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Abstract

We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from
a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments,
microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on
previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a
fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to
previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive
hard limits on the parameter regime in which it is applicable.
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Introduction

Swarm robotics refers to the concept of using a number of

autonomous and often very simple robots to collaboratively

accomplish a task. For some scenarios, this can provide an

attractive alternative to deploying a single, complex robot.

Typically, three main advantages of a swarm-based approach

are cited, which can also be viewed as design goals [2–4]. (i)

Robustness: swarm performance does not critically depend on

individuals and degrades gracefully when individuals malfunction.

(ii) Scalability: swarm behaviour can scale well for a wide range of

problem sizes (and swarm sizes). (iii) Flexibility: swarms are

assumed to adapt their behaviour flexibly to changing environ-

mental conditions.

When designing swarm-control mechanisms, researchers and

engineers are faced with the challenge to develop a set of rules at

the individual (microscopic) level such that a desired behaviour at

the group (macroscopic) level is achieved [4]. This is a very

difficult task since there is no general systematic way to devise

individual behaviours that reliably achieve a desired group

behaviour. Thus design choices can usually only be tested in

experiments or simulations. Performing swarm experiments is

expensive and requires considerable effort and time comitment

[3,4]. Simulations, on the other hand, are efficient and fast but

cannot achieve the same degree of realistic behaviour as physical

experiments. Any approach that allows us to derive predictions of

a swarm’s behaviour analytically would thus be of significant

advantage. In an attempt to address this, the present paper

presents an approach that brings together physical experiment,

simulation and analytic predictions.

Generally, swarm simulations are categorized depending on

their level of abstraction [3]. (i) Microscopic simulations model the

behaviour of individual robots and the interaction between robots.

(ii) Macroscopic models describe the number of robots in the

different behavioural states [5,6]. It is useful to distinguish between

macroscopic-discrete and macroscopic-continuous methods [7].

Discrete approaches model the count of robots in each one of a

finite set of states, while continuous approaches model the (real-

valued) fraction of the whole population in each of the states.

Macro-discrete models are amenable to a master equation

approach and thus typically treated stochastically [6,8,9], while

macro-continuous approaches typically result from an averaging

procedure [8] and are hence deterministic. A further possibility is

to have an infinite number of states or continuous state variables.

This can be treated deterministically or stochastically [1].

Ideally, a unified approach to modelling a robot swarm will

derive parameters for a microscopic description from experiments,

derive macroscopic equations from the microscopic model and

perform microscopic simulations to validate the macroscopic

description [4]. Several factors seem to make such an approach

challenging. First, microscopic simulations, while more accessible

than physical experiments, generally require substantial computa-

tional resources if they involve a large number of robots. Second,

physical experiments are expensive, time-consuming and can

usually only be conducted under sanitized laboratory conditions

[4]. Third, deriving macroscopic descriptions from probabilistic

microscopic ones is usually hard, in particular if spatial aspects

need to be taken into account [8,9].

The present paper explores the feasibility of such a unified

approach using the example of a typical collective-decision making

problem [1]. We show that, despite the above challenges, such an

approach is feasible provided the process under investigation

meets specific requirements. We derive our modelling method

from first principles based on chemical kinetics. This enables us to

analyze the requirements for its applicability and its limitations

systematically and in detail. It also allows us to have confidence in
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the approach beyond a purely empirical justification if these

requirements are met.

This article builds upon Hamann et al. [1]. It extends this work

in several regards. Firstly, we present a consistent multi-scale

approach that spans microscopic, macroscopic-discrete and

macroscopic descriptions. Secondly, we make a first attempt at

deriving the aggregate continuous-time Markov model from first

principles. This was justified only a posterori in Hamann et al. [1].

We do so by transforming the microscopic equations for the

individual agent motion into an aggregate macroscopic-discrete

reaction system. This transformation is firmly grounded on

established techniques from chemical kinetics. This approach

vastly improves the confidence we may have in a continuous-time

Markov description provided the system under consideration is

within well-defined limits. Thirdly, using a mathematical toy

model, we show a way to analytically derive the characteristic

parameters of the stochastic differential equation for the aggregate

model from the macroscopic-discrete description.

Several other authors in recent years have applied methods

from chemical reaction networks to analyze the dynamics of robot

swarms [10–15]. Like these earlier works our approach is rooted in

the theory of reaction kinetics, but our main concerns differ from

these works subtly but importantly. Firstly, we are interested in

quantifying transient behaviour as much as steady-state behaviour,

for example the time to reach a particular state. Previous work has

often only been concerned with steady state behaviour [10,13].

Secondly, we are specifically interested in how group behaviour

emerges from local interactions and communication between

swarm members. Previous work has often explicitly excluded local

communication and interaction from the methodology [11,12,15].

