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Abstract

Arthropods typically show two types of segmentation: the embryonic parasegments

and the adult segments that lie out of register with each other. Such a dual nature of

body segmentation has not been described from Onychophora, one of the closest

arthropod relatives. Hence, it is unclear whether onychophorans have segments,

parasegments, or both, and which of these features was present in the last

common ancestor of Onychophora and Arthropoda. To address this issue, we

analysed the expression patterns of the ‘‘segment polarity genes’’ engrailed,

cubitus interruptus, wingless and hedgehog in embryos of the onychophoran

Euperipatoides rowelli. Our data revealed that these genes are expressed in

repeated sets with a specific anterior-to-posterior order along the body in embryos

of E. rowelli. In contrast to arthropods, the expression occurs after the segmental

boundaries have formed. Moreover, the initial segmental furrow retains its position

within the engrailed domain throughout development, whereas no new furrow is

formed posterior to this domain. This suggests that no re-segmentation of the

embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological

or genetic manifestation of parasegments in Onychophora, our data clearly show

that parasegments, even if present, cannot be regarded as the initial metameric

units of the onychophoran embryo, because the expression of key genes that

define the parasegmental boundaries in arthropods occurs after the segmental

boundaries have formed. This is in contrast to arthropods, in which parasegments

rather than segments are the initial metameric units of the embryo. Our data further

revealed that the expression patterns of ‘‘segment polarity genes’’ correspond to
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organogenesis rather than segment formation. This is in line with the concept of

segmentation as a result of concerted evolution of individual periodic structures

rather than with the interpretation of ‘segments’ as holistic units.

Introduction

Arthropods, including spiders, centipedes, crustaceans, insects and allies, are the

most diverse and abundant animals on Earth [1, 2]. The evolutionary success of

these animals might be attributed to a modular, segmented body design [3, 4].

During embryonic development, segment formation is governed by the

hierarchical expression of the so-called ‘‘segmentation genes’’, which in addition

to playing other, pleiotropic roles in the embryo provide positional information

for segmental patterning [3, 5]. However, segmentation in arthropods is more

than just a simple repetition of metameric units along the body, as arthropods in

fact show two types of segmentation: the embryonic parasegments, and the adult

segments. The parasegments are the initial metameric units of the embryo, but

due to a re-segmentation are replaced by the definitive segments that lie out of

register with parasegments [6, 7].

The definitive segments comprise typical metameric units of adult arthropods,

which are seen at least in those body parts that have retained the ancestral,

homonomous architecture, including the trunk of centipedes and woodlice, the

metasoma of scorpions, and the abdomen of insects. In these body regions, the

segments are demarcated by the anterior and posterior borders of sclerites and

contain additional segmental structures, such as tracheal openings, gills, ostia of

the heart, and limbs with associated muscles [3, 8210]. In other body parts, the

segments have fused to distinct tagmata and, thus, are no longer recognisable as

individual units, for instance in the head and thorax of insects or the prosoma and

opisthosoma of spiders [3, 4, 11, 12].

In contrast to the adult segments, the embryonic parasegments occur early in

development and are not retained in adults. They are regarded as true metameric

compartments [13, 14] and their boundaries are generated by an interaction of the

canonical Hedgehog and Wnt/Wingless signalling pathways and the transcription

factor Engrailed, which are expressed in cell rows flanking the parasegmental

boundary [3, 7, 15218]. The expression of wingless occurs anterior to this

boundary, while hedgehog and engrailed are expressed posterior to it.

At least in some chelicerate [16], crustacean [19] and insect [14, 20, 21]

embryos, the parasegmental boundary is evidenced by a transverse groove

between the wingless and engrailed domains. This groove, however, disappears

during the re-segmentation of the embryo, after which a new (segmental)

boundary arises posterior to the hedgehog and engrailed domains. This boundary

corresponds to the border between adjacent sclerites in adult arthropods [5, 9].

Due to the re-segmentation of the embryo, segments and parasegments show an
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entirely different spatial relationship to the expression patterns of the four

commonly studied ‘‘segment polarity genes’’; while engrailed and hedgehog are

expressed anteriorly and wingless and cubitus interruptus posteriorly in each

parasegment, the opposite occurs in the definitive segments [16, 22224].

Based on the similarities in the expression patterns of these genes, the

embryonic parasegments of arthropods have been homologised with the segments

of annelids [24, 25]. For example, despite apparent deviations in some species

[26228] the anterior-to-posterior sequence of expression of homologs of these

genes is basically the same in annelids and arthropods [24]. Therefore, it has been

assumed that the last common ancestor of protostomes was segmented and that

the metameric exoskeleton of arthropods has evolved out of phase with this

ancestral segmentation; however, the ancestral segmentation pattern is still

retained in the arthropod embryo [24]. According to this scenario, one would

expect that parasegments (or their vestiges) also occur as initial metameric units

in embryos of one of the closest arthropod relatives, the Onychophora (velvet

worms) [24, 29].

The onychophoran body exhibits a mixture of segmental and non-segmental

features [30, 31]. While various structures, including limbs, crural papillae, ventral

and preventral organs, cellular strands associated with midgut, nephridia, and

embryonic somites (5coelomic cavities), clearly show a metameric arrangement,

no segmental organisation is evident in the cuticle or longitudinal musculature (

Figure 1A–L; [30, 32235]). Therefore, in contrast to arthropods, there are no

clear segmental boundaries in adult onychophorans [8, 30]. Consequently, the

only segmental structures that might be homologous in Onychophora and

Arthropoda are the limbs, the motor neurons supplying these limbs, and the

nephridia and their derivatives [36238].

Irrespective of whether or not they are homologous, various segmental

structures might use a similar genetic scaffold in onychophorans and arthropods

for metameric positioning along the body. Gene expression studies on embryos of

the onychophoran Euperipatoides kanangrensis [29, 39] indeed revealed that the

genes engrailed, cubitus interruptus, hedgehog and wingless are expressed in the

same anterior-to-posterior order as in arthropods. However, based on the data

available, it is impossible to determine whether or not onychophorans have true

parasegmental boundaries. On the one hand, the expression of engrailed and

wingless is graded and there is no precise cellular boundary between their domains

at least within the trunk [29], which speaks against the existence of a

parasegmental boundary in Onychophora. On the other hand, the engrailed

domain extends beyond the segmental furrow [29], which would thus correspond

neither to the segmental nor to the parasegmental boundary. Thus, the existence

of the parasegmental boundary in the onychophoran embryo remains ambiguous.

