolled a swab with their

tongue for 2 min (procedure 2) or chewed sugar-free chewing gum for 6 min

(procedure 3). In both sampling procedures, after the stimulation step, the OF

Warfarin and Warfarin Alcohols in Oral Fluid
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was immediately collected at five different times (t 5 2, t 5 4, t 5 6, t 5 8 and t 5

10 min) by rolling another synthetic swab for 2 min. The amount of the absorbed

OF sample was calculated according to weight differences before and after

sampling. From these values, the OF flow rate in grams per minute (almost

equivalent to milliliters per minute, [28]) was calculated. After OF sampling, the

pH value was measured by two independent observers using a narrow range

(resolution of 0.3 pH units) pH paper strip (Pehanon, Macherey Nagel). Oral

fluid collection and pH measurements were always completed in less than 30

minutes.

The OF was recovered by centrifugation of the swabs at 3000 rpm for 5 min at

room temperature. Finally, the sample was frozen at 280 C̊ until assay.

Blood sample collection

The plasma samples were obtained by the usual standardized procedure used in

clinics: human whole blood samples were collected into vacuum tubes containing

109 mM (3.2%) sodium citrate (Vacutest Kima, Italy) and immediately

centrifuged at 3000 rpm for 10 min at room temperature to obtain platelet-poor

plasma. The plasma sample was stored at 280 C̊ until assay.

Sample preparation

Oral fluid sample preparation

The aim of the sample preparation was to remove the endogenous components

(e.g. proteins, salts, lipids) that might interfere with the chromatographic analysis.

An aliquot of OF (1 mL) was added with 2 mL of H2SO4 0.5 M, 1 mL of ethanol,

and 4 mL of a mixture of dichloromethane/hexane (1:5 v/v). The resulting

mixture was vortex-mixed for 30 sec and then centrifuged at 5000 rpm for 5 min

at room temperature. The organic phase was recovered, evaporated under

nitrogen and reconstituted in 0.25 mL of PBS 25 mM at pH 5 7. An aliquot

(25 mL) of this solution was injected into the HPLC-FLD system for the

determination of WAR and RR/SS- and RS/SR-warfarin alcohols.

Plasma sample preparation

The procedures to determine WAR and WAROHs in plasma samples are

described in [23]. To determine the total content of WAR and RR/SS- and RS/SR-

warfarin alcohols, an aliquot of plasma (0.5 mL) was added with 2 mL of H2SO4

0.5 M, 0.5 mL of ethanol, and 4 mL of a mixture of dichloromethane/hexane (1:5

v/v). The resulting mixture was vortex-mixed for 30 sec, and then centrifuged at

5000 rpm for 5 min at room temperature. The organic phase was recovered,

evaporated under a mild nitrogen flux, and reconstituted in 1 mL of PBS 25 mM

at pH 5 7. An aliquot (15 mL) of solution was then injected into the HPLC-FLD

system.

The seven-point calibration curves (n 5 3 at each concentration) in the range

100–3000 ng/mL were evaluated by the Deming regression analysis, and the best-

fit models were (the slope values are reported with the corresponding standard
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deviation): y 5 (20300 ¡ 100) x, (R25 0.999) for RR/SS-warfarin alcohols, y 5

(7700 ¡ 100) x, (R25 0.999) for WAR and y 5 (12000 ¡ 200) x, (R25 0.999) for

RS/SR-warfarin alcohols.

Inter- and intra-day precision and recovery were determined for spiked plasma

samples at 200, 1000 and 2000 ng/mL (n 5 3 at each level). The recovery of RR/

SS-warfarin alcohols, WAR and RS/SR-warfarin alcohols was 60 ¡ 4%, 90 ¡ 3%

and 70 ¡ 3%, respectively.

The inter- and intra-day precisions (%RSD) at a concentration level of

1000 ng/mL were 4% and 3% for RR/SS-warfarin alcohols, 3% and 4% for WAR,

and 3% and 2% for RS/SR-warfarin alcohols, respectively.

The results showed that the total concentration of all the analytes (range, 200–

2000 ng/mL) in human plasma samples was stable throughout the duration of a

typical sequence of chromatographic analyses and for at least two months of

storage at 280 C̊ as well as after two cycles of thaw-freeze.

