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Abstract

Background: Despite the rapid adoption of genetically modified (GM) crops by farmers in many countries, controversies
about this technology continue. Uncertainty about GM crop impacts is one reason for widespread public suspicion.

Objective: We carry out a meta-analysis of the agronomic and economic impacts of GM crops to consolidate the evidence.

Data Sources: Original studies for inclusion were identified through keyword searches in ISI Web of Knowledge, Google
Scholar, EconLit, and AgEcon Search.

Study Eligibility Criteria: Studies were included when they build on primary data from farm surveys or field trials anywhere
in the world, and when they report impacts of GM soybean, maize, or cotton on crop yields, pesticide use, and/or farmer
profits. In total, 147 original studies were included.

Synthesis Methods: Analysis of mean impacts and meta-regressions to examine factors that influence outcomes.

Results: On average, GM technology adoption has reduced chemical pesticide use by 37%, increased crop yields by 22%,
and increased farmer profits by 68%. Yield gains and pesticide reductions are larger for insect-resistant crops than for
herbicide-tolerant crops. Yield and profit gains are higher in developing countries than in developed countries.

Limitations: Several of the original studies did not report sample sizes and measures of variance.

Conclusion: The meta-analysis reveals robust evidence of GM crop benefits for farmers in developed and developing
countries. Such evidence may help to gradually increase public trust in this technology.
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Introduction

Despite the rapid adoption of genetically modified (GM) crops

by farmers in many countries, public controversies about the risks

and benefits continue [1–4]. Numerous independent science

academies and regulatory bodies have reviewed the evidence

about risks, concluding that commercialized GM crops are safe for

human consumption and the environment [5–7]. There are also

plenty of studies showing that GM crops cause benefits in terms of

higher yields and cost savings in agricultural production [8–12],

and welfare gains among adopting farm households [13–15].

However, some argue that the evidence about impacts is mixed

and that studies showing large benefits may have problems with

the data and methods used [16–18]. Uncertainty about GM crop

impacts is one reason for the widespread public suspicion towards

this technology. We have carried out a meta-analysis that may

help to consolidate the evidence.

While earlier reviews of GM crop impacts exist [19–22], our

approach adds to the knowledge in two important ways. First, we

include more recent studies into the meta-analysis. In the

emerging literature on GM crop impacts, new studies are

published continuously, broadening the geographical area cov-

ered, the methods used, and the type of outcome variables

considered. For instance, in addition to other impacts we analyze

effects of GM crop adoption on pesticide quantity, which previous

meta-analyses could not because of the limited number of

observations for this particular outcome variable. Second, we go

beyond average impacts and use meta-regressions to explain

impact heterogeneity and test for possible biases.

Our meta-analysis concentrates on the most important GM

crops, including herbicide-tolerant (HT) soybean, maize, and

cotton, as well as insect-resistant (IR) maize and cotton. For these

crops, a sufficiently large number of original impact studies have
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been published to estimate meaningful average effect sizes. We

estimate mean impacts of GM crop adoption on crop yield,

pesticide quantity, pesticide cost, total production cost, and farmer

profit. Furthermore, we analyze several factors that may influence

outcomes, such as geographic location, modified crop trait, and

type of data and methods used in the original studies.

Materials and Methods

Literature search
Original studies for inclusion in this meta-analysis were

identified through keyword searches in relevant literature

databanks. Studies were searched in the ISI Web of Knowledge,

Google Scholar, EconLit, and AgEcon Search. We searched for

studies in the English language that were published after 1995. We

did not extend the review to earlier years, because the commercial

adoption of GM crops started only in the mid-1990s [23]. The

search was performed for combinations of keywords related to

GM technology and related to the outcome of interest. Concrete

keywords used related to GM technology were (an asterisk is a

replacement for any ending of the respective term; quotation

marks indicate that the term was used as a whole, not each word

alone): GM*, ‘‘genetically engineered’’, ‘‘genetically modified’’,

transgenic, ‘‘agricultural biotechnology’’, HT, ‘‘herbicide toler-

ant’’, Roundup, Bt, ‘‘insect resistant’’. Concrete keywords used

related to outcome variables were: impact*, effect*, benefit*,

yield*, economic*, income*, cost*, soci*, pesticide*, herbicide*,

insecticide*, productivity*, margin*, profit*. The search was

completed in March 2014.

