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Abstract

Recent studies applying high-throughput sequencing technologies have identified

several recurrently mutated genes and pathways in multiple cancer genomes.

However, transcriptional consequences from these genomic alterations in cancer

genome remain unclear. In this study, we performed integrated and comparative

analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV)-

related hepatocellular carcinomas (HCCs) and their matched controls. Comparison

of whole genome sequence (WGS) and RNA-Seq revealed much evidence that

various types of genomic mutations triggered diverse transcriptional changes. Not

only splice-site mutations, but also silent mutations in coding regions, deep intronic

mutations and structural changes caused splicing aberrations. HBV integrations

generated diverse patterns of virus-human fusion transcripts depending on affected
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gene, such as TERT, CDK15, FN1 andMLL4. Structural variations could drive over-

expression of genes such as WNT ligands, with/without creating gene fusions.

Furthermore, by taking account of genomic mutations causing transcriptional

aberrations, we could improve the sensitivity of deleterious mutation detection in

known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3), and identified

recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1

and THRAP3 in HCCs. These findings indicate genomic alterations in cancer

genome have diverse transcriptomic effects, and integrated analysis of WGS and

RNA-Seq can facilitate the interpretation of a large number of genomic alterations

detected in cancer genome.

Introduction

Each year, more than half a million people worldwide are diagnosed with

hepatocellular carcinoma (HCC), the fifth and seventh most common cancer in

men and women, respectively [1]. In most cases, HCCs develop following

hepatitis or cirrhosis caused by hepatitis B virus (HBV) infection, hepatitis C virus

infection, alcoholism, or metabolic diseases, of which HBV is the most major

factor, especially in South-East Asia and sub-Saharan Africa [1]. Although various

genetic alternations have been detected in HCCs, such as mutations of TP53 and

CTNNB1 encoding b-catenin [2], further detailed characterization of liver cancer

genome is required for identification of biomarkers for personalized medicine and

more effective therapeutic drug development.

Recent advances in high-throughput sequencing technologies enable us

comprehensive detection of somatic mutations in cancer genomes [3] and the

high-throughput sequencing of HCC genomes has revealed several novel cancer

driver genes such as chromatin regulators [4, 5] and recurrent virus integrations at

the TERT and MLL4 loci [4, 6–8]. Current genomic studies mainly focus on

mutations in coding regions, and other types of mutations such as base

substitutions or indels in non-coding regions, and structural variations (SVs) are

usually ignored, since their impact on cancer development is difficult to evaluate

and interpret so far. One approach for evaluating the deleteriousness of these

mutations is to check the transcriptional consequences of these genomic

alterations. For this purpose, broader understandings of the relationships between

genomic mutations and transcriptional aberrations in cancer genome are

necessary. Several examples of splicing aberrations [9, 10] and gene fusions [11]

caused by genomic mutations are known, and studies using recent high-

throughput sequencing data identified cancer-specific transcriptional aberrations

in several cancer types [12, 13]. However, there are still few studies that

systematically compare genomic mutations and transcriptional aberrations from

whole genome sequencing (WGS) and transcriptome sequencing (RNA-Seq) data.
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As such, we still have little knowledge on the landscape of the cancer

transcriptome and its relationships with somatic mutations.

Previously, we sequenced and analyzed WGS of 27 diverse types of liver cancers

[4], but the effects of large part of diverse somatic mutations, including non-

coding mutations and SVs, were hardly to interpret only using the WGS data.

Therefore, in this study, we added more WGS and their corresponding RNA-Seq

data, totally from 22 HBV-related HCC samples, to determine the genetic

alterations together with their transcriptional consequence. and we performed

comparative and integrated analyses of their WGS and RNA-Seq data (see Fig. 1A

for the overview of the study). First, we identified a variety of somatic genomic

events including point mutations, short indels, SVs, and HBV integrations from

WGS data. Then, after systematically characterizing cancer-specific transcriptomic

aberrations, such as various types of splicing alterations (exon skips, splice-site

slips, pseudo-exon inclusions and intron retentions, see Fig. 1B), gene fusions

including those involving HBV sequences, over-expression events and nucleotide

changes at RNA level, we investigated relationships between detected genomic and

transcriptomic changes. Finally, providing a profile of genomic mutations and

transcriptional aberrations, we discuss the benefits of integrated analysis of WGS

and WTS for sensitive detection of cancer driver genes.

Results

Somatic events detected by WGS

We extracted DNA from 22 frozen HBV-related HCC tissues and their matched

normal lymphocytes, and sequenced their whole genomes by massive parallel

sequencing. Clinical and pathological information is shown in Table S1 in S1

File. Average sequencing depths of the cancer and control (lymphocytes) genomes

were 36.86 and 29.9x, respectively, after the removal of PCR duplications (Table

S2 in S1 File). In total, 209,055 (3,597–19,063) somatic substitutions were

detected (Table S4 in S1 File). Among them, 1,096 missense, 32 nonsense and 35

splice-site mutations in protein-coding regions, were identified, where splice-site

mutations were defined to be those affecting splice acceptor and donor sites

located at the first and last two bases of an intron sequence (essential splice-sites).