To determine the unbound plasma fraction of WAR and both diastereoisomers

of WAROHs, an aliquot of plasma sample (1 mL) was centrifuged at 5000 rpm

for 60 min at 25 C̊ by an Amicon tube (Amicon Ultra-4, Millipore) with a

molecular weight cut-off of 3 KDa. The filtrate sample (25 mL) was then injected

into the HPLC-FLD system, without any further treatment.

The seven-point calibration curves (n 5 3 at each concentration) in the range 1

- 30 ng/mL were evaluated by the Deming regression analysis, and the best-fit

models were (the slope values are reported with the corresponding standard

deviation): y 5 (34200 ¡ 200) x, (R25 0.997) for RR/SS-warfarin alcohols, y 5

(12900 ¡ 100) x, (R25 0.999) for WAR and y 5 (20050 ¡ 100) x, (R25 0.996)

for RS/SR-warfarin alcohols.

Plasma samples were spiked at 200, 1000 and 2000 ng/mL of WAR and both

diastereoisomers of WAROHs (n 5 3 at each level) to obtain unbound plasma

concentration levels at 2, 10 and 20 ng/mL, since the unbound plasma fraction is

about 1% of the total content. These samples were used to determine inter- and

intra-day precision, whereas the recovery was determined for standard working

solutions at 2, 10 and 20 ng/mL (n 5 3 at each level).

The inter- and intra-day precisions (%RSD) at a concentration level of 10 ng/

mL were 6% and 4% for RR/SS-warfarin alcohols, 8% and 5% for WAR, and 8%

and 6% for RS/SR-warfarin alcohols, respectively. The recovery of RR/SS- and RS/

SR-warfarin alcohols and WAR was 90 ¡ 8% and 70 ¡ 8%, respectively.

The unbound plasma fraction of all the analytes (range, 2–20 ng/mL) was stable

throughout the duration of a typical sequence of chromatographic analyses and

for at least two months of storage at 4 C̊. A 20% decrease was observed after the

second freezing-thawing cycle at 280 C̊.
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Results and Discussion

Octanol-Water partition coefficient (Kow) and dissociation constant

of RR/SS- and RS/SR-warfarin alcohols

The value of LogKow at pH 5 7 of both diastereoisomers of WAROHs was

determined by the standardized shake-flask method. Octanol was added to a

working solution of the WAROHs prepared in PBS at pH 7.0. A working solution

of WAR at 1000 ng/mL was also analyzed (n 5 3) to validate our method. The

measured value of LogKow at pH 5 7 for WAR was 0.94 ¡ 0.05. This value is in

good agreement with the one calculated by the equation reported in [29], which

includes both pKa and LogP (2.82 ¡ 0.06 at 25 C̊ [15]) data. In fact, the

difference between calculated and measured LogKow at pH 5 7 (D LogKow 5

|LogKow (calculated) – LogKow (measured)| was 0.02. The t-test showed that this

difference was not statistically significant at a confidence level of 95%.

The LogKow at pH 5 7 value for RR/SS- and RS/SR-warfarin alcohols were 0.83

¡ 0.01 and 0.93 ¡ 0.01, respectively. The values were in good agreement with the

peak elution order observed in our HPLC-FLD experimental conditions (

Figure 2).

The dissociation constant (pKa) of both diastereoisomers of WAROHs was

determined at different pH values of the mobile phase by the HPLC-FLD method

by varying the organic solvent/water ratio. Thus the methanol/water solvent

mixture is generally used because methanol shows a very similar solvation effect to

water [30]. To validate our method a standard working solution of WAR at

1000 ng/mL was also analyzed (n 5 3). The measured pKa value for WAR was

5.42 ¡ 0.03 at T 5 25 C̊, and was in good agreement with the literature [15]. The

average difference D pKa (D pKa 5 |pKa (literature) – pKa (measured)| was 0.27.

Table 1 summarizes the psKa values of both diastereoisomers of WAROHs

calculated using equation 1, at different percentages of methanol (Rwt%).

The best aqueous pKa values of RR/SS- and RS/SR-warfarin alcohols, obtained

by plotting psKa vs Rwt% and extrapolating at zero organic content, were 6.55 ¡

0.04, and 5.73 ¡ 0.03, respectively.