Most of the publications in the ISI Web of Knowledge are

articles in academic journals, while Google Scholar, EconLit, and

AgEcon Search also comprise book chapters and grey literature

such as conference papers, working papers, and reports in

institutional series. Articles published in academic journals have

usually passed a rigorous peer-review process. Most papers

presented at academic conferences have also passed a peer-review

process, which is often less strict than that of good journals though.

Some of the other publications are peer reviewed, while many are

not. Some of the working papers and reports are published by

research institutes or government organizations, while others are

NGO publications. Unlike previous reviews of GM crop impacts,

we did not limit the sample to peer-reviewed studies but included

all publications for two reasons. First, a clear-cut distinction

between studies with and without peer review is not always

possible, especially when dealing with papers that were not

published in a journal or presented at an academic conference

[24]. Second, studies without peer review also influence the public

and policy debate on GM crops; ignoring them completely would

be short-sighted.

Of the studies identified through the keyword searches, not all

reported original impact results. We classified studies by screening

titles, abstracts, and full texts. Studies had to fulfill the following

criteria to be included:

N The study is an empirical investigation of the agronomic and/

or economic impacts of GM soybean, GM maize, or GM

cotton using micro-level data from individual plots and/or

farms. Other GM crops such as GM rapeseed, GM sugarbeet,

and GM papaya were commercialized in selected countries

[23], but the number of impact studies available for these other

crops is very small.

N The study reports GM crop impacts in terms of one or more of

the following outcome variables: yield, pesticide quantity

(especially insecticides and herbicides), pesticide costs, total

variable costs, gross margins, farmer profits. If only the

number of pesticide sprays was reported, this was used as a

proxy for pesticide quantity.

N The study analyzes the performance of GM crops by either

reporting mean outcomes for GM and non-GM, absolute or

percentage differences, or estimated coefficients of regression

models that can be used to calculate percentage differences

between GM and non-GM crops.

N The study contains original results and is not only a review of

previous studies.

In some cases, the same results were reported in different

publications; in these cases, only one of the publications was

included to avoid double counting. On the other hand, several

publications involve more than one impact observation, even for a

single outcome variable, for instance when reporting results for

different geographical regions or derived with different methods

(e.g., comparison of mean outcomes of GM and non-GM crops

plus regression model estimates). In those cases, all observations

were included. Moreover, the same primary dataset was some-

times used for different publications without reporting identical

results (e.g., analysis of different outcome variables, different waves

of panel data, use of different methods). Hence, the number of

impact observations in our sample is larger than the number of

publications and primary datasets (Data S1). The number of

studies selected at various stages is shown in the flow diagram in

Figure 1. The number of publications finally included in the meta-

analysis is 147 (Table S1).

Effect sizes and influencing factors
Effect sizes are measures of outcome variables. We chose the

percentage difference between GM and non-GM crops for five

different outcome variables, namely yield, pesticide quantity,

pesticide cost, total production cost, and farmer profits per unit

area. Most studies that analyze production costs focus on variable

costs, which are the costs primarily affected through GM

technology adoption. Accordingly, profits are calculated as

revenues minus variable production costs (profits calculated in

this way are also referred to as gross margins). These production

costs also take into account the higher prices charged by private

companies for GM seeds. Hence, the percentage differences in

profits considered here are net economic benefits for farmers using

GM technology. Percentage differences, when not reported in the

original studies, were calculated from mean value comparisons

between GM and non-GM or from estimated regression

coefficients.

