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Abstract

Advances in sequencing technology have allowed for detailed analyses of the transcriptome at single-nucleotide resolution,
facilitating the study of RNA editing or sequence differences between RNA and DNA genome-wide. In humans, two types of
post-transcriptional RNA editing processes are known to occur: A-to-I deamination by ADAR and C-to-U deamination by
APOBEC1. In addition to these sequence differences, researchers have reported the existence of all 12 types of RNA-DNA
sequence differences (RDDs); however, the validity of these claims is debated, as many studies claim that technical artifacts
account for the majority of these non-canonical sequence differences. In this study, we used a detection theory approach to
evaluate the performance of RNA-Sequencing (RNA-Seq) and associated aligners in accurately identifying RNA-DNA
sequence differences. By generating simulated RNA-Seq datasets containing RDDs, we assessed the effect of alignment
artifacts and sequencing error on the sensitivity and false discovery rate of RDD detection. Overall, we found that even in
the presence of sequencing errors, false negative and false discovery rates of RDD detection can be contained below 10%
with relatively lenient thresholds. We also assessed the ability of various filters to target false positive RDDs and found them
to be effective in discriminating between true and false positives. Lastly, we used the optimal thresholds we identified from
our simulated analyses to identify RDDs in a human lymphoblastoid cell line. We found approximately 6,000 RDDs, the
majority of which are A-to-G edits and likely to be mediated by ADAR. Moreover, we found the majority of non A-to-G RDDs
to be associated with poorer alignments and conclude from these results that the evidence for widespread non-canonical
RDDs in humans is weak. Overall, we found RNA-Seq to be a powerful technique for surveying RDDs genome-wide when
coupled with the appropriate thresholds and filters.
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Introduction

Next-generation sequencing technology provides comprehen-

sive sequence information. The precision afforded by RNA-Seq is

useful for studying various aspects of the transcriptome such as

alternative splicing [1,2], RNA editing [3,4], and differential allelic

expression [5–7]. RNA editing refers to co- or post-transcriptional

modification of RNA, resulting in a transcript that is different from

the underlying genomic template. In humans, two types of RNA

editing processes are known to occur: adenosine deamination by

ADAR results in A-to-G edits [8,9] and cytidine deamination by

APOBEC1 results in C-to-U changes [10,11].

In recent years, many genome-wide surveys of RNA editing in

humans have been performed using next-generation sequencing

technology [3,12–15]. In addition to the known A-to-G and C-to-

U alterations introduced by RNA editing, researchers have

reported the existence of RNA-DNA sequence differences (RDDs)

that cannot be explained by known mechanisms [14,16,17].

However, the validity of these results is contested, as many reports

cite experimental and technical artifacts as the main determinants

of such systematic sequence differences between RNA and DNA

[15,18–21].

Current methods for the accurate identification of RDDs

mainly involve ad hoc filters aimed at removing false positives

[14,15,22]. In this study, we used a detection theory approach to

evaluate the relative effect of misalignment and sequencing error

on RDD analysis. In particular, we generated simulated RNA-Seq

datasets containing simulated RDDs and assessed the performance

of various RNA-Seq aligners in accurately identifying RDDs. We

also analyzed filtering methods for their efficacy in achieving low

false discovery rates of RDD detection and high sensitivity values.

Lastly, after determining the optimal thresholds and parameters

for sequence difference analysis, we searched for the presence of

RDDs in an experimental human RNA-Seq dataset for which

deep DNA and RNA sequence information is publicly available.

Overall, our report aims to explore the phenomenon of RDDs

in humans as well as provide a framework for those interested in
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the study of RNA editing, RDDs, or differential allelic expression

by elucidating the appropriate thresholds and parameters for

accurate detection of allele-specific differences in RNA-Seq data.

The simulated datasets generated in this study are publicly

available for download (see Methods).

Results

Simulated RNA-Seq datasets
To evaluate the performance of various alignment algorithms

and filtering methods in detecting RDDs, we generated simulated

RNA-Seq datasets containing RDDs (see Methods). First, we

created a ‘‘clean’’ dataset (dataset 1) with no sequencing errors or

intronic reads in order to evaluate the degree of bias introduced by

alignment error alone. Next, in order to capture the effect of

sequencing error on RDD identification, we generated a more

realistic RNA-Seq dataset containing substitutional sequencing

errors, indel polymorphisms, intronic signal, and lower quality

bases at the tail end of reads. We used a simplistic error model in

which sequencing errors occur randomly and independently. We

considered the effect of non-random sequencing errors and found

their presence to be minimal in Illumina Hi-Seq datasets (see

Methods). Both datasets contain 50 million pairs of non strand-

specific reads of length 100 base pairs (bp) and were generated in

triplicates to allow for assessment of variation in our various

metrics.

Datasets were aligned using GSNAP, MapSplice, RUM, and

Tophat2 (see Methods). For both dataset 1 and 2, GSNAP and

MapSplice performed the best in terms of the number of reads

mapped in total and uniquely (Table S1 in File S1), aligning

approximately 99% of the 50 million read pairs. In contrast, RUM

and Tophat2 aligned approximately 98% of the read pairs in

dataset 1, but only roughly 95% in dataset 2, which contains

sequencing errors. Overall, between 97 to 99% of the read pairs

are aligned uniquely with GSNAP, MapSplice, and RUM,

whereas only approximately 89% of the read pairs are aligned

uniquely with Tophat2.

Simulated RNA-DNA sequence differences
For each of the two datasets, we randomly introduced RDDs

throughout the genome (see Methods). Namely, at positions

containing RDDs, a percentage of the total reads at the site bear a

randomly chosen non-reference allele representing the sequence

difference. Furthermore, we define the percentage of reads

containing the non-reference base to be the RDD level.

For each dataset, we generated approximately 600,000 total

RDDs each in order to obtain reasonable sample sizes for making

statistical inferences. Our motivation in choosing this number was

not to simulate known frequencies or features of RNA editing

events, but rather to accurately probe the ability of next-

generation sequencing technology to detect hypothetical sequence

differences in the human genome. Each RDD type is equally

represented, with sequence differences that originate from cytosine

and guanosine (C.A, C.G, C.T, G.A, G.C, G.T) slightly

overrepresented than other types. This variation results from

differing base compositions throughout the genome, with the effect

more pronounced in dataset 2, which contains reads from intronic

regions of the genome (Figure S1).