To determine whether or not the transverse furrows retain their position within

the engrailed domain throughout development, or whether a new segmental

furrow arises posterior to the engrailed domain, we analysed the spatiotemporal

relationship of transverse furrows and other segmental structures with respect to

the engrailed domains in embryos of the onychophoran Euperipatoides rowelli.
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Our study covers more developmental stages than analysed before and provides a

more complete picture of the anatomical changes throughout development. To

further clarify whether segments or parasegments are the initial metameric units,

we analysed the expression patterns of three additional genes, including cubitus

interruptus, wingless and hedgehog, that are known to be involved in the

Figure 1. Segmental and non-segmental features in Onychophora. (A, B, J) Light micrographs. (C, D)
Scanning electron micrographs. (E–I, K, L) Confocal micrographs. (A) Trunk of a specimen of Euperipatoides
rowelli in dorsal view. Note the segmentally repeated, terracotta-coloured papillae. (B) Trunk of a male E.
rowelli in ventral view illustrating segmentally arranged crural papillae. (C) Trunk of a juvenile ofMetaperipatus
inae in lateral view. Note that segmentation is not evident in the integument. (D) Trunk of a juvenile of M. inae
in ventral view. Segmentally arranged ventral/preventral organs between each leg pair are highlighted
artificially in light-blue. (E) Legs of an embryo of Principapillatus hitoyensis in dorsal view. Anti-acetylated
alpha-tubulin immunolabelling. Note the segmental arrangement of the anterior and posterior leg nerves
(arrowheads). (F) Segmentally repeated anlagen of the ventral and preventral organs in an embryo of
Epiperipatus biolleyi in ventral view. Phalloidin-rhodamine labelling of f-actin. (G) Segmental limb muscles
(arrows) in an embryo of E. rowelli in lateral view. Phalloidin-rhodamine labelling. (H) Segmental arrangement
of intrinsic leg muscles (arrowheads) in E. rowelli. Horizontal Vibratome section, phalloidin-rhodamine
labelling. Note that the longitudinal and transverse musculature does not show any segmentation. (I) Ventral
body wall of an embryo of P. hitoyensis in dorsal view. Anti-acetylated alpha-tubulin immunolabelling.
Asterisks indicate the position of legs. Note that the median commissures are not arranged in a segmental
fashion. (J) Enlarged modified nephridia (5labyrinth organs) in the fourth and fifth leg-bearing segments. Note
their segmental arrangement. Note also the lack of segmental ganglia associated with nerve cords. (K)
Dissected midgut of a fully developed embryo of P. hitoyensis with segmentally arranged cellular strands (cf.
[47]). DNA staining with Hoechst. (L) Embryo of P. hitoyensis in lateral view showing the segmental somites
(coelomic cavities marked by asterisks). Subset of a confocal z-series showing an optical sagittal section.
Abbreviations: bm, musculature of the body wall; cp, crural papilla; gu, midgut; le, leg; lm, longitudinal
musculature; lo, labyrinth organ; mc, median commissures; nc, nerve cord; sa, salivary gland; tm, transverse
musculature; vo, ventral/preventral organs. Scale bars: 1 mm (A), 500 mm (B), 300 mm (C–D), 50 mm (E),
100 mm (F, G, I, K, L), 200 mm (H), 1 mm (J).

doi:10.1371/journal.pone.0114383.g001
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developmental control of segment polarity in embryos of Drosophila melanogaster

[7, 40, 41]. Furthermore, we examined in detail the spatial relationship of the

expression patterns of these four genes to the individual metameric structures,

such as limb buds and the anlagen of the ventral and preventral organs [30, 42], to

determine whether the segmented body organisation of Onychophora is

compatible with the interpretation of segments as holistic units [43245] or rather

with the concept of segmentation as a result of concerted evolution of individual

periodic structures [8, 10, 46].

Materials and Methods

Specimen collection

Specimens of Euperipatoides rowelli Reid, 1996 (Onychophora, Peripatopsidae)

were collected from rotted logs in the Tallaganda State Forest (New South Wales,

Australia) in October 2010 and 2011 and maintained in the laboratory as

described previously [47]. The necessary permits for the collection of

onychophorans were obtained from the Forestry Commission of New South

Wales, Australia (Special Purposes Permit for Research no. XX51212). We have

chosen E. rowelli because this species is highly abundant and can be collected

easily outside national parks [48250]. Moreover, E. rowelli has become the most

studied onychophoran species to date [51], the biology, anatomy, development,

phylogeny and population genetics of which have been analysed extensively

[30, 31, 37, 38, 42, 47250, 52270]. Currently, the genome of E. rowelli is being

sequenced (http://www.hgsc.bcm.tmc.edu/content/i5k-velvet-worm), which will

provide additional resources for working with this ‘‘model’’ onychophoran

species.

Dissection and fixation of embryos

For cytochemical and gene expression studies, females of E. rowelli were

anaesthetised in chloroform vapour and the reproductive tracts dissected and

transferred into dishes containing a physiological saline [71]. After dissecting the

embryos from the uteri, the embryonic membranes were removed manually using

two forceps. The embryos were then fixed overnight in 4% paraformaldehyde in

phosphate-buffered saline (PBS; 0.1 mol/L, pH 7.4) and staged according to

Walker and Tait [72] with the following modification. We classified stage V

embryos in a more restrictive way by using the following features: (i) cerebral

grooves (5anlagen of the hypocerebral organs) appear as longitudinal slits in the

middle of each cephalic lobe, and (ii) the anlagen of the last (15th) pair of walking

legs have formed. After staging, the embryos were either processed further for

cytochemical experiments or dehydrated in a graded methanol series and stored at

220 C̊ for subsequent gene expression experiments.
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Cytochemistry

For cytochemical studies, the embryos fixed in 4% paraformaldehyde were rinsed

several times in PBS and incubated overnight at room temperature in a solution

containing the f-actin marker phalloidin-rhodamine (Invitrogen, Carlsbad, CA) as

described previously [30]. After repeated rinses in PBS, the embryos were

counterstained with the DNA-selective fluorescent dye Bisbenzimide (H33258;

Sigma-Aldrich, St. Louis, MO, USA; 1 mg/mL in PBS) and rinsed again in PBS.

The embryos were then mounted between two coverslips in Vectashield Mounting

Medium (Vector Laboratories, Burlingame, CA) and analysed with the confocal

laser-scanning microscope Zeiss LSM 510 META (Carl Zeiss MicroImaging

GmbH, Jena, Germany).

Identification and amplification of gene fragments

Library preparation and assembly of the embryonic transcriptomes from E. rowelli

were performed as described previously [58]. Local tBLASTn searches [73] were

conducted using transcriptome libraries from different embryonic stages [58].

Previously published sequences from other onychophoran and arthropod species

were used as queries [29, 74, 75]. RNA was isolated from pooled embryos of

different developmental stages using TRIzol Reagent (Invitrogen) and RNeasy

MinElute Cleanup Kit (Qiagen, Hilden, Germany) according to the manufac-

turers’ protocols. First-strand synthesis was performed using random hexamer

primers and Superscript III polymerase (Invitrogen). Second-strand synthesis was

carried out with DNA Pol I polymerase (Invitrogen). The obtained cDNA was

purified using NucleoSpin Extract II-Kit (Macherey-Nagel, Düren, Germany)

following the manufacturer’s protocol. Fragments of engrailed, cubitus interruptus,

wingless and hedgehog were amplified using specific primers (Table 1). The

corresponding sequences were made available under the GenBank accession

numbers KF218600–KF218603.