Collection and pretreatment of oral fluid samples

Sample collection

Three sampling devices from Salivette (cotton swab, cotton swab impregnated

with citric acid and synthetic swab) were compared to evaluate the recovery of

WAR, RR/SS- and RS/SR-warfarin alcohols as well as the possible release of

interfering compounds from the swab.

A standard working solution of WAR and WAROHs (5 ng/mL) was thus split

into four sets with three aliquots of 2 mL each: the first was directly injected

(25 mL) into HPLC-FLD system, whereas the other three were absorbed into the

three different swabs and recovered by centrifugation at 3000 rpm for 5 min at

room temperature. The centrifuged solutions were then injected (25 mL) into the

HPLC-FLD system. The recovery was calculated from the ratio between the

Warfarin and Warfarin Alcohols in Oral Fluid
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average concentrations of each analyte in the solution recovered from the swab

and the initial concentration.

The results are summarized in Figure 3 and Table 2, which highlight that the

synthetic swab was the most suitable device for OF sampling because of the lowest

background and the highest recovery percentage for WAR, RR/SS- and RS/SR-

warfarin alcohols.

Figure 2. HPLC-FLD chromatograms of extracted samples: phosphate buffer solution at pH 5 7 (A),
standard working solution of WAR and WAROHs (5 ng/mL) (B), control oral fluid samples (C), control
oral fluid samples spiked with WAR and WAROHs (5 ng/mL) (D), and pooled patients oral fluid sample
(0.6 ng/mL for RR/SS-warfarin alcohols, 9.8 ng/mL for WAR and 10.1 for RS/SR-warfarin alcohols) (E).
Elution order and retention times: 1 (RR/SS-warfarin alcohols, rt: 17.5 min), 2 (warfarin, rt: 20.5 min), and 3
(RS/SR-warfarin alcohols, rt: 23.0 min).

doi:10.1371/journal.pone.0114430.g002

Table 1. Cosolvent dissociation constant of RR/SS-warfarin alcohols and RS/SR-warfarin alcohols in different methanol-water mixtures.

Rwt% psKa (RSD a)

RR/SS-warfarin alcohols RS/SR-warfarin alcohols

60 2.65 (0.4%) 3.01 (0.3%)

50 3.70 (0.3%) 3.68 (0.4%)

40 3.91 (0.5%) 3.89 (0.2%)

aCalculated from three standard working solutions of WAROHs.

doi:10.1371/journal.pone.0114430.t001
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The recovery of both diastereoisomers of WAROHs from the synthetic swab

was also estimated at four different pH values (5, 6, 7 and 8) of the OF samples.

The corresponding recovery of WAR is described in [14].

A PSOFS at 5 ng/mL of WAROHs was split into three aliquots (6 mL): two

aliquots were acidified at pH 5 and 6 by adding 7 and 5 mL of phosphoric acid

1 M respectively. The third aliquot was alkalinized to pH 8 by adding 8 mL of

sodium hydroxide 1 M. Three aliquots (1 mL) of each of these samples were

directly extracted with the procedure described in the Material and Methods, and

three more aliquots (1 mL) were absorbed into the Salivette swabs. The solutions

were recovered by centrifugation of the swabs at 3000 rpm for 5 min at room

temperature and were then treated with the same extraction procedure. In this

case too, the recovery was calculated from the ratio between the average RR/SS-

and RS/SR-warfarin alcohol concentrations in the samples recovered from the

synthetic swab and the initial concentration. A slight dependence on pH was

found, as shown in Table 3.

Only a few patients showed a pH value of the non-stimulated OF lower than

6.0, thus the slight difference in the recovery percentage was considered negligible.

In a few trials carried out with acidic OF samples, the small fraction of RR/SS- and

RS/SR-warfarin alcohols remaining in the sampling swab was recovered by

changing the sample pH to about 7.0 by adding 50–100 mL of PBS 1 M,

reabsorbing the sample in the sampling swab and centrifuging the swab a second

time. Recovery percentages were thus almost quantitative for both compounds.