The coverage, or the total number of reads, at a given site is

important in the analysis of RDDs as the presence and levels of

RDDs at sites that are deeply sequenced are more likely to be

robustly assessed (Figure S2). In order to assess the effect of

sequencing depth on RDD detection, we stratified sites in the

genome according to coverage and simulated equal numbers of

RDDs in each group (see Methods).

For each RDD, we chose the level, or proportion of reads

carrying the non-reference base, from a standard uniform random

distribution excluding 0. However, because of the discrete nature

of coverage, the distribution of RDD levels is not uniform at sites

with low coverage; for sites with coverage greater than 100x, the

distribution of levels is uniform across all levels with the exception

of boundary values (Figure S3).

To understand the effect of hyperediting by ADAR and the

observation that non-canonical RDDs often cluster [14], we

modeled a subset of RDDs to occur in close proximity of one

another (see Methods). Hyperediting refers to a type of editing by

members of the ADAR family whereby approximately 50% of the

adenosines on each strand of an RNA duplex is edited in a

promiscuous fashion [23]. For each dataset, we generated

approximately 2,000 clusters of length 100 bp within which

approximately 50% of all positions with the same reference base

bear the same type of RDD (see Methods).

Overall, in dataset 1, the average distance between neighboring

RDDs is 10 bp (median 3 bp) for sites belonging to hyperedited

clusters and 815 bp (median of 58 bp) for those that do not. For

dataset 2, which contains intronic reads, the average distance

between RDDs is also 10 bp (median 3 bp) for sites belonging to

hyperedited clusters and 1565 bp (median 225 bp) for those that

do not (Table S2 in File S1).

Sensitivity of RNA-DNA sequence difference detection
We began our assessment of the performance of next-generation

sequencing technology in identifying RDDs by analyzing the

sensitivity or true positive rate of sequence difference identifica-

tion. We will address the false negative and false positives rates of

RDD detection in a subsequent section. We start by defining a

simulated RDD as being properly identified by the aligner if at

least one read bearing the non-reference base is observed. For

dataset 1, we found that overall, GSNAP detected 96.3266.19E-

2% of the simulated RDDs, whereas MapSplice, RUM, and

Tophat2 correctly identified 95.3061.61E-1%, 95.3661.63E-1%,

and 95.0461.38E-1%, respectively. For dataset 2, which contains

sequencing errors and intronic reads, GSNAP identified

93.5461.04E-1% of all simulated sites, whereas MapSplice,

RUM, and Tophat2 found 92.3461.16E-1%, 91.1261.33E-1%,

and 90.8461.54E-1%, respectively.

Next, we investigated the effect of sequencing depth or coverage

on the detection of RDDs. We observed that for both datasets, the

sensitivity of detection increases with higher thresholds on the

minimum depth of coverage (Figure 1). For example, the

sensitivity of sequence difference detection using GSNAP increases

approximately 2 to 4% in datasets 1 and 2 when sites with

coverage lower than 10x are removed from consideration. The

sensitivity of RDD detection using MapSplice, RUM and Tophat2

increases in a similar fashion with higher coverage (Table S3 in

File S1). Given the relatively low true positive rate or high false

negative rate of RDD detection for locations with low coverage,

we restrict subsequent analyses to sites with a minimum of 10 total

reads in the simulated dataset and the corresponding aligned

datasets per GSNAP, MapSplice, RUM, or Tophat2.

Next, we analyzed the effect of RDD level on the sensitivity of

RDD detection. We binned the simulated sequence differences

into 10 groups by RDD levels and evaluated the true positive rate

for each group. For both datasets, we found the sensitivity of RDD

detection to increase with higher RDD levels (Figure 2; Table S4

in File S1). Furthermore, GSNAP had the highest sensitivity values

across all levels among the four aligners. Given the lower recall

Error Rates in RDD Calls Using RNA-Seq
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rates for sequence differences with low levels, we restrict our

downstream analyses to sites with a minimum level of 10%.

Next, we analyzed whether the repetitive nature of the genomic

sequence flanking the RDD site affects the detection of RDDs. We

investigated this question by evaluating the sensitivity of detection

in regions of the genome that are deemed non-unique by BLAT

(see Methods). We observed that the true positive rate of RDD

detection using GSNAP in non-unique regions according to BLAT

is lower than that in unique regions by approximately 5% (Figure

S4). For GSNAP, the average sensitivity in non-unique versus

unique regions is 94.98610.73E-2% versus 99.53628.42E-4% for

dataset 1 and 94.74614.35E-2% versus 99.2562.58E-2% for

dataset 2. For GSNAP, MapSplice, and Tophat2, the difference in

sensitivity of detection between RDDs within non-unique versus

unique regions is roughly 4 to 5%, while for RUM, it is

interestingly less than 1% (Table S5 in File S1). Upon further

investigation, we attributed this difference in sensitivity patterns

between the four aligners to different reporting procedures: for

reads that align to multiple locations of the genome, GSNAP,

MapSplice and Tophat2 will distinguish between primary and

secondary alignments, whereas RUM does not. We also examined

the sensitivity of RDD identification for sites lying within versus

outside of RepeatMasker regions [24] and observed that for all

four aligners, the sensitivity of detection is approximately 1 to 2%

higher for sites lying outside of RepeatMasker regions (Table S6 in

File S1).

Lastly, we analyzed the effect of proximity to neighboring

RDDs on sensitivity of detection. Short-read aligners typically

have a limit on the number of mismatches relative to the reference

permitted in a reported alignment, and thus sites with many

neighboring sequence differences may be harder to identify. We

observed that the sensitivity of sequence difference detection for

sites that are greater than 10 bp in distance away from a

neighboring sequence difference is roughly 1 to 3% higher for

dataset 1 and 3 to 6% higher for dataset 2 (Table S7 in File S1).