Sequence alignment and phylogenetic analyses

The identified sequences of E. rowelli homologs of engrailed (Er-en), cubitus

interruptus (Er-ci), wingless (Er-wg) and hedgehog (Er-hh) were compared to the

sequences available from the NCBI database using BLAST searches. The

corresponding amino acid sequences from E. rowelli were analysed together with

those from several other metazoan species, including the closely related

onychophoran species E. kanangrensis (see Table S1). Sequence alignments (481,

200, 572 and 429 amino acid positions for engrailed, cubitus interruptus, hedgehog

and wingless, respectively) were generated with the online version of MAFFT [76]

using the FFT-NS-i strategy (see Figure S1). The appropriate models for protein

evolution (LG+G+F for engrailed DAYHOFF+I+G for cubitus interruptus, and

LG+I+G for hedgehog and wingless) were selected using ProtTest 3.2 [77]

according to the Akaike Information Criterion (AIC) [78]. Maximum Likelihood

analyses were performed using Pthread-based version of RAxML v7.2.8 [79].
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Nodal support was calculated using 100 bootstrap replicates. Phylogenetic trees

were visualised with iTol [80] and edited with Adobe (San Jose, CA, USA)

Illustrator CS5.1.

Molecular cloning, probe preparation and whole-mount in situ
hybridization

Gene fragments were cloned into the pGEM-T Vector System I (Promega

Corporation, Madison, WI, USA). Digoxigenin- and biotin-labelled RNA probes

were prepared using DIG RNA Labeling Kit SP6/T7 and Biotin RNA Labeling Mix

(Roche, Mannheim, Germany). Whole-mount in situ hybridization was per-

formed as described previously [22, 81] with the following modifications. The

embryos stored in 100% methanol were rehydrated in a graded methanol series

(26100%, 75%, 50% and 25% in PBST [PBS+0.1% Tween-20], 7 min each). Pre-

hybridization (six hours) and hybridization steps (three days) were carried out at

60 C̊. 100–500 ng of the probes were diluted in 500 ml hybridization solution

(50% formamide, 5xSSC, 50 mg/mL heparin, 50 mg/mL yeast tRNA, 5% Dextran

sulphate, 0.1% Tween-20). Post-hybridization washes included several rinses in

hybridization buffer at 60 C̊, followed by several rinses in a washing solution

(2xSSC+0.1% Tween-20) at 60 C̊ and in PBST at room temperature. The embryos

were then incubated for 3 hours in a blocking solution (10% normal goat serum

in PBST) at room temperature, followed by an incubation with anti-digoxigenin

alkaline phosphatase-conjugated antibody (Roche), diluted 1:1000 in blocking

solution for two days at 4 C̊. After several washes with PBST at room temperature,

NBT/BCIP staining solution (Roth, Karlsruhe, Germany) was added. The reaction

was stopped after the desired staining was achieved by several washes with PBST.

Double whole-mount in situ hybridization was carried out as described by

Schinko et al. [82] with the following modifications. After detection of the first

colour, the embryos were incubated in inactivation buffer (50% formamide,

5xSSC, 0.1% Tween-20, 10% sodium dodecyl sulphate) at 60 C̊ in a heating block.

Embryos were then washed in blocking solution for two hours and the antibody

Table 1. Specific primers used for PCR.

Gene
Fragment
length (in bases) Direction Primer sequence

engrailed 668 forward CTGAACTGGGTCGATCTGAATATCTCG

reverse CGTATATTTGCCTCGCTTACAAG

cubitus
interruptus

602 forward TCCTCGCCCGTTCTGCCACT

reverse TCCAGGCAGTTCACGCCGTT

wingless 1019 forward TCCGTGCCGCGTACTCTACCT

reverse CCTCACTTTTATAACCTCTACCACA

hedgehog 607 forward TCACAGGGGCAAAAGCCCAGT

reverse CGATTGGCGGTTGAGGCTGGT

doi:10.1371/journal.pone.0114383.t001
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for the second staining was added at a dilution of 1:100 in blocking solution. The

second colour reaction was stopped by several washes with PBST and the embryos

were then re-fixed in 4% paraformaldehyde and stored at 4 C̊. For nuclear

staining, the DNA-selective fluorescent dye SYBR Green (Invitrogen) was applied

according to the manufacturer’s protocol.

Microscopy and image processing

The embryos were analysed under a stereomicroscope (Leica WILD M10 with a

WILD MDG 17 Stand; Leica Microsystems, Wetzlar, Germany) and a transmitted-

light microscope (Leica Leitz DMR; Leica Microsystems) equipped with a colour

digital camera (PCO AG SensiCam, Kelheim, Germany). Several micrographs

were taken from each embryo at different focal planes and merged to a single

image using the Auto-Blend Layers function in Adobe Photoshop CS5.1.

Brightness and contrast were adjusted using Photoshop CS5.1. Final panels and

diagrams were designed with Illustrator CS5.1 and exported to Tagged Image File

Format files. Confocal laser-scanning microscopy and image processing were

performed as described previously [30].

Results

Developmental origin and fate of transverse segmental furrows in

embryos of E. rowelli

The initial segmental structures appearing in the embryo of E. rowelli are the

paired mesodermal somites (5coelomic cavities; Figure 2A; see also Figure S2).

Due to an anterior-to-posterior progression in development (i.e., the anterior

segments are further advanced than the posterior ones), the somites arise

sequentially in the antennal, jaw and slime papilla segments, followed by the trunk

segments (Figure 2A). As soon as the mesodermal somites have formed, transverse

furrows appear at regular intervals in the overlying ectoderm (Figure 2A–D; see

Figure S2). Although the formation of these furrows lags behind that of somites,

their position along the body corresponds exactly to the border between each

adjacent somite (see Figure S2).

During further development, paired segmental limb buds (numbered in

Figure 2B, E–G) arise in an anterior-to-posterior progression from lateral

portions of the germ band. Simultaneously, the median portions of the germ band

give rise to segmental thickenings (asterisks in Figure 2B, E–G) that are the

anlagen of the ventral and preventral organs (see ref. [42] for details on the

developmental fate of these thickenings). Shortly after the limb buds and the

anlagen of the ventral and preventral organs have formed, the lateral ectodermal

portions of the germ band extend dorsally in a regular, undulating fashion. This

regular growth gives rise to conspicuous segmental indentations in the ectoderm

(arrowheads in Figure 2B), which correspond in position to the transverse furrows

that separate the segmental anlagen of limbs and the ventral/preventral organs
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along the body (dotted lines in Figure 2B and arrows in Figure 2E–G). These

indentations show that there is a defined structure in the ectoderm and that the

furrows are not simple undulations caused by the bulging, underlying

mesodermal somites.