The absorption of WAR and both diastereoisomers of WAROHs on the

chewing gum used to stimulate the OF secretion was also examined. Standard

working solutions of WAR and WAROHs (5 ng/mL) were added (n 5 3) to a

piece of chewing gum, and vortex-mixed for 30 sec. After that, an aliquot (1 mL)

of each mixture was then treated with the liquid-liquid extraction procedure.

Figure 3. HPLC-FLD chromatograms of the WAR and WAROHs standard working solutions (5 ng/mL)
recovered from different sampling devices: cotton swab (dashed line), cotton + citric acid swab
(dotted line) and polyester swab (solid line). Elution order and retention times: 1 (RR/SS-warfarin alcohols,
rt: 17.5 min), 2 (WAR, rt: 20.5 min), 3 (RS/SR-warfarin alcohols, rt: 23.0 min).

doi:10.1371/journal.pone.0114430.g003
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Neither statistically significant (P 5 1, two-tailed) differences between the

concentrations in the treated samples compared to the initial concentration of

standard working solutions, nor interferences in the HPLC-FLD chromatogram

were observed (data not shown).

Sample preparation

For the determination of WAR and RR/SS- and RS/SR-warfarin alcohols in OF we

used the same procedure developed for the analysis of WAR and WAROHs in

plasma samples [23] with small variations in the volumes used. The aim was to

find the simplest and most reliable sample preparation procedure to remove the

endogenous components (e.g. proteins, salts, lipids) that could interfere with the

analyte determination. The recovery and precision for WAR and both

diastereoisomers of WAROHs were determined during 5-day validation

experiments. Three aliquots of a PCOFS spiked at different concentration levels

(2, 10 and 20 ng/mL) were extracted in triplicate within the same day and on

three consecutive days. Table 4 reports the recovery of WAR, RR/SS- and RS/SR-

warfarin alcohols as well as the corresponding intra- and inter-day relative

standard deviations.

Interference and matrix effect

With the optimized mobile phase composition described above, a complete

separation of all the analytes was achieved. The resolution factors (RS) for RR/SS-

warfarin alcohols/WAR and WAR/RS/SR-warfarin alcohols were 4.3 and 3.0,

Table 2. Recovery of WAR, RR/SS- and RS/SR-warfarin alcohols in a standard working solution (5 ng/mL) from three sampling devices.

Swab Average recovery % (RSD a)

RR/SS-warfarin alcohols WAR RS/SR-warfarin alcohols

Cotton 96% (5%) 88% (10%) 91% (6%)

Cotton + citric acid 75% (1%) 62% (3%) 76% (3%)

Polyester 100 (0.3%) 98% (1%) 98% (1%)

aThree replicates.

doi:10.1371/journal.pone.0114430.t002

Table 3. Recovery of RR/SS- and RS/SR-warfarin alcohols in a PSOFS (5 ng/mL) from synthetic swabs at pH values ranging from 5 to 8.

Measured pH Average recovery % (RSD a)

RR/SS-warfarin alcohols RS/SR-warfarin alcohols

5.1 94% (1%) 93% (5%)

6.1 97% (1%) 96% (3%)

6.9 100% (0.3%) 98% (0.3%)

8.2 99% (0.3%) 98% (0.3%)

aThree replicates.

doi:10.1371/journal.pone.0114430.t003
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respectively. Figure 2 shows the HPLC-FLD chromatograms of the extracted

alcohols: PBS at pH 5 7, standard working solution of WAR and WAROHs,

COFS and COFS spiked with WAR and WAROHs and PPOFS.

In these experimental conditions, the retention times (tr) of RR/SS-warfarin

alcohols, WAR and RS/SR-warfarin alcohols were 17.5, 20.5 and 23.0 min,

respectively. The standard deviation of the retention time for the three analytes

was always 0.1 min in ten replicate measurements.

The absence of interfering endogenous substances was confirmed by comparing

the WAR, RR/SS- and RS/SR-warfarin alcohols concentrations of PSOFSs (5 ng/

mL) and PPOFSs (unknown concentration) determined by the proposed method

and by the HPLC-ESI-Q-TOF method described above. The concentration values

obtained by the HPLC-ESI-Q-TOF and the HPLC-FLD, were in good agreement

for all the samples analyzed.

For both methods, the slopes were not significantly different at a confidence

level of 95%.