Correlation between simulated versus observed levels of
RNA-DNA sequence differences

In many studies, the mere detection of RDDs is not sufficient.

For example, in studies on RNA editing or differential allelic

expression, information about the degree or level of difference is

important. Here we analyzed the correlation between simulated

and observed RDD levels. Based on our previous analyses, we

restricted our study to sites with a minimum coverage of 10x,

minimum level of 10%, and minimum of 1 read bearing the

sequence difference base. Using this threshold, we calculated the

correlation between observed and simulated RDD levels to be

relatively high, at approximately 98 on average across all three

replicates for all four aligners and both datasets (Figure 3; Table

Figure 1. Sensitivity of RNA-DNA sequence difference detection versus coverage. The sensitivity or true positive rate of RNA-DNA
sequence difference identification is shown versus various thresholds on the minimum depth of coverage required at the site of the simulated
difference. For all four aligners, the true positive rate increases sharply upon raising the minimum depth of coverage required for detection from 0x to
approximately 50x, after which it plateaus.
doi:10.1371/journal.pone.0112040.g001

Error Rates in RDD Calls Using RNA-Seq
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S8 in File S1). Although the simulated and observed levels

correspond well, we found that roughly 20 to 40% of sites in each

dataset for any aligner have observed levels that deviate from the

simulated values by more than 5% (Figure S5). In particular, we

found that in the majority (75 to 90%) of cases in which the

observed and simulated levels deviate by at least 10%, the

observed level underestimates the simulated level.

We hypothesized that one contributing factor to the discrepancy

in RDD levels is the uniqueness or the ability of the region

surrounding the site to be aligned accurately. Indeed, we found

that approximately 22 to 34% of sites in which the simulated

versus observed RDD levels differ by more than 30% are found in

non-unique regions of the genome as determined by BLAT versus

roughly 7 to 12% for those where the levels do not differ by 30%

or more (Table S9 in File S1).

Receiver operating characteristic and false positive
analysis of RDD detection

Next, we analyzed the false positive and false discovery rates of

RDD detection by evaluating the presence of differences at sites

that were not simulated to represent RDDs. Using parameters we

identified from our sensitivity analysis, we performed a receiver

operating characteristic analysis on RDD detection genome-wide

in each of the datasets (Table S10 in File S1). Overall, we observed

that using a ‘minimum coverage of 10x, minimum level of 10%,

and minimum of 1 read bearing the RDD base’ cutoff, the false

positive rate of sequence difference detection is low, averaging

3.39E-2% and 6.47E-1% across the different aligners for datasets

1 and 2, respectively. However, these low false positive rates are

not unexpected, as the vast majority of sites in the genome do not

contain simulated RDDs.

For a better understanding of how false positives affect the

analysis of RDDs, we evaluated the false discovery rate (FDR), or

the percentage of sites identified as having sequence differences

that were not simulated to represent RDDs. For dataset 1, we

found the FDR to range from 1.3164.06E-2% in Tophat2 to

6.2468.26E-2% in MapSplice when using a ‘minimum coverage

of 10x, minimum level of 10%, and minimum of 1 one read

bearing the RDD base’ threshold. These relatively low false

discovery rates indicate that in the absence of sequencing error,

misalignment issues do not contribute significantly to the incidence

of false positives. With the introduction of sequencing error in

dataset 2, we found that the false discovery rates are much higher,

ranging from approximately 57% in GSNAP to 71% in Tophat2.

These results are not surprising, as a threshold requiring only one

read to bear the RDD base introduces false positives at sites with

sequencing errors. With stricter thresholds on RDD detection,

such as requiring a minimum coverage of 20x, a minimum RDD

level of 20%, and a minimum of 4 RDD bases observed, we found

that the false discovery rate decreases dramatically (Figure 4).

Figure 2. Sensitivity of RDD detection versus the simulated RDD level. Here we depict the true positive rate of RDD detection versus the
simulated RDD level, or the percentage of reads at the site bearing the sequence difference allele. A minimum of 1 read bearing the RNA-DNA
sequence difference is sufficient for a site to be deemed correctly identified. Sites with coverage less than 10x per the simulated RNA-Seq dataset are
removed from consideration.
doi:10.1371/journal.pone.0112040.g002

Error Rates in RDD Calls Using RNA-Seq
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Evaluation of filters in reducing false positives
Many previous studies on RNA editing and RDDs attempt to

remove false positive sites using various filters [3,14,15,17,22]. We

investigated the effectiveness of some of these measures in

eliminating false positives.

The first filter we analyzed requires RDDs to be identified

concordantly by other aligners in order to be considered valid. We

hypothesize that this condition will minimize the contribution of

aligner-specific biases to the problem of false positive RDDs. For

each aligner, we calculated the number of true and false positives

remaining after RDDs that were not found by other aligners were

removed (Table S11 in File S1). Using a ‘minimum coverage of

20x, minimum level of 20%, and a minimum of 4 reads bearing

the sequence difference’ to identify RDDs, we observed the false

discovery rates of RDD detection decreased with increasing

numbers of other aligners required to concordantly identify the

RDD (Figures S6-S9). In both datasets, requiring concordance

among GSNAP, MapSplice, and RUM removed approximately

30% to 50% of false positives in GSNAP to 60 to 90% in

MapSplice and RUM, whereas approximately only 2 to 12% of

true positives were removed (Table S11 in File S1). We observed

that while requiring concordance with Tophat2 led to the largest

reductions in the number of false positives, it also led to large (over

50%) decreases in the number of true positives; this is expected as

we previously observed Tophat2 to identify the fewest number of

RDDs among the four aligners (Table S10 in File S1).