Since we look at different types of GM technologies (different

modified traits) that are used in different countries and regions, we

do not expect that effect sizes are homogenous across studies.

Hence, our approach of combining effect sizes corresponds to a

random-effects model in meta-analysis [25]. To explain impact

heterogeneity and test for possible biases, we also compiled data on

a number of study descriptors that may influence the reported

effect sizes. These influencing factors include information on the

type of GM technology (modified trait), the region studied, the

type of data and method used, the source of funding, and the type

of publication. All influencing factors are defined as dummy

variables. The exact definition of these dummy variables is given

in Table 1. Variable distributions of the study descriptors are

shown in Table S2.

Statistical analysis
In a first step, we estimate average effect sizes for each outcome

variable. To test whether these mean impacts are significantly
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different from zero, we regress each outcome variable on a

constant with cluster correction of standard errors by primary

dataset. Thus, the test for significance is valid also when

observations from the same dataset are correlated. We estimate

average effect sizes for all GM crops combined. However, we

expect that the results may differ by modified trait, so that we also

analyze mean effects for HT crops and IR crops separately.

Meta-analyses often weight impact estimates by their variances;

estimates with low variance are considered more reliable and

receive a higher weight [26]. In our case, several of the original

studies do not report measures of variance, so that weighting by

variance is not possible. Alternatively, weighting by sample size is

common, but sample sizes are also not reported in all studies

considered, especially not in some of the grey literature

publications. To test the robustness of the results, we employ a

Figure 1. Selection of studies for inclusion in the meta-analysis.
doi:10.1371/journal.pone.0111629.g001

Table 1. Variables used to analyze influencing factors of GM crop impacts.

Variable name Variable definition

Insect resistance
(IR)

Dummy that takes a value of one for all observations referring to insect-resistant GM crops with genes from Bacillus thuringiensis (Bt),
and zero for all herbicide-tolerant (HT) GM crops.

Developing country Dummy that takes a value of one for all GM crop applications in a developing country according to the World Bank classification of
countries, and zero for all applications in a developed country.

Field-trial data Dummy that takes a value of one for all observations building on field-trial data (on-station and on-farm experiments), and zero for all
observations building on farm survey data.

Industry-funded
study

Dummy that takes a value of one for all studies that mention industry (private sector companies) as source of funding, and zero
otherwise.

Regression model
result

Dummy that takes a value of one for all impact observations that are derived from regression model estimates, and zero for
observations derived from mean value comparisons between GM and non-GM.

Journal publication Dummy that takes a value of one for all studies published in a peer-reviewed journal, and zero otherwise.

Journal/academic
conference

Dummy that takes a value of one for all studies published in a peer-reviewed journal or presented at an academic conference, and zero
otherwise.

doi:10.1371/journal.pone.0111629.t001
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different weighting procedure, using the inverse of the number of

impact observations per dataset as weights. This procedure avoids

that individual datasets that were used in several publications

dominate the calculation of average effect sizes.

In a second step, we use meta-regressions to explain impact

heterogeneity and test for possible biases. Linear regression models

are estimated separately for all of the five outcome variables:

%DYhij~ahzXhijbhzehij

%DYhij is the effect size (percentage difference between GM and

non-GM) of each outcome variable h for observation i in

publication j, and Xhij is a vector of influencing factors. ah is a

coefficient and bh a vector of coefficients to be estimated; ehij is a

random error term. Influencing factors used in the regressions are

defined in Table 1.

Results and Discussion

Average effect sizes
Distributions of all five outcome variables are shown in Figure

S1. Table 2 presents unweighted mean impacts. As a robustness

check, we weighted by the inverse of the number of impact

observations per dataset. Comparing unweighted results (Table 2)

with weighted results (Table S3) we find only very small

differences. This comparison suggests that the unweighted results

are robust.