Of the 5,725 indels identified in the whole genomes, 105 were located in protein-

coding regions and 6 affected essential splice-sites. The inferred driver genes in

order of statistical significance of recurrence were TP53, ARID2, BRD7, HNF4A

and RPS6KA3 (P-value ,0.001, Table S5 in S1 File). In addition, 2,254 SVs (15–

577 per tumor) were detected, 1,168 of which affected annotated protein-coding

genes. Furthermore, 86 (0–12 per tumor) HBV integrations were identified with 2

and 5 recurrent integrations at the TERT and MLL4 loci, respectively, which is

consistent with previous studies [4, 6, 7, 8].

Integrated Whole Genome and RNA Sequencing Analysis in Liver Cancers
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Splicing aberrations related with genomic mutations

Total RNAs extracted from the frozen 22 HCCs and their adjacent non-cancerous

liver tissues were subject to RNA-Seq, and its summary is shown in Table S3 in S1

File.

First, we investigated the status of transcripts around essential splice-site

mutations by manually checking the alignments of sequence reads. After

excluding transcripts with no expression, we observed single or multiple splicing

aberrations for 19 out of the remaining 24 essential splice-site mutations (3 splice-

site slips, 6 exon skips, and 13 intron retentions, Figure S1 in S2 File, Table S6 in

S1 File), indicating that the somatic mutations at essential splice-sites showed

strong effects on splicing aberrations as expected. Affected genes included

recurrently mutated genes from WGS analysis (TP53, ARID2, HNF4A and

RPS6KA3) as well as AXIN1.

In order to obtain a comprehensive list of cancer-specific splicing aberrations,

we systematically detected four types of splicing aberrations (splice-site slip, exon

Fig. 1. The outline of theRNA-Seq study integrated with whole genome sequencing. (A) First, we detected various types of genomic and transcriptomic
changes from RNA-Seq data of 22 HCCs. The characterized changes detected by each analysis were compared to reveal the effects of somatic genomic
changes on transcriptomic aberrations. (B) The four types of splicing aberrations defined in this study. Green lines and arrows indicate normal transcription
whereas red lines and arrows indicate aberrant transcriptions.

doi:10.1371/journal.pone.0114263.g001
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skip, pseudo-exon inclusion and intron retention, Fig. 1B) by using internally

developed algorithms (see Materials and Methods). Overall, 292 splicing

aberrations events (26 splice-site slips, 41 exon skips, 77 pseudo-exon inclusions

and 148 intron retentions) were detected (Table S7 in S1 File). Since we

performed non-directional RNA-Seq, discriminating between intron retention

and cancer-specific antisense transcription was difficult, and thus the results of

intron retentions should be carefully interpreted. This list included aberration

events corresponding to the 10 essential splice-sites investigated above. PCR and

Sanger sequencing validated 154 highly cancer-specific splicing events out of the

239 detected. For 72 events, we confirmed target splicing aberrations for both

cancer and non-cancerous liver tissues.

In addition to essential splice-site mutations, we identified various types of

mutations and short indels that appear to be the direct causes of the observed

splicing aberrations, through changing the edit distances of splicing donor or

acceptor motifs. Three mutations near exon-intron junctions (,10 bp), but not

in the essential splice-site caused splicing aberrations (Fig. 2A, B, and C). Three

mutations in coding regions, which likely generated novel splice-site donor

motifs, caused splice-site slips (Fig. 2D, E, and F). One mutation affecting the

LAMB2 gene was synonymous. Two pseudo-exon inclusion event affecting

THRAP3 and TSC1 seemed to be triggered by somatic mutations deep within

introns proximal to the new splicing junction point (Fig. 2G, and H).

Furthermore, seven exon skips, whose affected genes included several tumor

suppressor genes such as IQGAP2, ST7 and TP53, had long deletions between the

junction points (Fig. 2I, J, and K). In addition, eight intron retentions had

rearrangements within the corresponding introns, for example RB1 (Fig. 2L).

They indicate that various types of splicing aberrations are frequently driven by

not only essential splice-site mutations, but also mutations in coding regions,

including synonymous silent mutations, deep intronic mutations, and SVs. On

the other hand, a large part of splicing aberrations (239/292581.8%) did not have

proximal mutations (within 1 kb) or SVs (within 500 kb). Some of these are likely

seemed to be caused by epigenetic changes [14], or expressional changes in anti-

sense transcripts as noted above.

Fusion transcripts related with genomic SVs

To detect gene fusions with unannotated transcripts and/or viral sequences such

as HBV, we used Genomon-fusion (see Materials and Methods). We detected

245 candidates of human-human fusion transcripts and 192 gene fusions after

removing redundant splicing variants (Figure S2 in S2 File and Table S8 in S1

File), 66 of which involved transcripts without gene annotation (UCSC known

genes, RefSeq, Ensemble), and 21 of which were un-spliced fusion transcripts

sharing the breakpoints with their corresponding genomic SVs (Figure S3 in S2

File). RT-PCR followed by Sanger sequencing validated 113 (71.9%) of 157 fusion

transcripts.
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Through comparison with WGS data, 83 gene fusions were found to be

supported by somatic SVs at the corresponding genomic locations (Figure S4 in

S2 File). While some of gene fusions without observed corresponding SVs may be

ascribed to either false positives for gene fusions in RNA-Seq analysis or false

negatives for SVs in WGS analysis, ratios of expression values of fusion transcripts