The second filter we analyzed involves using BLAT to

determine whether the sequence surrounding the RDD site can

be aligned to other homologous regions of the genome (see

Methods). Using a ‘minimum coverage of 20x, minimum level of

20%, and minimum of 4 reads bearing the sequence difference’ to

identify RDDs, we observed that the BLAT method removes

approximately 14% and 28% of false positives found by GSNAP

in datasets 1 and 2 respectively, but only filters out roughly 1 to

5% of true positives in either datasets (Table S12 in File S1). As

expected, we observed that the performance of the BLAT filter

varies depending on the repetitive nature of the underlying

flanking sequence. For example, within RepeatMasker regions,

approximately 22% of false positives and 19% of true positives

within the dataset 1 for GSNAP are filtered out, whereas outside of

RepeatMasker regions, roughly 14% of false positives are removed

compared to less than 1% of true positives (Table S12 in File S1).

Interestingly, the difference between the percentage of false versus

true positives removed by the BLAT method is largest for RUM,

followed by MapSplice, GSNAP, and Tophat2 (Figure S13).

Overall, we found that the BLAT filtering approach decreased the

FDR of RDD detection for GSNAP by approximately 13% in

dataset 1 and 24% in dataset 2 (Figure S14; Table S13 in File S1).

Figure 3. Simulated versus observed levels of RNA-DNA sequence differences. Here we plot the simulated RDD level versus the observed
level as determined by GSNAP, MapSplice, RUM, or Tophat for replicate 1. Sites with coverage less than 10x or a RDD level less than 10% per the
simulated dataset are removed from consideration. Overall, we observed the correlation between simulated and observed levels to be approximately
98% in both datasets and across the various aligners and replicates.
doi:10.1371/journal.pone.0112040.g003

Error Rates in RDD Calls Using RNA-Seq
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Pseudogenes are non-functioning homologs of genes that are

either not expressed or unable to be translated into protein

product, and their high sequence similarity to functioning genes

can result in false positive sequence difference calls. We observed

that the removal of all sequence differences lying within

pseudogenes as annotated by Gencode version 13 [25] decreases

the FDR of RDD detection using GSNAP by approximately 45 to

50% in both datasets (Table S14 in File S1).

Misalignments near exon-exon junctions can commonly lead to

the identification of false positive sequence differences. We

evaluated the effect of such incorrectly spliced alignments on

sequence difference detection and found that roughly 2% of the

false positives identified by GSNAP in dataset 1 and 5% of those

found in dataset 2 are in intronic sequences within 6 bp of exon-

exon junctions. Removal of all sites in introns within 6 bp of splice

junctions leads to a roughly 2 to 4% decrease in the false discovery

rate for GSNAP. RUM and Tophat2 are more robust to

misalignments near splice junctions, as less than 1 to 2% of false

positives detected by either aligner are in introns near exon-exon

junctions (Table S15 in File S1), whereas 40 to 50% of false

positives identified by MapSplice are found near junctions.

Finally, we analyzed the effect of implementing the various

bioinformatics filters in concert on the false positive rates. In

analyzing the RDDs obtained using the ‘minimum coverage of

20x, minimum level of 20%, and minimum of 4 reads containing

the sequence difference allele’, we observed that requiring

concordance with at least one other aligner, the BLAT filtering

method, removal of differences in pseudogenes, and elimination of

intronic sites within 6 bp of exon junctions in combination

removed roughly 50 to 90% of false positives depending on the

aligner versus roughly 3 to 11% of true positives (Table S16 in File

S1). Across the different aligners, these various filters led to a

decrease of approximately 50 to 90% in the FDR of RDD

detection (Table S17 in File S1), whereas sensitivity changed by

approximately 2 to 11%.

Evaluation of RNA-DNA sequence differences in human
lymphoblastoid cell line

Lastly, to evaluate the performance of our pipeline on a real

experimental dataset, we analyzed the human lymphoblastoid cell

line GM12878, for which deep DNA and RNA sequence is readily

available [26]. We used the parameters and thresholds as

determined from our previous simulated data analyses to identify

RDDs. In particular, we aligned two replicates of RNA-Seq data,

each containing approximately 120 million 76 bp paired-end

reads, using GSNAP (Table S18 in File S1) and identified RDDs

using a ‘minimum coverage of 20x, minimum level of 20%, and

minimum of 4 reads containing the sequence difference base’

threshold. Sequence differences found in dbSNP137 [27] were

removed from consideration. Furthermore, to minimize the

detection of sequence differences resulting from sequencing error,

we focused our analysis on those differences that are observed in

both replicates (Table S19 in File S1).

Figure 4. False discovery rate of RNA-DNA sequence difference detection. Here we depict the false discovery rate of RNA-DNA sequence
difference detection under various thresholds on the coverage, level of sequence difference, and number of reads bearing the sequence difference
base per the aligner. Calculations are averaged across the three replicates and error bars represent standard deviation values.
doi:10.1371/journal.pone.0112040.g004

Error Rates in RDD Calls Using RNA-Seq
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Next, we investigated the percentage of observed RDDs that are

removed by filters we previously identified as effective in reducing

the amount of false positive RDDs. Other researchers have used

these filters in their pipelines to accurately identify RDDs

[3,15,22]. The filters we implemented include requiring concor-

dance with at least one other aligner, searching with BLAT for

regions homologous to the sequence flanking the sequence

difference (see Methods), removing intronic sites near exon-exon

junctions, and eliminating differences in annotated pseudogenes or

adjacent to homopolymer sequences. We applied the BLAT filter

to sequence differences found outside of RepeatMasker regions, as

we previously showed that this filter is not as effective in

discriminating between true and false positives within repetitive

sequences. We separated the differences by type into two groups:

A-to-G sequence differences and non-canonical sequence differ-

ences, or changes that cannot be explained by known mechanisms.

We note that although C-to-T differences can be mediated by

APOBEC, APOBEC1 is not expressed in this B-cell cell line, with

an FPKM value [28] of 0 in both replicates; thus we classify C-to-

T changes as non-canonical. We observed that approximately

72% of non-canonical differences are removed by one or more of

these filters, whereas only roughly 36% of A-to-G sites are

eliminated (Table 1). The filtering steps that filtered out the

greatest percentage of sites are the requirement of concordance

with at least one other aligner and the pseudogene and BLAT

filters, as nearly 30% to 45% of non-canonical sites are removed

by each filter independently. After taking into consideration all of

the filters we used, a total of 5,997 sequence differences remained

(Figure 5), 75% of which are A-to-G edits and are likely to be

mediated by RNA editing via ADAR. Of these 5,997 differences,

the majority (78%) are located within RepeatMasker regions.