Following the anterior-to-posterior progression in development, the transverse

segmental furrows and the dorsal indentations of the ectoderm become less

prominent at the anterior end in stage IV embryos and are hardly detectable at

stage V (Figure 2B, F, G). Neither the transverse furrows nor the segmental

Figure 2. Developmental origin and fate of transverse segmental furrows in embryos of E. rowelli at
successive developmental stages. Confocal micrographs of embryos labelled with Bisbenzimide. Leg-
bearing segments and corresponding limbs are numbered. Asterisks indicate the anlagen of the ventral and
preventral organs. (A) Stage I embryo in ventral view. Note distinct borders between the developing
segments. (B) Late stage III embryo in ventro-lateral view. Arrowheads point to the dorsal indentations in the
ectoderm. Dotted lines demarcate the transverse furrows. (C–G) Chronological sequence of the formation of
the segmental furrows. Embryos in lateral (C–E) and ventral view (F, G). Arrows point to the segmental
furrows. (C) Posterior end of a stage II embryo. Note that furrows are not visible yet. (D) Posterior end of a
stage III embryo. (E) Midbody of an early stage IV embryo. Note an additional longitudinal furrow separating
the anlagen of the ventral/preventral organs and the developing limbs. (F) Anterior body region of a stage IV
embryo. (G) Anterior body region of a stage V embryo. Abbreviations: at, developing antenna; bp,
blastoporus; cl, cephalic lobe; de, dorsal extra-embryonic tissue; ey, eye; js, jaw segment; jw, jaw; st,
stomodaeum; sp, slime papilla; ss, slime papilla segment; po, proctodaeum; ve, ventral extra-embryonic
tissue. Scale bars: 200 mm (A, B), 100 mm (C–G).

doi:10.1371/journal.pone.0114383.g002
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indentations persist beyond this developmental stage in E. rowelli (cf.

[30, 42, 56, 62]).

Identification of homologs of engrailed, cubitus interruptus,
wingless and hedgehog in E. rowelli and phylogenetic analyses

Irrespective of the assembly filters used (F15, F25, and F30; see ref. [58] for details

on methodology), we identified contigs of only one homolog of each gene (Er-en,

Er-ci, Er-hh and Er-wg) in our transcriptomic data. However, since the complete

genome sequence is unavailable for Onychophora, we cannot rule out the

possibility that there might be additional copies of these genes in the genome,

although these might not be expressed during development. To determine

whether the identified homologs from the onychophoran E. rowelli are

orthologous to the corresponding sequences from arthropods, we carried out

phylogenetic analyses (see Table S1 and Figure S3). In the resulting cladograms,

the identified homologs Er-en, Er-hh, Er-ci and Er-wg form sister groups to the

corresponding sequences from E. kanangrensis (see Figure S3). These results

confirm that the identified sequences of E. rowelli are indeed orthologs rather than

paralogs of the corresponding arthropod genes.

Expression of engrailed during development in E. rowelli

During embryogenesis of E. rowelli, engrailed is expressed in segmentally repeated

stripes along the germ band, whereas no expression is seen in the ventral and

dorsal extra-embryonic tissue (Figures 3A–F, 4A–D). As the embryo grows,

engrailed stripes are added posteriorly and increase in size towards the anterior

end, following the anterior-to-posterior progression along the body (Figure 3A–

F). Notably, the stripes occur after the segmental furrows have formed and the

signal is graded, as it does not show clear expression boundaries (cf. Figure 3C, D;

see ref. [29] for similar data obtained from the closely related species E.

kanangrensis). In contrast to other segments, the engrailed domain is weaker and

situated more dorsally in the antennal segment (Figure 3A, B). Shortly after the

antenna has formed, the shape of this domain transforms from a stripe to a spot-

shaped domain, which follows the elongation of the developing antenna

(arrowheads in Figure 3E, F). This results in an elongated domain at the antennal

basis, which extends further posteriorly and is still seen above the eye anlage later

in development (Figures 3F, 4D).

The expression of the remaining engrailed stripes in the embryo precedes the

formation of limb buds (Figure 3A). Notably, each engrailed stripe extends beyond

the segmental furrow in the early embryo (Figure 5A). This pattern persists

throughout development and no migration or shift of the initial furrow, or

establishment of a new segmental furrow is evident (Figure 5A–E). When the limb

buds arise, each engrailed stripe follows the curvature of the corresponding limb

bud, in which it is located posteriorly in both ectoderm and mesoderm (

Figures 3F, 4A–C, 5C–E). While no engrailed expression occurs dorsally, each
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engrailed stripe continues from the limb bud to the ventral ectoderm (Figure 4A,

B). After all fifteen leg-bearing segments have formed, the initial stripes of

engrailed are subdivided in two separate domains: a lateral domain associated with

the limb bud, and a median domain corresponding to the segmental anlage of the

ventral and preventral organs (Figure 4C).

Figure 3. Expression of engrailed in embryos of the onychophoran E. rowelli at subsequent
developmental stages. Anterior is left in A, B, E, F and up in C, D. Leg-bearing segments and corresponding
limbs are numbered. Note the repeated stripes along the body and the lack of expression in the dorsal and
ventral extra-embryonic tissue. Double-arrowheads in A, B, E and F indicate the dorsally located domain of
engrailed in the cephalic lobe. Arrowheads in C and D point to the transverse ectodermal furrows, which lack
engrailed expression. (A) Early stage II embryo in lateral view. (B) The same embryo as in A in ventral view.
Note the lack of expression in the posterior region and around the proctodaeum (black arrow). (C) Confocal
micrograph of the posterior end of the same embryo as in A labelled with the DNA marker SYBR Green. (D)
Light micrograph of the same embryo as in C. (E) Early stage III embryo in lateral view with eleven engrailed
stripes along the body and a spot-shaped domain in the developing antenna (arrowhead). (F) Late stage III
embryo in lateral view with 15 engrailed stripes along the body (13 within the trunk) and an additional domain
in the developing antenna (arrowhead). Abbreviations: at, developing antenna; cl, cephalic lobe; de, dorsal
extra-embryonic tissue; js, jaw segment; ss, slime papilla segment; ve, ventral extra-embryonic tissue. Scale
bars: 250 mm (A, B, E, F), 100 mm (C, D).

doi:10.1371/journal.pone.0114383.g003
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Expression of cubitus interruptus is anterior to each engrailed
domain in embryos of E. rowelli

In contrast to engrailed, which is expressed in stripes, cubitus interruptus is first

expressed as a continuous belt at the posterior end of the embryo, excluding the

region around the proctodaeum (Figures 6A–C, F, 7A–C). We were unable to

detect cubitus interruptus expression in embryos earlier than stage II and,

therefore, cannot exclude that this gene might be also expressed in a continuous

belt at the anterior end. The continuous belt of expression persists at the posterior

end, whereas its anterior part dissociates into increasingly well-defined, segmental,

rectangular domains (Figures 6A–F, 7A–D). From stage IV onwards, the

Figure 4. Details of engrailed expression in embryos of E. rowelli. Leg-bearing segments and
corresponding limbs are numbered. (A) Ventral (left) and dorsal perspective (right) of the anterior end of a
stage IV embryo. Note the expression in the ventral ectoderm (asterisks) and in the ectoderm and mesoderm
of each developing limb (arrowheads). (B) Details of the anlagen of a jaw, a slime papilla and the first leg in a
stage IV embryo. Arrow points to the transition between a wide ventral stripe and a narrow domain within the
limb, which become separate during further development. (C) Ventro-lateral view of the posterior end of a
stage V embryo. Note that the domains within the limb buds (arrowheads) and those on the ventral body
surface (square brackets) have become separate. The latter correspond to the anlagen of the ventral and
preventral organs [30, 42, 56]. (D) Lateral view of a developing antenna in a stage IV embryo. Abbreviations:
at, developing antenna; de, dorsal extra-embryonic tissue; ey, developing eye; jw, embryonic jaw; sp,
embryonic slime papilla; ve, ventral extra-embryonic tissue. Scale bars: 250 mm (A), 125 mm (B–D).