imply the existence of minor sub-clones with undetectable associated SVs (Figure

S5 in S2 File). We also detected 147 gene fusions in non-tumor liver tissues

(Table S9 in S1 File), many of which involved genes with extremely high

expression values in liver tissues, such as ALB, HP, and TF, suggesting that

Fig. 2. Several examples of genomic changes other than essential splice-site mutations causing splicing aberrations obtained from our
comparative whole genome and transcriptome sequencing analyses. Exonic and intronic sequences are designated by capital and small letters,
respectively. Red sequences are somatic mutations in HCCs. Blue and green numbers on the side of sequences are edit distances from splicing donor motif
(AG|GTRAGT, [38]) and splicing acceptor motif (YYYYNCAG|G), respectively. Most somatic mutations changed the edit distance to splicing donor motifs so
that the corresponding alteration can be enhanced.

doi:10.1371/journal.pone.0114263.g002
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detected fusion transcripts may also have originated from SVs harbored within

minor sub-clonal liver cells (Figure S5 in S2 File).

Among them, NBEAP1 (BCL-8) fusion transcripts were recurrently detected

and validated in two HCCs, with over-expression specific to both specimens

(Fig. 3 and Figure S6 in S2 File). Rearrangements involving the BCL-8 locus with

over-expression were reported to occur in about 4% of diffuse large-cell

lymphoma [15]. Many fusion transcripts affecting chromatin modification

pathway genes (CHD4, CTCF, KDM4C and HDAC4) were detected, and fusion

transcripts with known tumor suppressor genes (TSC1 and SUFU), a component

of the crucial NF-kB modulator (IKBKB), and a key meditator of the WNT

signaling pathway (TCF7L1) were also validated [16]. Although no specific over-

expression resulted from these gene fusions, we speculate several of them have a

loss-of-function nature though the loss of physiologically important domains

(Figure S7 in S2 File).

HBV integration and its effects on transcription

Overall, 33 HBV-human fusions were detected, including those affecting TERT (2

samples) and MLL4 (5 samples), and WGS could identify associated HBV

integration sites for 23 of these 33 fusions (Table S10 in S1 File). HBV

integrations with associated gene fusions tended to have breakpoints concentrated

around the locus of HBx genes (1770 bp–1830 bp) in the positive direction

(Figure S8 in S2 File), as reported previously [8].

Interestingly, 7 discrete HBV-TERT fusion transcripts were detected in one

sample (RK010), which appeared to be derived from one HBV integration site

(Fig. 4A). 4 out of the 7 variants are inferred to be in-frame. RK166 had HBV

integration just before the transcription start sites of TERT, which generated the

full TERT transcript directly connected to HBV sequence (Figure S9 in S2 File).

Both samples showed a marked over-expression of TERT compared to other

samples (Fig. 3). A HBV-CDK15 gene fusion detected in RK050 also had multiple

fusion transcripts including one in-frame fusion which caused CDK15 over-

expression (Figure S10 in S2 File). The breakpoints of spliced HBV-human

fusion transcripts were concentrated at the HBV genome coordinate of 458bp. We

call this position the HBV fusion splicing hotspot.

On the other hand, gene fusions involving MLL4 showed different patterns.

While most observed gene fusion contained HBV on the 59 end, we detected two

types of HBV-MLL4 gene fusions: those with HBV on the 59 side and those with

HBV on the 39 side (Fig. 4B). PCR with subsequent Sanger sequencing validated

that these were parts of concatenated unspliced fusion transcripts of MLL4-HBV-

MLL4 for at least two samples (Figure S11 in S2 File). No evidence of splicing was

obtained for these fusion transcripts except for one in RK141. Although slightly

increased expression of MLL4 was observed in HCC samples, these out-of-frame

HBV-MLL4 fusion transcripts suggest that HBV integrations on MLL4 loci may

lead to loss-of-function.
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In non-cancerous liver tissues, 161 HBV-human fusion transcripts were

detected (Figure S12 in S2 File and Table S11 in S1 File). Notably, HBV-FN1

gene fusions were recurrently observed in 7 non-cancerous liver tissues, and most

of them had multiple splicing variants including in-frame fusion transcripts with

the HBV fusion splicing hotspot as in the HBV-TERT fusion (Fig. 4C).

Over-expression caused by somatic SVs

There are several documented examples of chromosomal SVs leading to ectopic

expression of downstream oncogenes with and without the formation of gene

fusions [11]. Here, we examined the relationships between somatic SVs and over-

expression of genes adjacent to the breakpoints. Through iterative application of

the Grubbs-Smirnov test, we identified 3,735 over-expression events in 3017 genes

in 22 HBV-related HCCs. The list of over-expression events included TERT and

CDK15 over-expression driven by HBV integration. Proximal SVs and HBV

integrations (within gene regions or 500 kb up-stream from transcription start

sites) could be associated with 63 and 5 over-expression events, respectively

(Table S12 in S1 File). Of those breakpoints, 44 events occurred within the

promoter regions, suggesting mechanisms of over-expression other than gene

fusions are common phenomena. Although it is difficult to confirm each observed

over-expression event is truly the consequence of the identified SVs, statistical

significance by permutation test (P-value ,0.0001, Figure S13 in S2 File)

indicates many over-expressing events could be driven by somatic SVs.