The absence of a matrix effect was also confirmed by comparing the slopes,

reported with the corresponding standard deviation, of the calibration curves for a

set of standard working solutions (RR/SS-warfarin alcohols: 30000 ¡ 1000, WAR:

13000 ¡ 700 and RS/SR-warfarin alcohols: 30000 ¡ 1000) and a set of extracted

PPOFS samples (RR/SS-warfarin alcohols: 35400 ¡ 700, WAR: 14100 ¡ 600 and

RS/SR-warfarin alcohols: 31800 ¡ 500). Again, the slopes were not significantly

different at a confidence level of 95%.

Calibration curves, limit of detection (LOD) and quantitation (LOQ)

A working range of 1–20 ng/mL was chosen for WAR, RR/SS- and RS/SR-

warfarin alcohols. The five-point calibration curves (n 5 3 at each concentration)

were evaluated by the Deming regression analysis, and the best-fit models were: y

5 (44000 ¡ 700) x, (R25 0.999) for RR/SS-warfarin alcohols, y 5 (19300 ¡ 600)

Table 4. Extraction recovery, intra- and inter-day precisions of the determination of WAR and RR/SS- and RS/SR-warfarin alcohols in spiked PCOFSs.

Concentration (ng/mL) Recovery % Intra-day a RSD Recovery % Inter-day b RSD

Expected Measured

RR/SS-warfarin alcohols 2.0 1.6 80 3% 81 3%

10.3 9.2 89 4% 87 3%

20.4 17.3 85 2% 86 4%

WAR 1.9 1.4 74 4% 73 5%

9.5 7.3 77 1% 78 3%

18.8 13.8 73 8% 75 2%

RS/SR-warfarin alcohols 2.0 1.7 85 2% 84 3%

10.3 8.8 85 4% 87 4%

20.4 17.5 86 3% 86 3%

aThree replicates.
bThree replicates.

doi:10.1371/journal.pone.0114430.t004
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x, (R25 0.999) for WAR and y 5 (30200 ¡ 400) x (R25 0.998) for RS/SR-

warfarin alcohols.

A blank OF sample spiked with 0.5 ng/mL of WAR and WAROHs was treated

five times with the liquid-liquid extraction procedure and then analyzed by

HPLC-FLD.

The LOD and LOQ values were calculated in accordance with IUPAC

guidelines [24], as three and ten times the standard deviation (sb) of the ‘‘low level

spiked blank’’, and were 0.1 and 0.3 ng/mL for RR/SS-warfarin alcohols, 0.2 and

0.6 ng/mL for WAR and 0.2 and 0.5 ng/mL for RS/SR-warfarin alcohols.

Sample stability

The stability of the standard working solutions of WAR and both WAROHs

diastereoisomers and OF samples was evaluated in triplicate following the

experimental plan reported in Table 5. The temperature and duration of storage

were chosen in order to reflect the typical conditions of clinical studies. The

concentrations of each analyte at t 5 0 h were used as the reference value. The

stability of the samples was evaluated by an ANOVA test at a confidence level of

95%.

The results showed that the concentrations of all the analytes in the OF samples

were stable at 280 C̊ (two cycles of freezing-thawing) over a period of two

months. In addition, no significant degradation occurred in the extracted OF

samples and standard working solutions throughout the duration of a typical

sequence of chromatographic analyses (storage in the autosampler for about 24 h

at room temperature) and for at least two months of storage at 4 C̊.

Influence of the collection method on the oral fluid concentration

of warfarin, RR/SS- and RS/SR-warfarin alcohols

The analytical method was applied to the determination of WAR, RR/SS- and RS/

SR-warfarin alcohols in OF samples collected from 14 patients undergoing WAR

therapy. In this work, three different sampling protocols (see Material and

Methods) were evaluated to: (i) establish the equilibrium time between blood and

OF for all the analytes under OF stimulation, (ii) optimize the stimulated OF

sampling, and (iii) determine the repeatability of the stimulated sampling

procedure.

