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Abstract

An experiment was conducted to test whether parasitoid resistance within a single clonal line of pea aphid (Acyrthosiphon
pisum) might increase after exposure to the parasitoid wasp Aphidius ervi. Any change in resistance was expected to occur
through an increase in the density of protective symbiotic bacteria rather than genetic change within the aphid or the
bacterial symbiont. Six aphid lineages were exposed to high parasitoid attack rates over nine generations, each line being
propagated from individuals that had survived attack; a further six lineages were maintained without parasitoids as a
control. At the end of the experiment the strength of resistance of aphids from treatment and control lines were compared.
No differences in resistance were found.
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Introduction

Animals are not as well defended against parasites and diseases

as is physiologically possible and additive genetic variation in

resistance is frequently observed [1,2]. The level of resistance

exhibited is likely to reflect a number of different trade-offs

between immune function and other aspects of the organism’s life-

history including development time [3], competitive ability [4] and

reproductive output [5]. Artificially strengthening selection for

resistance in an experimental setting can prove useful in

understanding how this variation arises and what determines the

patterns of resistance observed in the field [3,4].

Parasitoids and their insect hosts provide excellent systems for

studying the evolution of resistance because their development is

intimately intertwined, with survival of one dependent upon the

death of the other [6]. In aphids, a major component of the

defensive response against endoparasitoids is provided by faculta-

tive endosymbiotic bacteria, in particular Hamiltonella defensa
[7,8]. The ability to confer resistance requires Hamiltonella to be

infected by particular strains of a bacteriophage, termed APSE

(Acyrthosiphon pisum Secondary Endosymbiont [9]), which encode

a number of toxin genes whose products are thought to play a role

in attacking the developing parasitoid [10,11]. In other respects,

aphids appear to have a reduced immune system relative to most

insects [12,13], but whether this is a cause or a consequence of

their association with symbiotic bacteria is unknown. Nevertheless,

aphids may possess considerable intrinsic as well as symbiont-

conferred resistance to parasitoid wasps [14].

The braconid parasitoid wasp, Aphidius ervi, has been shown to

evolve higher virulence (defined as successful parasitism) when

populations were maintained on a line of aphids infected with a

protective strain of Hamiltonella [15]. In a separate study, adults

of A. ervi were found to adapt to parasitize aphids with symbiont-

associated resistance by laying multiple eggs in a single individual

(self-superparasitism) [16]. Only one adult parasitoid can emerge

successfully from a single parasitized aphid, but it is thought that

laying several eggs can dilute and hence overwhelm host defences.

Given the potential for parasitoids to evolve rapidly in response to

host defences, it would be of interest to know whether aphid

defences can evolve to respond to greater parasitoid challenge.

Aphid populations could achieve better symbiont-associated

resistance through a variety of routes. First, they might acquire

more highly protective bacteria. The facultative symbiont

Hamiltonella is transmitted maternally with almost perfect fidelity

in the asexual phases of aphid reproduction, and is also inherited

during the sexual generation [17]. It can also be transmitted

horizontally between individuals of the same [18–20] or different

[21] species. Exactly how horizontal transfer occurs is not

currently understood (there is experimental evidence that parasit-

oids are capable of transmitting Hamiltonella via oviposition [22])

but acquisition of novel symbionts by whatever route could

improve aphid resistance. Second, aphids may gain more

protective phages. Again, little is known about how the protective

phage moves between Hamiltonella strains, although there is

evidence for considerable variation between phages in the

resistance they confer [9–11] and the Hamiltonella genome shows

evidence of extensive horizontal transfer of mobile elements [23].
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Third, parasitoid attack may select for aphid clones that have

higher resistance leading to a change in mean population

phenotype. Finally, and our focus here, improved resistance may

occur within clonal lineages of aphid by changes in the abundance

or genetic composition of the symbiont or phage.