Interestingly, over-expression events of WNT ligands were recurrently observed

in two HCCs. Over-expression of WNT1 and WNT10B (Fig. 3) in RK107 had

associated SVs. Although a gene fusion involving WNT10B was observed, this did

not seem to be the direct cause of over-expression because WNT10B was the

upstream side of fusion transcripts (Figure S14 in S2 File). For WNT3A

overexpression in RK010 (Fig. 3), we detected fusion transcripts involving

WNT3A and a few supporting read pairs for them in WGS data, suggesting

complex rearrangements around the WNT3A locus may drive its over-expression.

Furthermore, the over-expression of c-KIT with associated SV could be detected

in RK092 (Fig. 3). The above findings indicate that SVs can play an important

role in over-expression of oncogenes and molecular target genes.

Complementary detection of somatic mutations and

cancer-specific RNA-editing events

We investigated cancer-specific SNVs (single nucleotide variant) and short indels

in the RNA-Seq data using the EBCall algorithm [17], and detected 6,024

Fig. 3. The expression profiles of 22 HCCs and non-cancerous liver samples for eight over-expressed genes. Blue and red bars show the FKPMs for
HCCs and the corresponding non-cancerous liver, respectively, which is calculated by RNA-Seq data. Red circles indicate samples with HBV integrations on
the loci of the overexpressed genes. Green circles indicate those with gene fusions and/or SVs that can drive gene over-expression.

doi:10.1371/journal.pone.0114263.g003
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candidates at RNA levels, including 1,205 nonsynonymous or splice-site

mutations. Among them, WGS analysis integrated with RNA-Seq data (See

Materials and Methods) indicated evidences of 1,912 somatic mutations (545

nonsynonymous or splice-sites). There is a certain level correlation between the

allele frequencies of somatic mutations found to be highly confident in WGS and

RNA-Seq (correlation efficiency 50.466, P-value 52.2610216 by Pearson’s

product-moment correlation, Figure S15 in S2 File), but the amount of

correlation is not very strong. This may be because changes of post-transcriptional

processes such as non-sense medicated decay or mRNA stabilization brought by

somatic mutations. Of these, 417 (112 nonsynonymous or splice-sites) were not

called as somatic mutations in initial WGS analysis without considering RNA-Seq

data, including several known driver genes such as CTNNB1 and TSC2. Many of

the somatic mutations detected by this integrative analysis were confirmed by

Sanger sequencing of cancer DNAs (74/83589.1%), and some of the unconfirmed

mutations may be below the detection limit of Sanger sequencing owing to their

low clonal proportion. Therefore, some of the false-negative somatic mutations

resultant from the low sequencing coverage in WGS analysis can be rescued by

complementary RNA-Seq analysis.

Finally, with no evidence of supporting variant reads in neither tumor nor

normal WGS data, we identified 464 cancer RNA-specific events that are

candidates for RNA-editing [18]. Although it is difficult to confirm the

authenticity of each editing event, the mutation profile was abundant in A:T.G:C

patterns and occurred in 39 UTR regions, indicating that many of them are likely

to be caused through RNA-editing by ADARs (adenosine deaminases) at the post-

transcription stage [18] (Fig. 5A). The number of candidate RNA-editing events

varied widely among the samples. We found a significant correlation (P-

value52.38 61027 by Wilcoxon rank sum test) between the number of A:T.G:C

events and ADAR expression levels (Fig. 5B), implying the existence of new

cancer subtypes determined by the amount of somatic RNA-editing.

Landscape of genomic and transcriptomic disruptions in

HBV-related HCCs

Considering the fact that many transcriptomic aberrations are caused by genomic

changes, the detection of transcriptomic alterations, such as splicing aberrations

and fusion transcripts, raises high probability of existence of proximal genomic

Fig. 4. HBV integrations and fusion events in 22 HCCs. (A) Seven HBV-TERT fusion transcripts were detected in RK010. One transcript was an un-
spliced transcript having the same breakpoint as the genomic integration breakpoint. The others existed in spliced forms and GT-AG splicing motifs were
observed at the breakpoints of all but one. In addition to HBV fusion splicing hotspot (458 bp), 3 fusion transcripts were spliced at the coordinate of 1634 bp
coordinates in HBV sequences. One fusion transcript included a newly generated 87 bp pseudo-exon sequence as well as subsequence exonic sequences.
(B) HBV integrations in the MLL4 loci and their resultant fusion transcripts in five samples. Green triangles on the genome sequence show the HBV
integration sites. Most fusion transcripts shared breakpoints with those of genomic HBV integration coordinates for both sides, and thus, they appear to exist
in un-spliced forms. The fusion transcripts for RK141 and RK159 were validated to be concatenated (Figure S11). (C) HBV-FN1 fusion transcripts for 7
adjacent non-cancerous liver samples. Almost all the fusion transcripts had the breakpoint at the HBV fusion splicing hotspot. The other fusion transcripts
which had breakpoints at intronic regions appear to be un-spliced transcripts around the integration sites.

doi:10.1371/journal.pone.0114263.g004
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changes. From this aspect, by complementary use of RNA-Seq to WGS analysis,

we further rescued 64 combinations of genomic mutations and associated

transcriptional aberrations (see Materials and Methods). In total, 252 genomic

mutations causing transcriptional aberrations (GMTAs) were detected.