Figure 4 shows the effect of sampling time of OF stimulation on both pH as

well as the oral fluid/unbound plasma concentration ratio (OF/UP) of WAR, RR/

SS- and RS/SR-warfarin alcohols for patients P5 and P6. The values reported at t

5 0 min corresponded to non-stimulated OF samples. The non-stimulated OF

samples were obtained according to procedure 1, whereas the stimulated OF was

collected by procedure 2 at five different times (t 5 2, t 5 4, t 5 6, t 5 8 and t 5

10 min).

The OF/UP concentration ratio of WAR, RR/SS- and RS/SR-warfarin alcohols

was evaluated in relation to the concomitant pH variation.

Warfarin and Warfarin Alcohols in Oral Fluid
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The distribution of a drug at the side of the salivary membrane is generally

determined by its pKa and LogKow values as well as by the pH values in plasma

and in oral fluid [16]. A variation in OF pH (pH in plasma is buffered at 7.4)

influences the concentrations of the drug, since, at equilibrium the non-ionized

form, which is the only one able to diffuse across the membrane [31], will have the

same concentration at each side of the membrane. Acidic drugs (such as WAR and

Table 5. Experimental plan of time stability studies for WAR, RR/SS- and RS/SR-warfarin alcohols.

Concentration (ng/mL) Storage conditions

2 months 24 h Freeze-thaw cycle

Standard working solution 2, 10, 20 4˚C RT a —

Pooled patients oral fluid sample 2, 10, 20 280˚C RT 2 cycles

Extracted oral fluid sample 10 4˚C RT —

aRoom Temperature.

doi:10.1371/journal.pone.0114430.t005

Figure 4. Effect of oral fluid pH on the oral fluid/unbound plasma concentration ratio of WAR, RR/SS-
and RS/SR-warfarin alcohols for patients P5 (A), P6 (B) undergoing warfarin therapy.

doi:10.1371/journal.pone.0114430.g004
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RS/SR-warfarin alcohols), which are largely dissociated in plasma, show an

increase in the OF/UP concentration ratio with an increase in salivary pH,

whereas the OF/UP concentration ratio of neutral drugs (e.g. RR/SS-warfarin

alcohols) is not influenced by the pH.

Figure 4A shows the typical situation of about one third of the enrolled patients

with a constant salivary pH value close to that of blood. No difference between

non-stimulated (t 5 0 min, full symbol) and stimulated (t ? 0 min, empty

symbol) OF/UP concentration ratios of WAR and RS/SR-warfarin alcohols were

observed in patient P5 as a consequence of the similar pH values on both sides of

the salivary membrane.

Figure 4B shows what happened when a marked increase in salivary pH was

observed in the remaining patients. The change in salivary pH from 5.7 to 7.5

observed in patient P6 during stimulation was associated with a corresponding

synchronous increase in both WAR and RS/SR-warfarin alcohols concentrations.

On the other hand, RR/SS-warfarin alcohols remained practically constant

throughout the whole sampling period. RR/SS-warfarin has an almost neutral pKa

value (6.55 ¡ 0.04), so that its concentration in OF is hardly influenced by pH.

These results also provide useful information on the kinetics of the diffusion

process controlling the concentrations of WAR and RS/SR-warfarin alcohols in

OF. Figure 4B shows that pH reaches equilibrium under stimulation in about 6

minutes, and that WAR and RS/SR-warfarin alcohols immediately follow pH

variations. As pH is the variable controlling the diffusion of WAR and RS/SR-

warfarin alcohols, these results suggest that OF sampling should be performed at

least after 6 minutes and that the diffusion equilibrium of the drug at a certain pH

value is established in less than 2 minutes (i.e. the time the swab was kept in the

mouth).

With regard to these results, we investigated the repeatability of the proposed

stimulated sampling procedure for all the patients enrolled. The sampling

procedure comprised two different steps: a) chewing of sugar-free chewing gum

for 6 min, and b) the consecutive collection of five different stimulated OF

samples. The five OF samples were obtained by rolling a synthetic swab over a

period of 2 min, during which the stimulation was maintained as constant as

possible. We found that stimulated OF samples could be collected and had an

RSD lower than 10% for the measured concentrations of WAR and both

diastereoisomers of WAROHs, although an expected inter-individual variability

was observed.