On average, GM technology has increased crop yields by 21%

(Figure 2). These yield increases are not due to higher genetic yield

potential, but to more effective pest control and thus lower crop

damage [27]. At the same time, GM crops have reduced pesticide

quantity by 37% and pesticide cost by 39%. The effect on the cost

of production is not significant. GM seeds are more expensive than

non-GM seeds, but the additional seed costs are compensated

through savings in chemical and mechanical pest control. Average

profit gains for GM-adopting farmers are 69%.

Results of Cochran’s test [25], which are reported in Figure S1,

confirm that there is significant heterogeneity across study

observations for all five outcome variables. Hence it is useful to

further disaggregate the results. Table 2 shows a breakdown by

modified crop trait. While significant reductions in pesticide costs

are observed for both HT and IR crops, only IR crops cause a

consistent reduction in pesticide quantity. Such disparities are

expected, because the two technologies are quite different. IR

crops protect themselves against certain insect pests, so that

spraying can be reduced. HT crops, on the other hand, are not

protected against pests but against a broad-spectrum chemical

herbicide (mostly glyphosate), use of which facilitates weed control.

While HT crops have reduced herbicide quantity in some

situations, they have contributed to increases in the use of

broad-spectrum herbicides elsewhere [2,11,19]. The savings in

pesticide costs for HT crops in spite of higher quantities can be

explained by the fact that broad-spectrum herbicides are often

much cheaper than the selective herbicides that were used before.

The average farmer profit effect for HT crops is large and positive,

but not statistically significant because of considerable variation

and a relatively small number of observations for this outcome

variable.

Impact heterogeneity and possible biases
Table 3 shows the estimation results from the meta-regressions

that explain how different factors influence impact heterogeneity.

Controlling for other factors, yield gains of IR crops are almost 7

percentage points higher than those of HT crops (column 1).

Furthermore, yield gains of GM crops are 14 percentage points

higher in developing countries than in developed countries.

Especially smallholder farmers in the tropics and subtropics suffer

from considerable pest damage that can be reduced through GM

crop adoption [27].

Most original studies in this meta-analysis build on farm surveys,

although some are based on field-trial data. Field-trial results are

often criticized to overestimate impacts, because farmers may not

be able to replicate experimental conditions. However, results in

Table 3 (column 1) show that field-trial data do not overestimate

the yield effects of GM crops. Reported yield gains from field trials

are even lower than those from farm surveys. This is plausible,

because pest damage in non-GM crops is often more severe in

farmers’ fields than on well-managed experimental plots.

Table 2. Impacts of GM crop adoption by modified trait.

Outcome variable All GM crops Insect resistance Herbicide tolerance

Yield 21.57***
(15.65; 27.48)

24.85***
(18.49; 31.22)

9.29**
(1.78; 16.80)

n/m 451/100 353/83 94/25

Pesticide quantity –36.93***
(–48.01; 225.86)

–41.67***
(–51.99; 231.36)

2.43
(–20.26; 25.12)

n/m 121/37 108/31 13/7

Pesticide cost –39.15***
(–46.96; 231.33)

–43.43***
(–51.64; 235.22)

–25.29***
(–33.84; 216.74)

n/m 193/57 145/45 48/15

Total production
cost

3.25
(–1.76; 8.25)

5.24**
(0.25; 10.73)

–6.83
(–16.43; 2.77)

n/m 115/46 96/38 19/10

Farmer profit 68.21***
(46.31; 90.12)

68.78***
(46.45; 91.11)

64.29
(–24.73; 153.31)

n/m 136/42 119/36 17/9

Average percentage differences between GM and non-GM crops are shown with 95% confidence intervals in parentheses. *, **, *** indicate statistical significance at the
10%, 5%, and 1% level, respectively. n is the number of observations, m the number of different primary datasets from which these observations are derived.
doi:10.1371/journal.pone.0111629.t002

A Meta-Analysis of the Impacts of Genetically Modified Crops

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e111629



Another concern often voiced in the public debate is that studies

funded by industry money might report inflated benefits. Our

results show that the source of funding does not significantly

influence the impact estimates. We also analyzed whether the

statistical method plays a role. Many of the earlier studies just

compared yields of GM and non-GM crops without considering

possible differences in other inputs and conditions that may also

affect the outcome. Net impacts of GM technology can be

estimated with regression-based production function models that

control for other factors. Interestingly, results derived from

regression analysis report higher average yield effects.