The degree of symbiont-conferred resistance in pea aphids

appears to be proportional to the number of Hamiltonella cells

present. Black bean aphids (Aphis fabae) in their first and second

instars, which contain fewer Hamiltonella cells, are vulnerable to

parasitoids, even when they carry a protective strain of

Hamiltonella [24]. We have also observed that individuals from

one pea aphid clone (subsequently used in this study) gain little

protection from their symbionts in the first and second instars

(83% versus 90% parasitism; N = 116, 92) but are moderately

protected from the third instar onwards (53% versus 81%

parasitism; N = 98, 76). The toxin genes involved in resistance

appear to be constitutively expressed rather than induced [25] and

so the increase in resistance as the aphid grows may be a simple

reflection of the growing number of bacteria. If there is heritable

variation in cell number amongst clonal aphids then parasitism

might select for greater bacterial cell densities and hence

resistance. Although higher symbiont numbers have previously

been associated with fitness costs [26,27], an increase might still be

beneficial if the symbionts are protective and the risk of parasitoid

attack is high.

We conducted an experiment to test whether parasitoid

resistance within a single clonal line of pea aphids (Acyrthosiphon
pisum) might increase after exposure to the wasp A. ervi for nine

successive generations. Over this timescale, we expected any

change in resistance to occur because of increased densities of

protective phage rather than genetic change within the aphid,

bacterial symbiont, or the phage it carries. We hypothesised that

the density of protective symbionts might increase through growth

in bacterial numbers or through an increase in the fraction of

bacteria carrying multiple copies of the protective APSE phage.

Loss of phage occurs infrequently but regularly in certain aphid

lines [9,26] which suggests phage dynamics may lead to variation

in copy number upon which natural selection can operate.

Methods

Ethics statement
The pea aphid clone used in our experiment was collected from

Lotus pedunculatus growing on private land in Berkshire, UK in

2003 (grid reference SU 976 851), with permission from the

landowner. Any future researchers wishing to use the same

location should contact the owner of the land at the time of their

study in order to gain similar permission to collect.

Experimental organisms
A line of aphids was established from a single female and

maintained in culture in the laboratory on broad bean (Vicia faba).

The taxon A. pisum consists of a complex amalgam of host plant-

associated races [28] but all are able to feed on cultivated V. faba
[29,30]. Diagnostic PCR was used to confirm that this clone

carries the symbiont Hamiltonella defensa, but no other known

secondary symbionts of pea aphids (see Henry et al. [20] for details

of primers and PCR conditions used). This clone was chosen

because preliminary experiments had shown it to be partially

resistant to the parasitoid A. ervi and for resistance to increase with

age. When carrying Hamiltonella about 50% of aphids survive

parasitoid attack but this drops to less than 20% in sub-lines from

which the symbiont has been removed using antibiotics (for details

of antibiotic curing protocol, see McLean et al. [31]).

Aphids were maintained in culture and in the experiments at

20uC with a 16:8 h light:dark cycle, and kept in 9 cm Petri dishes

containing a single leaf of V. faba with the petiole inserted in 2%

agar gel to keep it fresh. Aphids were transferred to a fresh leaf

once a week. The A.ervi parasitoid wasps used were taken from an

inbred stock maintained in the laboratory at 20uC and a 16:8 h

light:dark cycle for over five years, and reared on a highly

susceptible pea aphid clone which lacks any described secondary

endosymbionts. Female parasitoids were less than one week old

when used in the experiment; all had been exposed to males and

so were presumed to be mated, and had been allowed prior

experience of oviposition on aphids lacking secondary endosym-

bionts.

Experimental design
Twelve replicate lineages of aphids were set up, six of which

were exposed to parasitoid attack for nine generations, the others

acting as controls. All lineages originated from a single asexual

adult aphid which had been placed on a leaf of V. faba in a Petri

dish and allowed to reproduce for 48 hours. Twelve of the

offspring were removed and used to initiate the replicate lines.

Once adults, these 12 aphids were placed on V. faba leaves for

24 hours and their offspring kept and used in the first round of

parasitoid exposure.

To initiate the exposure treatment, six adult aphids were

separated and allowed to reproduce for 48 hours. Four days later,

the third instar offspring were exposed to parasitoid wasps.