doi:10.1371/journal.pone.0114383.g004
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continuous belt disappears and only the rectangular domains are visible along the

antero-posterior body axis. Similar to the engrailed stripes, the cubitus interruptus

domains do not show clear expression boundaries but rather a graded signal

towards the margins of each domain (Figures 6D, F, 7D). The largest unitary

expression domain occurs in the cephalic lobes of the antennal segment, in which

only two transverse dorsal regions lack expression (arrows in Figure 6A, C).

When the limbs arise, the expression of cubitus interruptus persists in the

anterior region of each limb bud, where it is expressed in both ectoderm and

Figure 5. Spatial relationship between segmental furrows and repeated engrailed domains in embryos
of E. rowelli. Anterior is left in all images. Leg-bearing segments and corresponding limbs are numbered.
Arrows indicate the position of segmental furrows in embryos of E. rowelli at subsequent developmental
stages in ventral (A, C, D), dorsal (B), and ventro-lateral perspectives (E). Abbreviation: sp, anlage of the
slime papilla/slime papilla segment. Scale bars: 100 mm (A, B, D, E,), 125 mm (C).

doi:10.1371/journal.pone.0114383.g005
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mesoderm (Figure 6E). At advanced developmental stages, the continuous belt of

cubitus interruptus expression is no longer evident, as it disintegrates completely

into separate segmental domains (Figures 6F, 7D). Similar to engrailed stripes (cf.

Figure 4C), each cubitus interruptus domain consists of a lateral and a median

portion, each of which has a different fate further in development, while the lateral

portion (including the limb bud; arrowheads in Figure 7D) persists until late in

development, the median portion (including the anlage of ventral/preventral

organs; asterisks in Figure 7D) disappears earlier, following the anterior-to-

posterior progression.

Figure 6. Expression of cubitus interruptus in embryos of E. rowelli. Anterior is left in all images. Leg-
bearing segments and corresponding limbs are numbered. (A–C) Stage II embryo in lateral, dorsal and ventral
views. Note the continuous belt of expression on each side of the body at the posterior end, which dissolves
into nearly rectangular domains towards the anterior end. Note also the expression-free areas in the cephalic
lobes (arrows) and around the proctodaeum (asterisk). (D) Detail of the anterior-most expression domains in a
stage II embryo in lateral view. Arrowheads point to wide gaps between the domains. (E) Anterior portion of a
stage IV embryo in lateral view showing expression in the ectoderm and mesoderm (somite walls) of the limb
anlagen (arrowheads). (F) Posterior end of the same embryo as in E. Note the remnant of the continuous belt
of expression near the proctodaeum (asterisk), which dissolves into solitary domains towards the anterior end.
Abbreviations: cl, cephalic lobe; de, dorsal extra-embryonic tissue; js, jaw segment; sp, embryonic slime
papilla; ss, slime papilla segment; ve, ventral extra-embryonic tissue. Scale bars: 500 mm (A–C), 250 mm (D–
F).

doi:10.1371/journal.pone.0114383.g006
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To analyse the spatial relationship between the expression patterns of cubitus

interruptus and engrailed, we conducted additional single and double in situ

hybridization experiments (Figure 8A–F). Due to a persisting continuous belt of

cubitus interruptus expression at the posterior end of the embryo (cf. Figure 6A),

the domains of engrailed and cubitus interruptus overlap initially in this body

region (Figure 8B, E, F). After the subdivision of this belt into separate,

segmentally repeated domains, gaps occur between the cubitus interruptus and

engrailed domains (Figure 8C, D). This is in line with the results of our single

in situ hybridization experiments, which revealed gaps between adjacent cubitus

interruptus domains that are wider than each engrailed stripe (cf. Figures 3A, 6A).

Dynamic patterns of wingless expression during development in

E. rowelli

Similar to engrailed, wingless is expressed in a reiterated pattern along the germ

band (Figure 9A–F). However, in contrast to engrailed, this gene is initially

expressed in the early anlagen of limbs (arrowheads in Figure 9B) and each

segmental domain extends subsequently in a stripe-like fashion to the ventral

ectoderm (arrows in Figure 9B), following the anterior-to-posterior progression

in development. Each stripe demarcates the middle of each limb basis, from which

Figure 7. Details of cubitus interruptus expression in embryos of E. rowelli. (A–C) Posterior ends of
embryos at developmental stages II, III and IV in ventral view. Arrows indicate the posterior-most regions of
expression, which subsequently move towards the proctodaeum. (D) Posterior end of a stage IV embryo in
lateral view. Leg-bearing segments and corresponding limbs are numbered. Dotted line with an arrow
indicates the direction of decreasing expression in the ventral ectoderm (asterisks) but increasing expression
in the limb anlagen (arrowheads) towards the anterior end. Abbreviation: ve, ventral extra-embryonic tissue.
Scale bars: 250 mm (A–D).

doi:10.1371/journal.pone.0114383.g007
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Figure 8. Localisation of engrailed and cubitus interruptus expression in embryos of E. rowelli.
Labelling for engrailed is illustrated in purple and for cubitus interruptus in orange in A–D. Embryos in lateral
view. Anterior is left and dorsal is up in all images. Leg-bearing segments are numbered. (A) Overview of a
stage IV embryo. (B) Posterior end of a stage III embryo. Note that no gaps are evident between the engrailed
and cubitus interruptus domains. Note also that there might be a co-expression of the two genes at least in
cells located within the posterior-most engrailed stripes, as there is a continuous belt of cubitus interruptus
expression in this body region at that stage (cf. E and F; see also Figures 6F, 7B). (C) Posterior end of a stage
IV embryo. Asterisks indicate gaps between subsequent engrailed and cubitus interruptus domains. (D)
Through-light micrograph showing subsequent domains of engrailed and cubitus interruptus in a stage IV
embryo. Note gaps between the engrailed and cubitus interruptus domains (asterisks). (E) Expression of
cubitus interruptus at the posterior end of a stage II embryo. (F) Expression of engrailed at the posterior end of
a stage II embryo. Abbreviations: at, antenna; ci, cubitus interruptus domains; de, dorsal extra-embryonic
tissue; en, engrailed domains; jw, jaw; po, proctodaeum; sp, slime papilla; ve, ventral extra-embryonic tissue.
Scale bars: 500 mm (A), 250 mm (B, C, E, F), 200 mm (D).

doi:10.1371/journal.pone.0114383.g008
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it runs further medially (Figure 9C–F). When the limb buds elongate, the spot-

shaped domains become more prominent at the tip of each developing limb,

including the slime papillae and the jaws (Figure 9B–D). As development

proceeds, the initial unitary domain associated with each limb is subdivided into

two separate domains: a spot-shaped domain at the tip of each limb, and a stripe-

shaped domain in the ventral ectoderm, including the limb basis (Figure 9D–F).