Through this integrated analysis of WGS and RNA-Seq, we could obtain

comprehensive profiles of genomic and transcriptomic changes such as point

mutations, indels, structural variations, splicing aberrations and gene fusions for

each affected gene. Here, a critical problem is to discriminate cancer drivers from

merely passenger events by using these profiles. In fact, although recurrent SVs

(.53 HCCs) were seen in 12 genes (C10orf11, CIT, CLTC, CNTNAP2,

DSCAML1, EYS, FHIT, LARGE, LRP1B, MACROD2, MAGI3, TTC28), many of

them are located on or very proximal to common fragile regions [19] and actually

were not found to have any influence on transcription (Figure S16A in S2 File),

implying most of them are passenger SVs which occurred in unstable genomic

regions. In order to remove passenger events, we only considered SVs evidenced

by associated transcriptional aberrations, which is also helpful for removing false-

positive detections in WGS analysis. On the other hand, recurrent gene fusions

(.53 HCCs) were identified in 6 genes (ALB, CES1, FGA, SEPP1, SERPINA1,

and TF). WGS analysis did not detected any SV associated with these fusions

(Figure S16B in S2 File), implying that these fusions seem to come from minor

sub-clonal cells or artifacts, and may not be driving forces for clonal expansion of

cancer cells. These observations also support the importance of combinations of

transcriptional aberrations and associated genomic mutations.

In this WGS analysis we found that GMTAs were concentrated on significantly

mutated genes (three in TP53, two in HNF4A and RPS6KA3, one in ARID2),

indicating their implication in cancer pathogenesis (Fig. 6). Among the above

eight GMTAs, four were SVs and could not be detected by sole investigation of

coding regions, suggesting that combination of WGS and RNA-Seq analysis is

effective to detect candidates driver genes. Thus, HNF4A is likely to be a novel

driver gene for liver cancer, as well as ARID2 [4] and RPS6KA3 [20]. HNF4A plays

a critical role in the regulation of multiple metabolic pathways in the liver as well

as hepatocyte differentiation, and down-regulation of HNF4A has been shown to

be associated with HCC [21, 22]. Furthermore, key genes in the WNT signaling

pathway (APC, AXIN1, CTNNB1, TCF7L1, TCF7L2 and WNT ligands) were

frequently mutated (11 mutations) in nine HCCs, six of which affected their

transcriptional consequences as GMTAs.

Discussions

Through comparative and integrative analysis of WGS and RNA-Seq, we obtained

a number of evidence that genomic mutations, including non-coding mutations,

SVs and virus integrations, can cause diverse transcriptomic aberrations, such as

splicing changes, gene fusions and over-expressions. In spite of much evidence

that synonymous silent mutations in coding regions and deep intronic mutations
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lead serious diseases by disrupting transcription [23–25], they are often ignored in

current cancer genome sequencing studies, and the same holds for SVs. Therefore,

performing RNA-Seq combined with WGS is essential to interpret the

consequences of somatic alterations including those in non-coding regions and

SVs in cancer genomes. In addition, by using WGS and RNA-Seq complementary,

we rescued not only a number of additional somatic mutations but also splicing

aberrations caused by genomic mutations, that were narrowly missed the criteria

for being called by single analysis.

In liver cancer genome, HBV integrations were frequently observed as one of

SVs and in this study we observed that HBV integrations caused diverse

transcrptic alterations such as virus-human fusions. Interestingly, we also

observed recurrent HBV-FN1 fusion events in non-cancer liver tissues. Although

the previous studies also indicated that HBV integrations in the FN1 loci could be

specific to adjacent non-cancerous liver tissues at the genome level [6, 7], they did

not detected resultant fusion transcripts. The frequency of HBV-FN1 fusion in the

present study (31.8%57/22) was much higher than those of previous studies

(5.6% (55/88) [6] and 10.0% (54/40) [7]). This mainly seems to be because HBV

integrations in the FN1 locus are often harbored in minor sub-clonal populations

in non-cancerous liver cells, which are often missed by the low-depth genome

sequencing. However, RNA-Seq analysis allows for more sensitive prediction of

sub-clonal HBV integration events when they generate a large enough amount of

aberrant transcripts. Paradoxically, the fact that HBV integrations in the FN1 loci

does not occur in tumor samples implies that FN1 is not simply prone to random

Fig. 5. RNA editing candidates in 22 HCCs. (A) The number of cancer-specific RNA mutation events (RNA editing candidates) and their substitution
patterns for each sample. (B) Scatter plot between the number of A:T.G:C RNA-editing events and ADAR expression value (FKPM) calculated by whole
transcriptome sequence data. There is a significant correlation (P-value 52.3861027 by Wilcoxon rank sum test) between the number of A:T.G:C events
and ADAR expression levels.

doi:10.1371/journal.pone.0114263.g005
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HBV integrations; HBV-FN1 fusion transcripts may play important roles in liver

fibrosis or cirrhosis, or may enhance cancer development of cells proximate to

those with HBV-FN1 fusions.