Within RepeatMasker regions, 90% of the differences are A-to-G,

as is expected due to the phenomenon of editing in human Alu
elements [29]. In contrast, the majority (82%) of sites outside of

RepeatMasker are noncanonical differences. The distribution of

sequence differences we observed are highly concordant with other

studies (Table S20 in File S1), and the most common noncanonical

RDD types we observed were A-to-C (23%) and its complement

T-to-G (54%), as previously seen by others [15,17,22].

For the remaining RDDs that are not removed by our filtering

methods, we asked whether features indicative of sequencing error

or low-quality mapping are more common in non-canonical versus

A-to-G sequence differences. Specifically, we noticed that many

non-canonical sequence differences occur within regions where

many of the reads overlapping the sequence difference site are

either partially mapped via a local alignment with clipped bases or

mapped with many mismatches (Figure S9). To investigate the

mapping quality near sites of RDDs globally, we calculated for

each read that overlaps an RDD the number of bases (out of the

total 76 bp sequence) that are neither clipped nor aligned with a

mismatch or indel; we refer to this figure as the number of bases

aligned properly. We observed that in both replicates, for sequence

differences in RepeatMasker, the overall number of bases that are

aligned properly is higher for A-to-G changes than for the most of

the non-canonical types, particularly the C-to-G type; for sites

lying outside of RepeatMasker regions, the number of bases

aligned properly for C-to-G and G-to-C are generally much lower

than that for other types (Figure S10).

Discussion

RNA-Sequencing is a powerful technology for genome-wide

analyses of transcriptome information at the single-nucleotide

level. The resolution afforded by next-generation sequencing

technology has allowed for genome-wide studies on RNA editing

in humans [3,13] and led to the identification of all 12 types of

sequence differences [16]. There are, however, limitations to high-

throughput sequencing, as difficulties lie in the alignment of short

sequencing reads and errors introduced by sequencing and library

preparation among other challenges. The relative effect of these

various misalignment and sequencing errors on the identification

of RDDs is debated, although many reports assert that the

majority of the non-canonical sequence differences observed result

from technical artifacts [18–21]. In this study, we dissect the

various sources of error leading to false positive RDDs and

evaluate their relative contribution. Using a detection theory

approach, we generated simulated RNA-Seq datasets containing

known RDDs to evaluate the effect of alignment and sequencing

error on RDD analysis. In the absence of sequencing error, we

found that minimal thresholds are sufficient for sensitivity values

above 95% and false discovery rates below 5%. Moreover, we

found that the RDD levels reported by the various aligners

correlation well (R,98%) with the true levels per our simulation.

Upon introduction of sequencing errors following a random and

independent distribution, we found that a threshold requiring a

‘minimum coverage of 20x, minimum level of 20%, and minimum

of 4 reads bearing the RDD base’ is necessary for false discovery

rates below 10% across the various aligners.

Currently, most pipelines use ad hoc filtering methods to

minimize the presence of false positives in sequence difference

studies without a full understanding of the efficacy of these

methods or the trade-off between sensitivity and false discovery

rates. We found that overall while the various filters used in the

literature for removal of false positive RDDs are effective in

discriminating between true and false positives, a sizeable

percentage (roughly 10 to 50% depending on the aligner) of false

positives remain even after all filtering methods are implemented.

Lastly, we used our pipeline for identification of RDDs to

evaluate the presence of sequence differences in humans. Using

parameters and thresholds we deemed as optimal, we identified

approximately 6,000 RDDs, the majority (75%) of which are A-to-

G changes and likely to be mediated by ADAR. Of the non-

canonical RNA-DNA sequence differences that remained after

our filtering processes, we found A-to-C and its complement T-to-

G to be most common. Notably, A-to-C changes have been found

by others to be the most common sequencing error [30,31].

Furthermore, we found that the alignments of reads overlapping

non-canonical RNA-DNA sequence differences, with the excep-

tion of A-to-C and T-to-G types, contain many more mismatches

or clipped bases than those of A-to-G differences. The distribution

of sequence differences we observed is highly concordant with

previous studies, and like others [15,32], we conclude that there is

little evidence for widespread non-canonical editing.

Overall, we observed that next-generation sequencing technol-

ogy and current bioinformatics tools are a reliable and powerful

technique for studying RDDs genome-wide. Furthermore, we

found that computational biology methods are an effective means

for evaluating the various thresholds and filtering techniques used

to accurately identify sequence differences. Our results demon-

strate that while RNA-Sequencing allows for precise detection and

measurement of RDDs, current bioinformatics filters do not

completely remove false positive calls. We aim for this study to

provide a general framework for those interested in site-specific

allelic differences in humans using RNA-Sequencing, and hope in

particular that our work may shed light on the appropriate

thresholds and necessary caution to employ for RDD analyses.

Error Rates in RDD Calls Using RNA-Seq
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Methods

Simulation of RNA-Seq datasets
Simulated datasets were generated using the BEERS simulator [33].

Data are based on human build hg19 and RefSeq transcript models

[34], as aligned to the genome by UCSC [35] using BLAT [36]. The

expression intensities are Poisson distributed with probabilities

estimated from roughly 300 million reads of human retina RNA-Seq

data, as described previously [33]. Default settings result in 36,467

transcripts, of which approximately 70% are expressed. We simulated

two types of RNA-Seq datasets. Dataset 1 was ‘‘clean’’ and designed to

contain no intron signal or sequencing error. Dataset 2 was ‘‘realistic’’

and constructed with intron retention and sequencing error. We used a

substitutional error rate of 1 in 200 (0.5%), a value comparable to

sequencing error rates observed in Illumina Genome Analyzer IIx and

HiSeq machines [37]. Furthermore, we simulated poorer quality bases

at the 39 ends of reads by increasing the substitutional error rate to 20%

in the last 10 bases for 25% of the reads. Approximately 30% of the

signal in the dataset originates from introns. These parameters are

consistent with real data observations. Lastly, we also included indel

polymorphisms at a rate of 1 in 1000 (0.1%). Both datasets 1 and 2

were generated in triplicate, with each replicate containing 50 million

pairs of reads of length 100 base pairs (bp). The mean fragment length

of each read pair is 330 bp. The simulated datasets are available at

http://itmat-public.s3.amazonaws.com/toung_rdd-study_simulated.

dataset1.tar and http://itmat-public.s3.amazonaws.com/toung_rdd-

study_simulated.dataset2.tar for download.