In addition to these domains along the body, a ubiquitous expression of wingless

Figure 9. Expression of wingless in embryos of E. rowelli. Anterior is up in all images. Leg-bearing
segments and corresponding limbs are numbered. (A) Stage II embryo in ventral view. Note that wingless is
expressed in segmentally repeated stripes in the anlagen of limbs and in areas in which the limb buds arise.
Note also wingless expression in the cephalic lobes and the proctodaeum. (B) Detail of wingless expression in
the same embryo as in A in lateral view. Note that the expression first appears in the limb buds (arrowheads),
followed by stripe-shaped domains in the ventral ectoderm (arrows). (C) Stage III embryo in lateral view. Note
a weak and ubiquitous expression of wingless in the cephalic lobes and a strong expression in the anlagen of
antennae. (D) Detail of wingless expression of the same embryo as in D in lateral view. Arrows point to
appearing stripes along the ventral body surface, whereas arrowheads denote the spot-shaped domains in
the distal portion of each developing limb. (E) Posterior end of a stage IV embryo in ventro-lateral view. As in
the stage II and III embryos, the expression first appears in the limb buds (arrowheads), followed by stripe-
shaped domains in the ventral ectoderm (arrows). (F) Detail of a stage IV embryo in ventral view. Note that the
stripes in the ventral ectoderm are separated by non-expressing cells from the spot-shaped domains in the
distal limb portions. Abbreviations: at, developing antenna; cl, cephalic lobe; js, jaw segment; jw, embryonic
jaw; lb, limb buds; po, proctodaeum; sp, embryonic slime papilla; ss, slime papilla segment; ve, ventral extra-
embryonic tissue. Scale bars: 250 mm (A, C), 125 mm (B, D), 200 mm (E), 100 mm (F).

doi:10.1371/journal.pone.0114383.g009
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occurs in the cephalic lobes and the antennae and a conspicuous ring-shaped

domain is seen around the proctodaeum (Figure 9A, C, E).

Posterior expression of hedgehog in each segment in embryos of

E. rowelli

The earliest detectable expression of hedgehog occurs around the early elongating

blastopore (Figure 10A). Later in development, a ring-shaped domain is still seen

around the proctodaeum (Figure 10B, C), thus resembling the expression pattern

of wingless in the same region (cf. Figure 9A, E). In addition to this posterior

domain, stripes of hedgehog expression emerge sequentially along the embryo,

following the anterior-to-posterior progression in development (Figure 10C). This

pattern is similar to the expression of engrailed, but the hedgehog stripes are

thinner and shorter than the engrailed stripes and are expressed later, first

appearing in each developing limb bud (Figure 10C).

Within the limb buds, hedgehog is expressed posteriorly in both ectoderm and

mesoderm as a graded signal; only in the antennae is this gene expressed dorsally (

Figures 10C–E, 11A–D). During further development, the hedgehog stripes extend

medially in the ventral ectoderm (Figure 10D, 11D). These median domains are

located posterior to the corresponding wingless domains (see Figure S4). The

most prominent stripe of hedgehog expression demarcates the posterior boundary

of the cephalic lobes in the antennal segment (Figures 10C, D, 11A, B, D).

Discussion

Segments, rather than parasegments, are the initial metameric

units in the onychophoran embryo

Parasegments are believed to be the initial metameric compartments of the

arthropod embryo [3, 7, 13, 14, 16218]. They arise early in development and are

recognised by several features, including (i) the juxtaposed pattern of wingless and

engrailed/hedgehog expression (via an autoregulatory interaction of these genes,

which was initially demonstrated in embryos of Drosophila melanogaster

[7, 15, 83, 84]); (ii) conspicuous expression patterns of some Hox genes, obeying

the parasegmental boundaries [7, 11, 16, 83, 85]; and (iii) cell lineages that at least

in crustaceans are restricted to the genealogical units corresponding to

parasegments [86290]. Thus, if present, parasegments should be recognisable in

the onychophoran embryo based on these criteria.

Our data from E. rowelli, as well as those from the closely related species E.

kanangrensis [29, 39], show that engrailed, cubitus interruptus, wingless and

hedgehog are all expressed in a reiterated pattern in the onychophoran embryo (

Figure 12). The expression occurs in repeated sets along the body, the relative

order of which corresponds to that in arthropods; cubitus interruptus and wingless

are expressed anterior to the engrailed and hedgehog domains (Figure 13A–D)

[16, 17, 22, 83, 91, 92]. These data are in line with the assumption of an
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Figure 10. Expression of hedgehog in embryos of E. rowelli. Leg-bearing segments and corresponding
limbs are numbered. Arrowheads indicate segmentally repeated stripes in the posterior portion of each
developing limb. (A) Stage I embryo. Inset in the upper right corner shows a fluorescent micrograph (DNA
labelling) of the blastoporal area from the same embryo. Arrows point to the position of the blastopore, which
is surrounded by hedgehog expressing cells. (B) Posterior end of a stage IV embryo. Arrow indicates the
expression around the proctodaeum. (C) Stage III embryo in lateral view showing repeated stripes of
expression along the body. Arrowheads point to the emerging hedgehog domains in the posterior portion of
each developing limb in the posterior half of the embryo. Note an elongated domain at the posterior border of
the cephalic lobes (double-arrowhead). (D) Anterior end of a stage IV embryo in ventral view. Double-
arrowhead points to the elongated domain at the posterior border of the cephalic lobes. Dotted line indicates
the border between the ectoderm and the ventral extra-embryonic tissue. (E) Dorsal view of the same embryo
as in D. Arrows point to the expression in the mesoderm at the bases of the developing antennae.
Abbreviations: at, developing antenna; de, dorsal extra-embryonic tissue; jw, embryonic jaw; po,
proctodaeum; sp, embryonic slime papilla; ve, ventral extra-embryonic tissue. Scale bars: 500 mm (A),
100 mm (B), 250 mm (C), 200 mm (D, E).

doi:10.1371/journal.pone.0114383.g010
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autoregulatory interaction of these genes [7, 13, 14, 16218] although the graded

expression pattern in the trunk lacks boundaries in onychophorans. Nonetheless,

one could argue that a distinct boundary might still exist at the post-

transcriptional level [29], which would correspond to the parasegmental

boundary of arthropods (Figure 13D).