In this study, we demonstrated that taking account of GMTAs, which can be

effectively detected by comparative WGS and RNA-Seq analysis, leads sensitive

detection of disruptions in cancer driver genes. Recurrent GMTAs were observed

in genes other than those significantly mutated genes in WGS, including CPS1,

TSC1, and THRAP3. CPS1 is the key enzyme in the urea cycle, converting

ammonium into carbamoyl phosphate. In HCCs, CPS1 was reported to be down-

regulated by DNA methylation [26]. We observed four mutations including three

GMTAs in CPS1: splice-site mutation and long deletion causing exon skips, and

translocation generating fusion transcripts for CPS1. TSC1, a key modulator of the

mTOR pathway, has been implicated as a tumor suppressor in many types of

Fig. 6. The status of genomic and transcriptomic alterations of representative genes, detected by WGS and RNA-Seq of 22 HBV-related HCCs. The
list of genes were extracted by (1) significantly mutated genes in WGS analysis, (2) having no less than 3 mutations (point mutations or indels in coding
regions, or GMTAs), (3) having no less than 2 GMTAs and registered in cancer gene census [17]. (4) involved in WNTsignaling pathway, (5) TERTor MLL4.

doi:10.1371/journal.pone.0114263.g006
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cancers [27], and TSC1 mutations in bladder cancers are shown to be related to

everolimus sensitivity [28]. We identified two GMTAs in TSC1: one deep intronic

mutation causing pseudo-exon inclusion and one translocation leading to gene

fusion were observed. THRAP3, a member of the thyroid hormone receptor-

associated protein (TRAP) complex, is implicated in pre-mRNA splicing, post-

transcriptional mRNA degradation, and DNA damage response pathway [29, 30].

HBV integration at the THRAP3 locus was also reported [31], as well as mutations

in other cancers. We observed two GMTAs in THRAP3: one deep intronic

mutation leading to pseudo-exon inclusion and one long deletion leading to exon

skip. They are good candidates of driver genes for liver cancer.

In summary, our integrative and comparative analysis with WGS and RNA-Seq

indicated genomic alterations in cancer genome have diverse transcriptomic

effects, and this approach can improve detection of deleterious mutations and

facilitate the interpretation of a large number of genomic alterations in cancer

genome. There is still a room for algorithmic improvement in systematic and

accurate detection of transcriptomic aberrations, and some classes of aberrations

may not be detectable due to the limitations of short-read sequencing data.

However, integrative analysis of WGS and RNA-Seq is a crucial approach for

interpreting cancer genomes and understanding cancer biology underlying

genomic alterations.

Materials and Methods

Clinical samples

The clinical and pathological features of the 22 HBV-related HCCs are shown in

Table S1 in File S1. WGS analysis on RK001, RK010, RK023, and RK034 were

reported in our previous study [4], Hepatitis B surface antigen (HBsAg) in the

serum of all samples except for RK001. In RK001, HBV-DNA was detected by

sensitive PCR in serum, indicating occult HBV infection. All subjects had

undergone partial hepatectomy, and pathologists estimated that the percentage of

viable tumor cells in each sample was at least 80%. High molecular weight

genomic DNA was extracted from the fresh-frozen tumor specimens and blood.

Total RNA was also extracted from the tumor tissues and non-cancerous liver

tissues by Trizol (Invitrogen) and their quality and quantity were evaluated by

Bioanalyzer (Agilent). All subjects provided their written informed consent to

participate in the study following ICGC guidelines [32]. Ethical committees at

RIKEN, The Institute of Medical Science The University of Tokyo, Hiroshima

University School of Medicine, Wakayama Medical University, Osaka Medical

Center for Cancer and Cardiovascular Diseases, and Tokyo Women’s Medical

University approved this work.
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WGS analysis

Illunima library with 500-bp insert were prepared from DNAs of the tumors and

lymphocytes. Sequence data was generated on the Illumina HiSeq2000 platform

with paired reads of 101 bp, according to manufacturer’s instruction. Mapping

and identification of point mutation and somatic indels were carried out as

described previously [4]. In brief, read pairs were mapped to the human reference

genome using BWA [33] and possible PCR duplications were removed by

samtools [34]. Point mutations and indels were identified by an in-house

mutation caller, and significantly mutated genes were identified as described

previously [4]. SVs were detected by the following method. Anomalous read pairs

were identified and read pairs mapped within 500 bp of each other were

considered to support the same rearrangement. We identified rearrangement

candidates in tumor (support read pairs $4) and lymphocyte (support read pairs

$1) samples, and tumor specific rearrangement candidates were selected. To

exclude mapping errors, we performed a blast search of read pairs that support

rearrangements against the reference genome. If a paired read was mapped with

correct orientation, distance (#500 bp) and an E-value ,1027 to a second

location, we excluded that read pair. Reads mapped with more than two

mismatches were also discarded. After filtering, candidates supported by $4 read

pairs and at least one perfect match pair were considered as somatic

rearrangements. The false positive rate was estimated to be 8.6% (15/175) by PCR

verification. Since HBV genomes are polymorphic, we selected best reference HBV

genomes for each sample as previously described [8]. First, we gathered

unmapped reads, mapped them to 73 HBV genomes independently, and selected

the HBV genome sequence with the highest number of mapped reads as the

reference genome for each sample. Then, using read pairs that were mapped to

both the human genome and HBV sequence, we identified integration sites

supported by $3 read pairs [4].