Correlation between warfarin, RR/SS- and RS/SR-warfarin

alcohols concentration in oral fluid and plasma samples

Finally, the sampling procedures outlined above were used to collect non-

stimulated and stimulated OF samples from 14 patients undergoing WAR

therapy. The aim was to evaluate the correlations between the OF and plasma

(unbound and total) concentrations of WAR, RR/SS- and RS/SR-warfarin

alcohols.

Warfarin and Warfarin Alcohols in Oral Fluid
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The concentration (mean ¡ s.d.) of WAR (Figure 5A) and RS/SR-warfarin

alcohols (Figure 5B) in the non-stimulated and stimulated OF samples were 3 ¡

2 ng/mL (range, 1–5 ng/mL) and 3 ¡ 2 ng/mL (range, 1–5 ng/mL), and 6 ¡

3 ng/mL (range, 1–14 ng/mL) and 3 ¡ 2 ng/mL (range, 1–6 ng/mL),

respectively. Stimulation increased pH values (mean ¡ s.d.) from 6.6 ¡ 0.4

(range, 5.7–7.2) to 7.5 ¡ 0.3 (range, 6.9–8.1) (Figure 5C). The OF flow rate

values (mean ¡ s.d.) increased from 0.10 ¡ 0.05 mL/min (range, 0.05–0.20 mL/

min) up to a much higher value, which then caused the oversaturation of the swab

during the sampling time (2 min).

Unbound plasma concentrations (mean ¡ s.d.) of WAR and RS/SR-warfarin

alcohols were 9 ¡ 4 (range, 3–17 ng/mL) and 5 ¡ 3 ng/mL (range, 1–10 ng/mL),

respectively. Only four patients showed concentrations of RR/SS-warfarin

alcohols in OF (both in non-stimulated and stimulated samples) and plasma

(unbound fraction) higher than the LOQ value.

Total plasma concentrations (mean ¡ s.d.) of RR/SS-warfarin alcohols, WAR

and RS/SR-warfarin alcohols were 30 ¡ 20 (range, 13–82 ng/mL), 1300 ¡ 500

(range, 400–2000 ng/mL) and 600 ¡ 300 (range, 100–1100 ng/mL), respectively.

The Mann-Whitney test did not highlight statistically significant gender

differences (p ,0.05) for any of the above parameters.

Figure 6 shows the relationship between the concentration of WAR and RS/SR-

warfarin alcohols in OF and plasma samples. The relationship between the

variables was examined by Deming’s linear regression (COF 5 S6Ci ¡ C0 where

COF is the OF concentration, S is the slope, Ci is either CUP (unbound plasma

concentration) or CP (total plasma concentration), and C0 is the intercept.

A strong correlation was observed between the stimulated OF and the unbound

plasma concentration of WAR (Figure 6A, r 5 0.92, p ,0.001, COF 5

0.7406CUP – 0.450) and RS/SR-warfarin alcohols (Figure 6B, r 5 0.84, p ,0.001,

COF 5 0.4506CUP + 0.340) as well as between stimulated OF and total plasma

concentration of WAR (Figure 6C, r 5 0.78, p ,0.001, COF 5 0.0056CP – 0.070)

and RS/SR-warfarin alcohols (Figure 6D, r 5 0.81, p ,0.001, COF 5 0.0046CP +
0.090).

These results confirmed the hypothesis of the key-role of salivary pH in

controlling the membrane transfer of both analytes from blood to OF. If the

diffusion mechanism is passive and fast, the stimulated OF concentration should

be close to the concentration of the unbound plasma fraction since OF and

plasma pH values are very similar. In fact, the stimulated OF/UP ratio (mean ¡

s.d.) of WAR and RS/SR-warfarin alcohols was 0.7 ¡ 0.2 (range, 0.3–0.9) and 0.5

¡ 0.2 (range, 0.3–0.8), respectively. The non-stimulated OF/UP ratio (mean ¡

s.d.) was 0.3 ¡ 0.1 (range, 0.1–0.5) and 0.4 ¡ 0.3 (range, 0.1–0.8), respectively.

These results also highlight that the stimulated OF sampling method reduced

the inter-subject variability (%RSD) of the OF/UP ratio from 60% to 30%. This

experimental evidence is a consequence of the lower pH difference between OF

and plasma compared to the non-stimulated sampling method.