Another piece of evidence for parasegments in arthropods comes from the

anterior expression borders of the posterior Hox genes, which typically

correspond to the parasegmental boundaries, including Antennapedia,

Ultrabithorax, abdominal-A, Abdominal-B in chelicerates, fushi tarazu,

Abdominal-B in myriapods, proboscipedia in crustaceans, and Sex combs reduced,

Antennapedia, abdominal-A and Abdominal-B in hexapods

[7, 11, 14, 16, 83, 85, 93]. However, the expression patterns of Hox genes in the

onychophoran E. kanangrensis and localisation of the Ultrabithorax and

abdominal-A proteins in Acanthokara kaputensis mostly revealed segmental rather

than parasegmental patterns, which is different from the situation in arthropods

[3, 93]. The anterior expression borders of seven of the ten Hox genes in E.

Figure 11. Details of hedgehog expression in embryos of E. rowelli. Leg-bearing segments and corresponding limbs are numbered. (A, B) Anterior ends
of a stage III and a stage IV embryo in lateral view. Arrows point to the expression in the mesoderm of the developing antennae, whereas arrowheads
indicate the expression at the posterior border of the cephalic lobe. (C, D) Details of limbs in a stage IV embryo in dorsal (in C) and ventro-lateral views (in D).
Arrowheads indicate the expression in the mesoderm of each developing limb, although expression is also evident in the ectoderm of limb anlagen. Arrows
point to stripes of expression in the ventral ectoderm. Abbreviations: at, antenna; cl, cephalic lobe; jw, jaw segment; po, proctodaeum; sp, slime papilla.
Scale bars: 100 mm (A–D).

doi:10.1371/journal.pone.0114383.g011
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kanangrensis clearly do not lie between the wingless and engrailed/hedgehog

domains but instead correspond to the segmental furrows [94, 95]. In contrast to

this, the anterior expression borders of Hox3, Sex combs reduced and fushi tarazu

have been interpreted as being positioned ‘‘in the middle’’ [95] of the

corresponding segments. However, the position of the anterior expression borders

of these three genes in relation to the engrailed and wingless domains still needs to

be analysed to clarify whether or not these genes are expressed in a

‘‘parasegmental’’ pattern.

In addition to gene expression studies, cell lineage analyses revealed a

correlation between the clonal and parasegmental boundaries in crustaceans

[86290, 96]. The progeny of cells on either side of the parasegmental boundary

remain separated, suggesting that parasegments are real genealogical units

[6, 89, 96]. These units are reflected in the parasegmental organisation of the

ventral nerve cord in various arthropods, including the fruit fly Drosophila

melanogaster [6, 20, 21]. During Drosophila development, each neuromere

originates from cells located between two consecutive parasegmental furrows [21]

and eventually gives rise to a ganglion. Therefore, due to their out-of-register

nature, each resulting ganglion is shifted anteriorly once the embryo is re-

segmented [6, 7]. This shifted arrangement of ganglia is a common feature of all

Figure 12. Diagrams of engrailed, cubitus interruptus, wingless and hedgehog expression in embryos of the onychophoran E. rowelli. The upper
row illustrates stage III embryos in lateral view, whereas the lower row shows stage IV embryos in ventral and lateral views, respectively. Note the
segmentally repeated patterns of expression of all four ‘‘segment polarity genes’’ and their specific order within each segment (see text for further details).

doi:10.1371/journal.pone.0114383.g012
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arthropod groups, especially in body regions that have retained the ancestral,

ladder-like organisation of the ventral nerve cord with separate, metameric ganglia

[6]).

In contrast to arthropods, the onychophoran nerve cord displays no such

metameric ganglia (cf. Figure 1I, J; [31, 97, 98]). Unfortunately, cell lineage

analyses, which would unveil the boundaries of putative genealogical units and

Figure 13. Diagrams comparing the expression patterns of homologs of engrailed, cubitus interruptus,
wingless and hedgehog along the body in onychophorans, arthropods and annelids. Vertical lines
demarcate the position of segmental (solid lines) and parasegmental boundaries (hatched lines) only for taxa,
in which they are identifiable morphologically. Black arrowheads indicate the position of expected, albeit non-
existent, segmental boundaries in Onychophora, which is in contrast to arthropods. (A) Diagram of expression
in embryos of the onychophoran Euperipatoides rowelli at an early developmental stage. Note the continuous
belt of cubitus interruptus expression. (B) Diagram of expression of engrailed in the ectoderm and the
mesodermal somites in the onychophoran Euperipatoides kanangrensis (based on previous data [29]).
Asterisks indicate coelomic cavities. Note that the expression pattern does not correspond to the segmental
boundaries and that each somite shows an anterior and a posterior expression domain. (C) Diagram of
expression in embryos of the onychophoran E. rowelli at a late developmental stage. Note the graded
expression patterns that do not form distinct boundaries (cf. ref. [29]). (D) Diagram of expression in the fruit fly
Drosophila melanogaster, modified from [24]. (E) Diagram of expression in the annelid Platynereis dumerilii,
modified from [24]. Abbreviations: ci, cubitus interruptus; en, engrailed; hh, hedgehog; P, parasegmental
boundary; S, segmental boundary (in onychophorans only seen during embryogenesis); wg, wingless.

doi:10.1371/journal.pone.0114383.g013
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their relationship to the nervous system, are currently unfeasible in Onychophora.

However, neuronal tracing of leg nerves revealed no anterior shift in the

arrangement of motor neurons in the nerve cords of the onychophoran E. rowelli

[37], which contrasts with the anteriorly shifted ganglia and motor neurons in

arthropods [6]. Thus, there is currently no neuroanatomical indication of

parasegments in adult onychophorans.

In addition to the ganglia of arthropods, the parasegmental boundaries are also

manifested morphologically as transverse grooves in the embryonic ectoderm of

some chelicerate [16], crustacean [19] and insect species [14, 20, 21], although

embryonic grooves are not always recognisable e.g., in decapod crustaceans [99].

During re-segmentation of the embryo, each ectodermal groove situated in a

parasegmental position (anterior to the engrailed domain) is replaced by a new

groove in a segmental position (posterior to the engrailed domain) (Figure 13D;

[16, 19, 100, 101]). This contrasts with our findings, which instead show that the

transverse furrow in E. rowelli embryos does not change its position during

development, thus providing no indication for a re-segmentation of the embryo.

Moreover, the furrow is not located anterior to the engrailed domain but rather

corresponds to the segmental border between adjacent somites (Figure 13B).

Therefore, in contrast to arthropods, neither the embryonic ectoderm nor the

organisation of the adult nervous system provides evidence for a morphological

manifestation of parasegments in Onychophora.

Despite the lack of morphological evidence, we cannot exclude that

parasegments, as defined by the autoregulatory interaction of ‘‘segment polarity

genes’’ [7, 14, 16, 18], might still exist in Onychophora, at least at the post-

transcriptional level [29]. However, the present and previous data from the

onychophoran embryo clearly show that wingless, engrailed and hedgehog are

expressed after the segmental boundaries have been established [29, 39] (

Figure 13A–C). Therefore, the parasegments cannot be the initial metameric units

in the onychophoran embryo, because they are preceded by segments, which are

recognisable by segmental furrows, dorsal indentations of the germ band, and

metameric somites. This clearly contrasts with the situation in arthropods, in

which parasegments rather than segments are the initial metameric units of the

embryo [3, 7, 13, 14, 16, 18].