RNA-Seq analysis and alignment

High-quality total RNA was subject to polyA+ selection and chemical

fragmentation, and the 100–200base RNA fraction was used to construct cDNA

libraries according to Illumina’s protocol. RNA-Seq was performed on the

HiSeq2000 platform using the standard paired-end 101 bp sequencing protocol.

All sequencing reads were aligned to the known transcript sequences of UCSC

known gene database (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

database/knownGene.txt.gz) using Bowtie [35], with -a –best –strata -m 20–v 3

options, and the coordinates of the aligned reads were converted to the human

reference genome (hg19). Unaligned reads were then aligned to the entire human

reference genome (hg19) and as well as the HBV genome (AP011098) using blat

[36], with -stepSize55 -repMatch52253, and aligned reads by Bowtie or blat were

combined together. For each short read, the alignment with the highest number of

matched bases was adopted, and the mapping quality was assigned as follows: For

a location a, let B(a) denote the number of matched bases and let abest denote the
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best location selected arbitrarily from those with the highest number of matched

bases. The mapping quality for the read was assigned as follows:

min{100, -106log10(1 – 1/(Sa0.02
‘

(B(abest)-B(a))))}.

Finally, sorting and PCR duplicate removal of short reads were performed using

Picard (http://picard.sourceforge.net/).

Quantification of expression values from RNA-Seq data

To quantify expression values, we have used modified version of RKPM (reads per

kb of exon per million mapped reads) measures [37]. After removing improperly

aligned or low quality sequencing reads (mapping quality ,60), the depth of

coverage for each base in the exonic region of each RefSeq gene was tallied. Then,

the numbers of bases were normalized as per kb of exon and per 100 million of

aligned bases. Finally, expression value of each gene was determined by choosing

the maximum of multiple RefSeq genes (if any) corresponding to the gene

symbol.

Splicing aberration detection

We detected exon skip, splice-site slip, and pseudo exon inclusion events through

identification of cancer-specific spliced junctions. Spliced junctions supported by

at least 4 read pairs in cancer samples less than 2 read pairs in matched liver

samples, and without any annotation in RefSeq, Ensemble Gene predictions nor

USCS known genes were collected. Next, the ratio of sequencing depth to the

number of support read pairs for each spliced junction was compared between

cancer and the matched liver samples for both sides by Fisher’s exact test, and

those with P-value ,0.05 on either side were extracted. Finally, for accurately

removing polymorphic splicing events, splicing junctions with the ratio between

the number of supporting read pairs and the sequencing depth greater than 0.01

for at least one non-cancerous liver samples were filtered. Remained spliced

junctions were categorized as follows (Fig. 1B): exon skip, if both junction sides

were on annotated spliced junctions; splice-site slip, if one junction side was

consistent with an annotated spliced junction and the other was in an intronic

region; and pseudo exon inclusion, if one junction side was consistent with an

annotated spliced junction and the other was in an exonic regions. Those with

junctions in both sides were not consistent with annotated spliced junctions were

discarded.

We detected intron retention events by evaluating the number of reads aligned

on exon-intron boundaries (boundary reads), defined as those included at least

8 bp of both the exon and the intron sides of the boundaries. Among all the

annotated exon-intron boundaries (RefSeq genes, Ensemble Gene predictions,

and USCS known genes), we identified the candidates of intron retentions that

satisfy all the following conditions: (1) The ratio between the number of boundary

reads and the total reads was greater than 0.1 in the cancer sample. (2) The

number of boundary reads in the cancer sample was more than 3. (3) The number
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of boundary reads in the non-cancerous liver sample was less than 4. (4) The ratio

between the number of boundary reads and the total reads was significantly

different between cancer and non-cancerous liver samples (P,0.05 by Fisher’s

exact test). (5) The ratio between the number of boundary reads and the total

reads in cancer sample was significantly deviated from the beta-binomial

distribution (P,0.0001) with parameters fitted by utilizing the number of

boundary reads and the total reads for all the 22 non-cancerous liver samples at

the same boundary. (6) The number of boundary reads was significantly deviated

from the negative-binomial distribution (P,0.0001) with parameters fitted by

utilizing the number of boundary reads for all the 22 non-cancerous liver samples

at the same boundary.

Detection of fusion transcripts

We developed Genomon-fusion algorism, which can detect fusion genes involving

un-annotated transcripts and chimeric transcripts fused with viral sequences.

Briefly, Genomon-fusion detects candidate fusion transcripts by utilizing ‘soft-

clipping’ information, the unmatched parts of the partially aligned reads, along

with a number of rigorously designed filters to exclude false positives often

generated by ambiguous alignments to numerous repetitive or homologous

sequences. First, Genomon-fusion searches for candidate fusion transcripts

through genome-wide screening of the mutually nested breakpoints of soft

clipped sequences. At least 2 soft clipped sequences at each breakpoint are aligned

to within 10 bp of the other corresponding breakpoint, while the consistency of

positions and directions of read pairs including the soft clipped sequences were

investigated. Then, for each candidate fusion transcript, a set of read pairs

surrounding the corresponding fusion boundary is assembled using CAP3 to

constitute a contig sequence, and extract the candidate having .2 supporting read

pairs that are properly aligned on that contig. Finally, for each remaining

candidate, the pair of the contig split up at the fusion boundary are aligned to the

human reference sequence including unplaced sequences (such as in

chr1_gl000191_random and or chrUn_gl000211) by blat, and then removed the

candidate if one of the two divided contigs aligned to other genomic locations

with less than 3 mismatches or aligned within 1 kb of the other corresponding

breakpoint.