Since adsorption of WAR and RS/SR-warfarin alcohols on the surface of both

the chewing gum and synthetic swab was ruled out by the quantitative recovery of
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analytes, an OF/UP concentration ratio of WAR and RS/SR-warfarin alcohols

lower than 1 may be related to variations in the OF flow rate.

Higashi et al reported that for lipophilic compounds (Log Kow values at pH 5 7

higher than 1.76) the major route for entry into OF is a rapid diffusion through

the acinar cells (the transcellular route). Therefore, the rate of diffusion across the

cells is so fast that the OF concentrations are independent of the rate of salivary

secretion. In contrast, compounds with limited lipid solubility (Log Kow values at

pH 5 7 lower than 0.02) may principally enter the saliva via the tight junctions of

Figure 5. Box-plot for warfarin concentration (A), RS/SR-warfarin alcohols concentration (B) and pH
(C) for non-stimulated and stimulated OF samples from 14 patients undergoing warfarin therapy. Note:
The box-plot shows: the minimum, the 5th and the 25th percentiles, the median, the 75th and 95th percentiles,
and the maximum value for each variable investigated. The dot inside the box shows the mean value.

doi:10.1371/journal.pone.0114430.g005
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the acinar cells (the paracellular route) at a low rate, and the concentrations are

significantly influenced by the OF flow rate [16, 20, 32, 33].

In the case of WAR and RS/SR-warfarin alcohols, Log Kow values at pH 5 7 are

in the range 0.83–0.94, which places the analytes in an intermediate zone

compared to cases reported by Higashi et al. Although the OF flow rate may have

influenced the measured concentration ratio of WAR and RS/SR-warfarin

alcohols, it was not possible to quantitatively estimate this possible effect. This was

because during stimulated OF sampling, the swab was often oversaturated which

prevents any quantitative assessment of OF the flow rate.

However, this aspect is not crucial for WAR therapy monitoring, because the

OF/UP concentration ratio should be constant for each patient if the intensity of

stimulation is kept constant throughout the whole collection period [19].

The simultaneous measurement of UP and total plasma determines the drug

binding to proteins.

Figure 6. Concentrations of warfarin (A and C), and RS/SR-warfarin alcohols (B and D), in non-stimulated and stimulated oral fluid versus
unbound and total plasma concentrations in 14 patients undergoing warfarin therapy.

doi:10.1371/journal.pone.0114430.g006
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The protein-binding (mean ¡ s.d.) of WAR, RR/SS- and RS/SR-warfarin

alcohols was 99.2 ¡ 0.3%, 98.8 ¡ 0.4% and 99.3 ¡ 0.2%, respectively. These

results are comparable to 99.1% for WAR obtained from 86 patients using 14 C-

labeled WAR and ultrafiltration with Centrifree devices [34]. No data on the

protein binding to albumin of both diastereoisomers of WAROHs are available in

the literature. The value calculated (about 99%), which was close to that reported

for WAR, is not surprising because both analytes have the same chemical structure

(e.g. coumarin) and probably essentially bind, in the same way, to Sudlow’s site I

of albumin.

In conclusion, we optimized the OF sampling procedure including testing

various collection devices and sampling methods (i.e. non stimulated and

stimulated). A six-minute stimulation with chewing gum followed by the

collection with a polyester swab was the best sampling procedure, with an

optimum repeatability (RSD ,10%). In fact, the synthetic swab combined the

highest recovery and the lowest blank level. The stimulated OF sampling also led

to an increase in the OF pH, which approached the physiological value in blood

(7.4) in about 6 minutes. This stimulated OF sampling procedure also reduced the

inter-subject variability (%RSD) of the OF/UP ratio from 60% to 30% compared

to the non-stimulated procedure.

In the optimized conditions, the concentration of WAR and RS/SR-warfarin

alcohols in OF increased with the pH value, whereas the concentration of RR/SS-

warfarin alcohols was not affected.

When salivary pH was close to blood pH, strong correlations between the

concentrations of both WAR and RS/SR-warfarin alcohols in the stimulated OF

and the unbound plasma fraction were observed.

These results indicate that OF analysis has the potential to become an efficient

clinical tool for daily non-invasive therapy monitoring.
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