‘‘Segment polarity genes’’ are not involved in segment formation

in Onychophora

Our data from E. rowelli show that the timing of expression of engrailed, cubitus

interruptus, wingless and hedgehog is entirely different from that in arthropods (

Figure 13A–D). An initial belt of expression of cubitus interruptus occurs at the

posterior end in E. rowelli, but this gene is unlikely to be involved in segment

formation because this posterior belt dissociates into metameric domains only

after the segmental furrows have formed. Likewise, the segmental domains of the

three remaining genes occur after the establishment of the segmental furrows,

suggesting that these genes play no role in segment formation, in contrast to what
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occurs in arthropods [17, 40, 102]. Additionally, our data confirm that each

engrailed domain extends beyond the segmental furrow in the ectoderm of the

onychophoran embryo [29]. The same holds true for the mesoderm, in which

engrailed is expressed beyond the border of adjacent somites (Figure 13B; [29]).

Thus, there is no clear spatial relationship between the formation of segmental

boundaries and the expression of engrailed in Onychophora (arrowheads in

Figure 13B, C).

Although the anterior-to-posterior order of expression of ‘‘segment polarity

genes’’ might be conserved in arthropods and onychophorans [39], the lack of a

spatial and temporal relationship between the expression domains and the

segmental boundaries speaks against the involvement of these genes in segment

formation in Onychophora. A similar lack of correlation has been demonstrated

recently for most pair rule genes in the onychophoran E. kanangrensis [39],

indicating that there might be an additional, early segment patterning mechanism

in the onychophoran embryo. Identifying this underlying mechanism would be

key to understanding the evolution of segmentation in Panarthropoda

(Onychophora + Tardigrada + Arthropoda).

Concerted patterning of segmental structures during

onychophoran development

Our data further revealed spatiotemporal differences in the expression patterns

between the median and lateral portions of the germ band in E. rowelli embryo for

all four ‘‘segment polarity genes’’ studied. These differences are more evident in

advanced developmental stages, in which the lateral domains are associated with

the developing limbs, whereas the median domains correspond to the anlagen of

the ventral and preventral organs [30, 42, 56]. These findings correspond to the

previously published data on engrailed and wingless expression in E. kanangrensis,

where the anlagen of the ventral and preventral organs (cf. refs [30, 42]) were

instead interpreted as the developing nerve cords [29].

A similar correlation between the expression patterns of ‘‘segmentation genes’’

and organogenesis was observed recently in E. kanangrensis, in which the ‘‘pair

rule gene’’ odd-skipped is expressed in the segmental anlagen of nephridia [39].

These findings imply that the observed expression patterns are associated with the

individual segmental structures [8, 10, 46] rather than with a segment as a holistic

unit [43245]. This might explain why the sets of substructures comprising a

‘segment’ [9, 45] differ between onychophorans and arthropods. Therefore, we

suggest that the segmental structures and organs that do not have any homologues

in arthropods (and other animals; cf. Figure 1A–L) might have evolved in the

onychophoran lineage, after the segmentation of the body and the corresponding

patterning mechanisms responsible for a concerted positioning of such structures

were already present.
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Conclusions

Based on the relative position of segmental and parasegmental boundaries and

similarities in the expression patterns of the segment polarity genes (Figure 13D,

E), the embryonic parasegments of arthropods have been homologised with the

adult segments of annelids [24, 25]. This implies that the last common ancestor of

protostomes possessed parasegments, whereas definitive segments evolved in

arthropods [24, 25, 103]. According to this hypothesis, one would expect that

parasegments also occur in one of the closest arthropod relatives, the

Onychophora [24, 29]. However, our data suggest that despite the conserved

anterior-to-posterior order of expression of the segment polarity genes, the

mechanisms of segment formation might be fundamentally different in

Onychophora. Although gene expression studies have provided useful insights

into segment formation and body patterning in various animals, the complexity

and plasticity of the mechanisms involved are still poorly understood, especially in

non-model organisms, such as onychophorans. The fundamental differences in

segment patterning in Onychophora revealed in this and previous studies

[29, 39, 104] suggest that it might be premature to speculate on the common

origin of segmentation in distantly related animal groups, such as annelids and

arthropods [24, 25, 105]. We caution that the similarities at the transcriptional

level might be superficial due to an independent recruitment of the same

canonical signalling pathways, most of which are certainly older than the origin of

segmentation [1062108].

Supporting Information

Figure S1. Sequence alignments for cubitus interruptus, engrailed, hedgehog
and wingless.

doi:10.1371/journal.pone.0114383.s001 (PDF)

Figure S2. Early development of the embryonic furrows in embryos of E.
rowelli. Confocal micrographs of embryos, double-labelled with the DNA marker

Bisbenzimide (A, C) and the f-actin marker phalloidin-rhodamine (B, D). The

images in A and C are from the same embryos as in Figure 2C and D. (A, B)

Posterior end of a stage II embryo. Note that the segmental furrows have not been

formed yet. (C, D) Posterior end of a stage III embryo. Arrows point to the

segmental furrows in the ectoderm (in C) and between the mesodermal somites

(5coelomic cavities, marked by asterisks in D). Abbreviations: po, proctodaeum;

ve, ventral extra-embryonic tissue. Scale bars: 100 mm (A–D).

doi:10.1371/journal.pone.0114383.s002 (TIF)

Figure S3. Cladograms based on phylogenetic analyses of engrailed, cubitus
interruptus, hedgehog and wingless sequences using RAxML. Numbers at nodes

are maximum likelihood bootstrap values (100 replicates). Sequences of the

onychophoran E. rowelli are highlighted in bold/red. For the analyses of engrailed

and hedgehog phylogenies, Platynereis dumerilii was used as an outgroup. For the
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analysis of cubitus interruptus phylogeny, Achaearanea tepidariorum was selected

as an outgroup. For the analysis of wingless, we set up an alignment of several

Wnt1 and Wnt6 sequences from [109] and used Wnt6 from different taxa as an

outgroup (note that the sequences from the onychophorans E. rowelli and E.

kanangrensis cluster together within the Wnt1 clade).

doi:10.1371/journal.pone.0114383.s003 (TIF)

Figure S4. Expression of wingless and hedgehog in embryos of E. rowelli. Leg

segments of stage IV embryos in ventral view. Note that the hedgehog stripes are

located posterior to the corresponding wingless domains. Abbreviation: le, legs.

Scale bars: 100 mm (A, B).

doi:10.1371/journal.pone.0114383.s004 (TIF)

Table S1. List of species and genes with corresponding accession numbers used

for phylogenetic analyses.

doi:10.1371/journal.pone.0114383.s005 (PDF)
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