Figure 5. Distribution of RNA-DNA sequence differences in GM12878. Here we depict the distribution of RNA-DNA sequence differences in
GM12878 after removing sites using various filters.
doi:10.1371/journal.pone.0112040.g005

Table 1. Number of RNA-DNA sequence differences removed by various bioinformatics filters.

A.G Non-canonical Total

Total before filters 7,036 5,444 12,480

Concordance with at least one other aligner filter (removed) 1,937 (27.53%) 2,399 (44.07%) 4,336 (34.74%)

Pseudogene filter (removed) 847 (12.04%) 1,959 (35.98%) 2,806

BLAT filter (removed) 545 (7.75%) 1,722 (31.63%) 2,267

Homopolymer filter (removed) 32 (0.45%) 205 (3.77%) 237

Exon junction filter (removed) 30 (0.43%) 88 (1.62%) 118

Total after filters (remaining) 4,484 (63.73%) 1,513 (27.79%) 5,997 (48.05%)

Total after filters - in RmskRM327 4,251 452 4,703

Total after filters - not in RmskRM327 233 1,061 1,294

doi:10.1371/journal.pone.0112040.t001
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Analysis of non-random sequencing errors in Illumina
HiSeq RNA-Seq datasets

To evaluate the presence of non-random sequencing errors in

Illumina HiSeq datasets, we analyzed two replicates of a dataset

(denoted IVT-Seq dataset replicates 1 and 2) comprising 1,062

cDNAs from the Mammalian Genome Collection (MGC) that

were expressed in vitro and sequenced using Illumina HiSeq 2000

technology [38] to obtain approximately 41 million and 32 million

100-bp paired-end reads. In addition, we also sequenced the same

1,062 cDNA plasmids that served as the template for the IVT-Seq

datasets using Illumina HiSeq 2000 technology (denoted plasmid

dataset). We aligned all three datasets using GSNAP (see

‘Alignment of RNA-Seq datasets’ in Materials and Methods) to

an index containing the non-spliced reference sequence of the

1,062 cDNAs. For the IVT-Seq datasets, approximately 82% of

the total reads were aligned in the correct orientation and with the

expected inner distance between read pairs. For the plasmid

dataset, approximately 20% of the total reads align properly; this

relatively low percentage is expected given the presence of plasmid

backbone in the dataset. The coverage distribution in the three

datasets is fairly uniform, with an average of approximately 2,600x

and 3,000x in the IVT-Seq replicates 1 and 2, respectively (median

of 2,300x in replicate 1 and 1,800x in replicate 2) and a mean of

roughly 770x in the plasmid dataset (median of 700x). To be

confident of the sequencing and alignment results, we restricted

our analyses to sites with a minimum coverage of 1,000x in the

IVT-Seq datasets and 250x in the plasmid dataset. In total, we

obtained 4,923,509,994 and 4,195,153,516 bases of sequence at

1,209,658 and 1,111,552 sites and observed a total of 1,877,330

and 4,902,349 sequencing errors, giving an overall error rate of

approximately 3.861024 and 1.261023 in IVT-Seq replicates 1

and 2, respectively. For the plasmid dataset, we obtained

1,340,601,515 bases of sequence at 1,377,516 sites and found

999,763 sequencing errors, giving an overall error rate of roughly

7.561024. These sequencing error rates are all approximately 4x

to 13x smaller than the rate of 0.5% we used in our simulated

datasets.

For each site in a particular dataset, we calculated the

sequencing error level to be the percentage of total reads at the

site bearing an error. To test whether the observed sequencing

errors occur randomly, we performed a Kolmogorov-Smirnov test,

comparing the observed distribution of sequencing error levels to a

null distribution derived from the overall error rate calculated

previously. We found that for both of the IVT-Seq replicates as

well as the plasmid dataset, the distribution of sequencing error

levels deviates from that expected under the null distribution (P,

0.001 for all three datasets). These results indicate that errors are

not introduced randomly but occur at error levels that are higher

than expected for particular sites. These observations are

concordant with previous studies that demonstrate that sequencing

errors introduced by Illumina next-generation sequencing plat-

forms may occur in a sequence-specific or non-independent

manner [37,39]. These non-random sequencing errors are

indistinguishable from RDD events if they occur at high error

levels. We found the frequency of errors that (1) occur at levels of

20% or higher and (2) are reproducible across the three datasets to

be 4.3861025 and 4.7761025 in the IVT-Seq replicates 1 and 2

respectively and 3.8561025 in the plasmid dataset. However,

upon further Sanger sequencing validation, we found that the

majority (71%) of these nonrandom sequencing errors were errors

in the sequence of the clones and not errors introduced by

Illumina sequencing. Correcting for the presence of such errors in

the sequence, we estimate that the true frequency of nonrandom

errors occurring at levels of 20% or greater to be approximately

4.7761026, which is one order of magnitude less than that of

RDDs observed in our experimental datasets.

Alignment of RNA-Seq datasets
RNA-Seq datasets were aligned using GSNAP version 2012-07-

20 [40], MapSplice version 2.1.5 [41], RUM version 2.0.3-02

[33], or Tophat2 version 2.0.6 [42] to the human genome (build

hg19). GSNAP was run with default options. A maximum number

of 10 alignments were permitted for each read. Alignments to

novel exon-exon junctions (per GSNAP option -N 1) and known

junctions as defined by RefSeq (downloaded November 2, 2012)

and Gencode version 13 [25] were accepted. Alignments with no

more than the default maximum of ‘(read length +2)/12–29

mismatches were retained. MapSplice and RUM were run with

the default command line options. Tophat2 was run with the

default options. A maximum edit distance and mismatch count of

6 was allowed for each read. Secondary alignments up to the

default maximum of 20 were permitted. After alignment with

GSNAP, MapSplice, RUM, or Tophat2, non-primary alignments

and alignments placing read pairs in the incorrect orientation were

removed.