Detection of over-expressing genes

First, we calculated the processed expression value (PEV) for each gene, which is

defined as the log2 of the expression values with 0.5 pseudo counts. Then, we

excluded genes whose maximum PEVs among 22 cancer samples was below

log2(1.5) or within 3 sigma from the average PEVs among 22 liver samples. Next,

for each remaining gene, a Grubbs-Smirnov test for a set of PEVs among 22

cancer samples was repeatedly performed until no outliers were detected (P-value
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,0.05). The detected outliers for each gene and sample in the above procedure

were identified as over-expressed genes.

Mutation and RNA-editing detection from RNA-Seq and WGS data

Cancer-specific mutations in RNA-Seq are detected by using EBCall software [17],

which can sensitively discriminate genuine mutations from sequencing errors

through identification of discrepancies between allele frequencies of the candidate

mutations and the distribution of sequencing errors estimated from a set of non-

matched reference samples. We used the RNA-Seq data of the 22 non-cancerous

liver samples as normal reference samples. We identified somatic mutations by

checking the evidence in WGS data: sequencing depth $8 for both tumor and

normal sample, allele frequencies in tumor $0.1, allele frequencies in normal

#0.02, number of variant reads in tumor $2 and number of variant reads in

normal #1. Furthermore, for extracting RNA editing events, we required: allele

frequencies in tumor $0.1, allele frequencies in normal #0.02, and sequencing

depth $15 for both tumor and normal samples.

Complementary detection of GMTAs by WGS and RNA-Seq data

For rescuing point mutations or indels causing transcriptional aberrations given

cancer-specific splicing aberrations detected by RNA-Seq, we searched for the

variants satisfying the following. (1) The edit distance to splicing donor/acceptor

motifs was changed consistent to causing the corresponding splicing aberrations.

(2) The sequencing depths of tumor and normal samples were more than 9. (3)

The allele frequencies of the variant were more than 10% for the tumor sample,

and less than 5% for the normal sample. (4) The numbers of variant reads were no

less than 3 for the tumor sample and no more than 2 for the normal sample.

For rescuing exon skips caused by SVs given SVs detected by WGS, we searched

for the exon skips satisfying the following. (1) The junction points were located

next or 2nd next exons to the breakpoints. (2) The number of supporting reads is

no less than 3. (3) The number of supporting reads for the target sample was 5

folds more than the maximum of the other samples.

For rescuing intron retentions caused by SVs detected by WGS, we searched for

the intron retentions satisfying the following (1) The boundary of exon and intron

was located next to the breakpoints. (2) The ratio between the number of

boundary reads and the total reads was greater than 0.1 in the target cancer sample

and 3 folds more than the maximum of the other samples.
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16. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative
genomics viewer. Nat Biotechnol 29: 24–26.

17. Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, et al. (2013) An empirical Bayesian framework for
somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res.

18. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem
79: 321–349.

19. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, et al. (2010) Signatures of mutation and
selection in the cancer genome. Nature 463: 893–898

Integrated Whole Genome and RNA Sequencing Analysis in Liver Cancers

PLOS ONE | DOI:10.1371/journal.pone.0114263 December 19, 2014 21 / 22



20. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, et al. (2012) Integrated analysis of
somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular
carcinoma. Nat Genet 44: 694–698.

21. Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, et al. (2011) An HNF4a-
miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147: 1233–1247.

22. Ning BF, Ding J, Yin C, Zhong W, Wu K, et al. (2010) Hepatocyte nuclear factor 4 alpha suppresses the
development of hepatocellular carcinoma. Cancer Res 70: 7640–7651.

23. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic
mutations that affect splicing. Nat Rev Genet 3: 285–298.

24. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human
disease. Nat Rev Genet 12: 683–691.

25. Flanagan SE, Xie W, Caswell R, Damhuis A, Vianey-Saban C, et al. (2013) Next-generation
sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing
hyperinsulinism by pseudoexon activation. Am J Hum Genet 92: 131–136.

26. Liu H, Dong H, Robertson K, Liu C (2011) DNA methylation suppresses expression of the urea cycle
enzyme carbamoyl phosphate synthetase 1 (CPS1) in human hepatocellular carcinoma. Am J Pathol
178: 652–661

27. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, et al. (2012) Chronic activation of mTOR
complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5: ra24.

28. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, et al. (2012) Genome sequencing
identifies a basis for everolimus sensitivity. Science 338: 221

29. Merz C, Urlaub H, Will CL, Lührmann R (2007) Protein composition of human mRNPs spliced in vitro
and differential requirements for mRNP protein recruitment. RNA 13: 116–128.

30. Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, et al. (2012) Proteomic investigations
reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46: 212–225.
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