Offspring from individual females were placed together in a Petri

dish (N = 12) without any leaf material and a single female A. ervi
introduced. The dishes were observed for up to two hours, and

individual aphids removed immediately after the wasp had

attacked them. We know from previous experiments in which

we had exposed aphids to parasitoids and immediately dissected

them that a parasitoid egg can be found in.80% of individuals.

The parasitized aphids were then kept on fresh leaves of V. faba
for 11 days, by which time surviving aphids had begun to

reproduce while those that had succumbed to the wasp’s attack

had become ‘‘mummies’’ containing parasitoid pupae. From two

to eight surviving aphids from each of the six experimental lines

were then removed to individual 9 cm Petri dishes with fresh

leaves and allowed to reproduce for 48 hours to initiate the next

generation. This procedure was repeated for eight further

generations. The six control lines of aphids were maintained in

exactly the same way except for exposure to parasitoids.

Up to 12 Petri dishes could be watched simultaneously and

exposure to parasitoids was therefore carried out in three separate

blocks for each generation, conducted sequentially on the same

day. The only alteration made to the protocol during the

experiment was to change the parasitoid exposure arena from a

9 cm Petri dish to a 5 cm Petri dish after the third generation. This

was done to increase the likelihood that the wasp located every

aphid and that every oviposition event was observed.

Final resistance assay
After nine generations of exposure to parasitoid attack the

resistance of experimental lines was compared with the controls.

Over the course of the experiment, two of the experimental lines

became extinct, leaving four experimental lines for the final assay.

To avoid complications involving any maternal effects all aphid

lines were maintained for a tenth generation without exposure to

parasitoids before the final resistance assay. Ten females were then

taken from each of the four remaining experimental lines and

placed in dishes to reproduce for 48 hours. Ten females were also

taken from four randomly chosen control lines, giving a total of 80

Response of a Defensive Symbiont to Selection within an Aphid Lineage

PLOS ONE | www.plosone.org 2 November 2014 | Volume 9 | Issue 11 | e111601



dishes. When the offspring had reached the third instar, 12 aphids

were taken from each dish and exposed to a single parasitoid

female in a 5 cm Petri dish for two hours. All wasps were allowed

access to an equal number of aphids for the same length of time.

The exposed aphids were kept for 12 days and the number of

parasitized mummies, surviving aphids and dead aphids recorded.

The number of wasps hatching successfully from the mummies

was also observed over the subsequent five days.

We compared rates of parasitism and successful wasp

emergence in the two treatment groups using generalized mixed

modelling techniques, implemented using packages ‘lme4’ [32]

and ‘car’ [33] in R version 3.0.2 [34]. In each case, we used a

binomial distribution, with an individual level error term included

to account for any overdispersion in proportion data.

Results

There was no significant difference between exposed and non-

exposed treatments (x2 = 0.115, d.f. = 1, P = 0.735; Fig. 1a); the

average level of successful parasitism was 49.8%. This is very

similar to the results of our preliminary assessment of resistance in

this aphid clone before the experiment began, which found a mean

of 53.0% successful parasitism. Likewise, the rate of successful

emergence of parasitoids from the mummies was unaffected by

treatment (x2 = 0.432, d.f. = 1, P = 0.511; Fig. 1b), with emergence

at 72.0% in the non-exposed group and 76.6% in the exposed

lines.

Discussion

We set out to discover whether an aphid clone that displays

incomplete but significant symbiont-conferred resistance to

parasitoids was able to respond to high levels of parasitism by

developing increased resistance over a number of generations. We

thought this most likely to occur through an increase in the

numbers of the symbiont itself, or of the toxin-encoding phages

which infect the symbiont and are ultimately responsible for the

resistance phenotype. We find no evidence that the aphid clone

was able to respond to parasitism by developing increased

resistance by any mechanism: there was no difference in the level

of symbiont-conferred resistance in the lines that had or had not

been exposed to parasitoids.