Finally, we examined whether the type of publication matters.

Controlling for other factors, the regression coefficient for journal

publications in column (1) of Table 3 implies that studies

published in peer-reviewed journals show 12 percentage points

higher yield gains than studies published elsewhere. Indeed, when

only including observations from studies that were published in

journals, the mean effect size is larger than if all observations are

included (Figure S2). On first sight, one might suspect publication

bias, meaning that only studies that report substantial effects are

accepted for publication in a journal. A common way to assess

possible publication bias in meta-analysis is through funnel plots

[25], which we show in Figure S3. However, in our case these

funnel plots should not be over-interpreted. First, only studies that

report variance measures can be included in the funnel plots,

which holds true only for a subset of the original studies used here.

Second, even if there were publication bias, our mean results

would be estimated correctly, because we do include studies that

were not published in peer-reviewed journals.

Further analysis suggests that the journal review process does

not systematically filter out studies with small effect sizes. The

journal articles in the sample report a wide range of yield effects,

even including negative estimates in some cases. Moreover, when

combining journal articles with papers presented at academic

conferences, average yield gains are even higher (Table 3, column

2). Studies that were neither published in a journal nor presented

at an academic conference encompass a diverse set of papers,

including reports by NGOs and outspoken biotechnology critics.

These reports show lower GM yield effects on average, but not all

meet common scientific standards. Hence, rather than indicating

publication bias, the positive and significant journal coefficient

may be the result of a negative NGO bias in some of the grey

literature.

Concerning other outcome variables, IR crops have much

stronger reducing effects on pesticide quantity than HT crops

(Table 3, column 3), as already discussed above. In terms of

pesticide costs, the difference between IR and HT is less

pronounced and not statistically significant (column 4). The profit

gains of GM crops are 60 percentage points higher in developing

countries than in developed countries (column 6). This large

difference is due to higher GM yield gains and stronger pesticide

cost savings in developing countries. Moreover, most GM crops

are not patented in developing countries, so that GM seed prices

are lower [19]. Like for yields, studies published in peer-reviewed

journals report higher profit gains than studies published

elsewhere, but again we do not find evidence of publication bias

(column 7).

Conclusion

This meta-analysis confirms that – in spite of impact hetero-

geneity – the average agronomic and economic benefits of GM

crops are large and significant. Impacts vary especially by modified

crop trait and geographic region. Yield gains and pesticide

reductions are larger for IR crops than for HT crops. Yield and

farmer profit gains are higher in developing countries than in

developed countries. Recent impact studies used better data and

methods than earlier studies, but these improvements in study

design did not reduce the estimates of GM crop advantages.

Rather, NGO reports and other publications without scientific

peer review seem to bias the impact estimates downward. But even

with such biased estimates included, mean effects remain sizeable.

One limitation is that not all of the original studies included in

this meta-analysis reported sample sizes and measures of variance.

This is not untypical for analyses in the social sciences, especially

when studies from the grey literature are also included. Future

Figure 2. Impacts of GM crop adoption. Average percentage differences between GM and non-GM crops are shown. Results refer to all GM
crops, including herbicide-tolerant and insect-resistant traits. The number of observations varies by outcome variable; yield: 451; pesticide quantity:
121; pesticide cost: 193; total production cost: 115; farmer profit: 136. *** indicates statistical significance at the 1% level.
doi:10.1371/journal.pone.0111629.g002
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impact studies with primary data should follow more standardized

reporting procedures. Nevertheless, our findings reveal that there

is robust evidence of GM crop benefits. Such evidence may help to

gradually increase public trust in this promising technology.
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