Simulation of RNA-DNA sequence differences
For each dataset, sites in the genome are first stratified by

coverage to ensure the placement of RDDs at locations with

varying depths of coverage. The distribution of coverage for

dataset 1, which does not contain reads originating from intronic

regions of the genome, is fairly uniform, while for dataset 2, the

distribution is skewed right (Figure S2); approximately 82% of sites

in dataset 2 have coverage of 10x or less compared to

approximately 20% in dataset 1. For dataset 1, we grouped sites

into quartiles, corresponding to coverage values of approximately

0x to 14x for quartile 1, 15x to 49x for quartile 2, 50x to 133x for

quartile 3, and 134x and above for quartile 4. For dataset 2, the

presence of introns results in a highly skewed right distribution for

coverage. As such, we divided dataset 2 into one group containing

sites with coverage below 10x and split the remaining sites into

tertiles, corresponding to coverage values of approximately 11x to

19x for tertile 1, 20x to 48x for tertile 2, and 49x and above for

tertile 3. After we grouped sites by coverage, we randomly inserted

RDDs at different sites such that each coverage group contained

approximately the same number of sequence difference sites.

The type of RDD difference (e.g. A-to-C, A-to-G, A-to-T, etc.)

was determined randomly and independently for each site. The

RDD level, or the proportion of reads containing the sequence

difference, was chosen randomly from a random uniform

distribution from 0 to 1, excluding 0.

A small subset (5%) of the simulated RDDs was randomly

chosen to model hyperediting, or the clustering of many sequence

differences in a small window. In particular, we designated all of

the sites that are within 100 bp of the chosen site to have a 50%

chance of having the same RDD type provided that the coverage

belongs to the same coverage group as the initial site.

Repetitive regions of the genome as defined by BLAT
As one measure of the repetitive nature of a region surrounding

a sequence difference site, we used BLAT [36] to search for

homologous sequences in the genome. In particular, we extracted

flanking sequences of length 51 bp, 101 bp, and 151 bp around a

given site and queried for alignments in the genome with BLAT

(v.35x1). The settings —stepSize=5 and —repMatch=2253 were

used to increase sensitivity. A maximum of (read length +2)/12

– 2 mismatches per alignment, the same amount permitted by

Error Rates in RDD Calls Using RNA-Seq
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GSNAP, was tolerated. Sites for which more than one alignment is

found for one of the three flanking sequences are deemed ‘‘non-

unique by BLAT’’.

Filtering of RNA-DNA sequence differences using BLAT
To ensure that an RDD identified by the various aligners

cannot be explained by homologous sequences in the genome,

sequences of length 25, 50, and 75 bp upstream and downstream

of each sequence difference site were aligned to the genome using

BLAT (v. 35x1). The settings —stepSize=5 and —re-

pMatch=2253 were used to increase sensitivity. A maximum of

(read length +2)/12 – 2 mismatches per alignment, the same

amount allowed by GSNAP, was tolerated. An RDD was filtered

out if any of the flanking sequences aligned to a region other than

the RDD site and if that alignment explained the sequence

difference.

Analysis of BWA performance on RDD detection
We evaluated the performance of the Burrows-Wheeler Aligner

(BWA) on RDD detection. We conducted these analyses

separately from the other three aligners we used as BWA is not

a RNA-Seq aligner capable of mapping across intron-size gaps. In

particular, synthetic RNA-Seq dataset 1, which does not contain

reads covering intronic sequences, was aligned using BWA version

0.7.9a-r786 [43] to a transcriptome index comprising exonic

sequences as defined by a non-redundant union of several

annotation efforts as published at the UCSC Genome Browser

(RefSeq, UCSC Known, Vega, AceView, ENSEMBL). BWA was

run with default options.

We defined a simulated RDD as being properly identified by

BWA if at least one read bearing the non-reference base is

observed. We found that the sensitivity of RDD detection by BWA

is 92.9661.94E-1% compared to approximately 95 to 96% for

GSNAP, MapSplice, RUM and Tophat2. Sensitivity of detection

increased by 4% when sites with coverage lower than 10x are

removed from consideration. Restricting analysis to sites with a

minimum coverage of 10x, minimum level of 10%, and minimum

of 1 read bearing the sequence difference base, we found the

correlation between observed and simulated RDD levels to be

9761.57E-2%.

Next, we analyzed the false positive and false discovery rates of

RDD detection by identifying sites that were not simulated to

contain RDDs. Using a ‘minimum coverage of 10x, minimum

level of 10%, and minimum of 1 read bearing the RDD base’

cutoff, we found the false positive rate and false discovery rate of

RDD detection to be 1.54E-262.49E-4% and 1.8164.22E-2%,

respectively. Overall, our analyses on dataset 1 which comprises

exonic regions of the genome showed that BWA provides

comparable results to those reported by the other aligners we

analyzed, namely GSNAP, MapSplice, RUM, and Tophat2.

Supporting Information

Figure S1 Total number of simulated RNA-DNA se-
quence differences. For both datasets, approximately 600,000

RDDs were generated in each replicate. Differences in the number

of each type of RDD reflect underlying variation in base

composition throughout the genome, as dataset 2 contains reads

originating from intronic regions whereas dataset 1 does not.

(TIF)

Figure S2 Distribution of coverage for simulated RNA-
Seq datasets. The distribution of coverage, or the total number

of reads at a given site, is relatively uniform for dataset 1. In

contrast, the distribution of coverage for dataset 2 is skewed right

mainly owing to the presence of intronic reads. Approximately

82% of the sites in dataset 2 have a depth of coverage lower or

equal to 10x.