Our results suggest that there is little scope for short-to medium-

term adaptive change in resistance within a particular aphid clone

without the horizontal transfer of symbionts. This conclusion must

obviously be made with some caveats. First, we used only one

clone of pea aphid and the single Hamiltonella strain with which it

had been collected in the field. It is of course possible that different

aphid clones would have displayed a different response, although

defence against parasitoids in pea aphids seems largely [8], if not

entirely [14,35], to be driven by the properties of the symbiont

strain. Given the lack of any phenotypic change in our study, we

did not go on to assess using qPCR whether either bacterial

symbiont or bacteriophage titre had changed over the course of

the experiment. However, it is possible that a different aphid

genotype or a different symbiont strain might have provided

greater heritable variation in the number of bacteria per aphid, or

the number of phage per bacterium, upon which selection could

have acted. Second, symbiont associations may be more plastic

immediately after they have come together through horizontal

transfer (as observed experimentally by Russell & Moran [36]) and

the natural association we chose may have been too stable to

provide variation for selection. Finally, we used a single, highly

inbred, line of a single parasitoid species. Symbiont-wasp genotype

6genotype interactions have been observed [37] and the use of a

different (perhaps less virulent) strain or species may have led to a

response being observed.

Parasitoids bred on partially resistant clones of aphid have been

demonstrated to evolve increased virulence [15,38] and to respond

to symbiont presence by adjusting their oviposition behaviour

[16]. The absence of short-term responses in aphids is not

surprising, given their asexual reproduction within a season. Pea

aphids in northern Europe have only a single sexual generation

per year, and even this may be dispensed with in warmer climates.

As their parasitoids can have multiple generations a year, aphids

would appear to be at a disadvantage in any coevolutionary

interaction. However, their main defence against parasitoids aside

from defensive symbionts may be escape in time and space. Aphid

colonies can grow very fast because of asexual reproduction and

the viviparous telescoping of generations that this allows. They

may thus be able to reach a large colony size and produce many

dispersive winged aphids before the majority of their natural

enemies have increased to levels at which they can cause

significant mortality. The type of intra-colony selection imposed

in our study may thus occur rarely in the field. Interestingly, there

is evidence that winged aphids are produced earlier in the

presence of parasitoids [39].

The majority of work on symbiont-conferred resistance against

parasitoids has, as in this study, focussed on laboratory studies.

Figure 1. Parasitoid success rates in aphids from exposed and
control treatment lines. (a) Proportion of mummies formed for the
exposed treatment lines (in grey) and the control lines (in white); (b)
Proportion of successful adult emergence of parasitoids from the
exposed treatment lines (in grey) and the control lines (in white). No
significant differences were observed between or within treatments.
Error bars denote standard errors of the mean.
doi:10.1371/journal.pone.0111601.g001
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Consequently, little is known about how symbionts affect

interactions between aphids and their natural enemies in the

field. Aphidius ervi shows additive genetic variation in virulence

[15,40] and has the capacity to evolve improved performance on

different aphid species in the laboratory [41]. However, there is no

evidence of genetic differentiation amongst A. ervi that attack

different pea aphid populations on different host plants, even when

these host plant-associated populations differ markedly in resis-

tance [42,43]. If the lack of flexibility in clonal responses to

parasitism that we observe is typical, then inter-clonal selection

would be expected to promote resistance only on plants where this

was most advantageous. The fact that pea aphid populations

adapted to different host plants differ so markedly in the defensive

symbionts they carry [20,44] suggests that the selection pressure

for defence must vary between host plants. Understanding the

nature of this variation, and whether the symbionts influence the

complex tritrophic interactions that are known to exist between

aphids, plants and parasitoids, will be an interesting avenue for

future research.

Supporting Information

Table S1 Raw data used for analysis. ‘Name’ indicates the aphid

line (see graphs). Where emergence is marked N/A, there were

either no mummies, or an accident prevented the wasps from

being assessed following emergence (two cases). Percentage

parasitism was counted using the number of mummies divided

by the number of live and number of mummified aphids. Dead

aphids are ambiguous and so were excluded from the analysis;

however, the data are included here for completeness.

(XLSX)
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