(TIF)

Figure S3 Levels of simulated RNA-DNA sequence
differences. Here we depict the distribution of RDD levels, or

the percentage of reads at the sequence difference site that bear the

RNA-DNA sequence difference. Because of the discrete nature of

RNA-Seq data, the levels of RDDs at sites with relatively low

coverage is not uniform as shown by the blue area, which

represents sites with coverage less than 10x. For sites with coverage

greater than 100x (red area), the density curve of sequence

difference levels is fairly uniform except at boundary conditions.

(TIF)

Figure S4 Sensitivity of RDD detection versus unique-
ness of flanking genomic sequence. Here we show the

sensitivity or true positive rate of RDD detection for regions in the

genome that are unique (in blue) versus not unique (in red) as

determined by BLAT (see Materials and Methods). Sites with

fewer than 10 total reads per the simulated RNA-Seq dataset or a

RDD level less than 10% per the simulated dataset are removed

from consideration.

(TIF)

Figure S5 Percentage of sites with observed levels that
deviate from simulated RDD levels. Here we calculate the

percentage of total sites in each dataset (y-axis) with observed levels

that deviate from the simulated RDD level by various degrees (x-

axis).

(TIF)

Figure S6 Effect of requiring RDDs to be identified by
multiple aligners on FDR of RDD detection for GSNAP.
Here we depict the false discovery rate of RDD detection using

GSNAP under a ‘minimum coverage of 20x, minimum level of

20%, and a minimum of 4 reads bearing the sequence difference’

threshold after requiring various numbers of other aligners to

concordantly identify the RDD.

(TIF)

Figure S7 Effect of requiring RDDs to be identified by
multiple aligners on FDR of RDD detection for MapS-
plice. Here we depict the false discovery rate of RDD detection

using MapSplice under a ‘minimum coverage of 20x, minimum

level of 20%, and a minimum of 4 reads bearing the sequence

difference’ threshold after requiring various numbers of other

aligners to concordantly identify the RDD.

(TIF)

Figure S8 Effect of requiring RDDs to be identified by
multiple aligners on FDR of RDD detection for RUM.
Here we depict the false discovery rate of RDD detection using

RUM under a ‘minimum coverage of 20x, minimum level of 20%,

and a minimum of 4 reads bearing the sequence difference’

threshold after requiring various numbers of other aligners to

concordantly identify the RDD.

(TIF)

Figure S9 Effect of requiring RDDs to be identified by
multiple aligners on FDR of RDD detection for Tophat2.
Here we depict the false discovery rate of RDD detection using

Tophat2 under a ‘minimum coverage of 20x, minimum level of

20%, and a minimum of 4 reads bearing the sequence difference’
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threshold after requiring various numbers of other aligners to

concordantly identify the RDD.

(TIF)

Figure S10 Percentage of false versus true positives
removed using BLAT filter for dataset 1. Here we depict

the percentage of false positives versus true positives that are

removed when using the BLAT filter for dataset 1.

(TIF)

Figure S11 Percentage of false versus true positives
removed using BLAT filter for dataset 2. Here we depict

the percentage of false positives versus true positives that are

removed when using the BLAT filter for dataset 2.

(TIF)

Figure S12 Effect of BLAT filter on false discovery rate
of RNA-DNA sequence difference detection. Here we

depict the effect of the BLAT filter on the FDR for various

aligners and thresholds for identification of sequence differences.

(TIF)

Figure S13 T-to-G RNA-DNA sequence difference at
chr10:102046378. Here we show an image in the IGV browser

[1] of a T-to-G sequence differences at chr10:102046378 in the

first replicate of the GM12878 dataset. Each grey bar represents

an RNA-Seq read. Mismatches are depicted by colored letters.

Black dashes within a read represent a clipped sequence; for reads

in the bottom half, the string of colored bases depict clipped

portions of the sequence. Clipped portions of alignments represent

bases that are not aligned within a local alignment.

(TIF)

Figure S14 Number of properly aligned bases in reads
that overlap RNA-DNA sequences. Here we depict the

number of bases within each read that overlaps an RNA-DNA

sequence difference site that are aligned properly. This number

excludes bases that contain mismatches or those that are clipped

or part of an insertion deletion (indel).

(TIF)

File S1 Table S1, Alignment statistics of simulated RNA-Seq

datasets. Table S2, Summary statistics on distance between

neighboring RNA-DNA sequence differences. Table S3, Sensi-

tivity of RNA-DNA sequence difference detection versus coverage

threshold. Table S4, Sensitivity of RDD detection versus the level

of sequence difference. Table S5, Sensitivity of RNA-DNA

sequence difference detection in unique versus non-unique regions

as determined by BLAT. Table S6, Sensitivity of RDD detection

within RepeatMasker regions. Table S7, Sensitivity of RDD

detection versus proximity to nearby RDDs. Table S8,
Correlation between observed and simulated levels of RDDs.

Table S9, Percent of sites with levels where the observed and

simulated levels deviate by more than 30% versus the uniqueness

of the underlying site as determined by BLAT. Table S10,
Receiver operating characteristic analysis of RNA-DNA sequence

difference detection. Table S11, Effect of requiring RDDs to be

concordantly identified by multiple aligners on FDR of RDD

detection. Table S12, Percentage of true versus false positives

removed by BLAT filter. Table S13, Effect of BLAT filter on

false discovery rate of RDD detection. Table S14, Effect of

removing RNA-DNA sequence differences in pseudogenes on the

false discovery rate of sequence difference detection. Table S15,
Effect of removing RDDs near exon junctions on the false

discovery rate of sequence difference detection. Table S16,
Percentage of true versus false positives removed by requiring

concordance with at least one other aligner, BLAT filter,

pseudogene filter, and removal of intronic sites within 6 bp of

exon junctions used in conjunction. Table S17, Combined effect

of requiring concordance with at least one other aligner, BLAT

filter, pseudogene filter, and removal of intronic sites within 6 bp

of exon junctions on the false discovery rate of sequence difference

detection. Table S18, Alignment statistics for GM12878 RNA-

Seq dataset. Table S19, RNA-DNA sequence differences found

in GM12878. Table S20, Overlap of RNA-DNA sequence

differences found in GM12878 with other published studies.
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