Thirdly, we are interested in systematically abstracting, based on

first principles, a spatially extended scenario into a non-spatial

macroscopic model without excluding spatial inhomogenities that

may emerge from local interactions. Previous work has not

explicitly made this connection. [10] explicitly incorporate spatial

inhomogenities but restrict these to the ones known a-priori, such

as aggregation at a set of predefined boundaries.

The paper is structured as follows. We start by introducing the

density estimation task and our implementation on a microscopic

level using the multi-agent framework FLAME (http://www.flame.

ac.uk/) in Section ‘‘Microscopic approach’’. Here we also

reproduce some of the results from [1]. In Section ‘‘Kilobot

experiments’’ we present results from a physical implementation of

the density classification task using a swarm of KILOBOTS [16]. We

then ask the question if the microscopic (agent-based) description

can be translated into a spatially-homogeneous macroscopic-

discrete formalism (Section ‘‘The macroscopic-discrete

approach’’). This section contains our derivation of the macro-

scopic-discrete Master equation and numerical validations using

the software package INCHMAN [17,18]. Finally, we analytically

solve the macroscopic-discrete Master equation for a simplified

model and obtain expressions for the coefficients of the associated

Fokker-Planck equation (Section ‘‘Constructing a time coarse-

grained Markov process for the symmetry parameter’’). In this way

we can justify the aggregate continous-time Markov model and

close the loop.

Microscopic Approach: Virtual Swarm

1 Simulation setup
Density classification is a well-known example for the concept of

embodied swarm computation, where a consensus emerges from

local interactions [19]. The task consists of determining the

majority color of a set of N randomly-initialized (red or green),

spatially distributed agents. This can be achieved by allowing the

individuals to roam freely (with an initially randomly-distributed

velocity v) while constantly monitoring the position of nearby

inviduals. If another agent enters the immediate proximity of the

individual, where proximity is defined by the avoidance radius da,

both agents turn around and remember the color of their collision

partner. Once any agent performed n collisions, where the

decision threshold n is a free parameter, it changes its color to the

dominant color it encountered during collisions. This algorithm

has been demonstrated to be convergent and stable [1].

We will use this task as an example to illustrate our unified

modelling approach. The present section details the first step: a

microscopic simulation of the problem [1]. The simulations are

implemented using the multi-agent framework FLAME. The

software allows us to set up any number of individual agents

whose behaviour is specified by user-defined subroutines. Initially,

N robots are distributed over a compuational domain with side

length L. Each robot has a certain probability p0 to start as ‘‘red’’

and initial velocity v0. The magnitude of the velocity u0 is fixed as

a simulation parameter and the spatial orientation is randomly

chosen using a uniform probability distribution. After updating its

position according to the current velocity v, the robots broadcast

their current position and check if any number of robots is inside

their avoidance radius da. If this is the case, the robot turns by 180

degrees, in order to avoid double counting of robots, and adds the

color of the encountered robot to an internal list. Note that, in

reality, mechanical effects in the actuators will afflict the heading

with a certain error (compare subsection 4). We performed runs

with a varying degree of inaccuracy and checked that the results

are not affected as long as there is no preferred direction. Hence

we only present simulations without error in the heading. If the

total number of encounters equals n, the robot changes its own

color according to the majority of encounters. The simulation

parameters are given in Table 1. These parameters are chosen to

allow an easy comparison with the results of Hamann et al. [1].

2 The symmetry parameter
To describe the macroscopic behaviour, we define a (discrete)

symmetry parameter s(t)~Nr(t)=N with s(t)[f0,1=N, . . . ,1g,
where Nr(t) denotes the number of red agents at time t [1,19].

The term symmetry parameter indicates the similarities to the

order parameter in statistical physics. The order parameter is used

to describe phase transitions in statistical mechanics. Likewise, the

symmetry parameter follows the progress from an unordered

system to an ordered state. Due to our simulation setup, the

probability distribution function (PDF) p(s,t) will initially be

binomial, p(s,t~0)~B(N,p0). With time, the system evolves into

a steady state where p(s,t??)~p�(s) will be bimodal with peaks

at s~0 and s~1. Contrary to intuition, the states s~0 and s~1
are not absorbing: even though there are no collision partners of

the opposite color available: some agents might still have stored a

majority of opposite-color encounters in their memory and will

change their own colour at a future encounter. However, the

simulations will show that, to a good approximation, no

fluctuations occur at the boundaries. Eventually, we expect all

agents to agree on one color.

The evolution of the symmetry parameter has been described as

a Markov process [1]. We will show in Section ‘‘Constructing a

time coarse-grained Markov process for the symmetry parameter’’

that, in general, the time evolution of s is not Markovian. This is

intuitively clear since the robots keep track of their previous

encounters and, as such, the process cannot be memoryless.

However, we argue in Section ‘‘Constructing a time coarse-

grained Markov process for the symmetry parameter’’, that a

Multiscale Modelling of Collective Decision Making in Swarm Robotics

PLOS ONE | www.plosone.org 2 November 2014 | Volume 9 | Issue 11 | e111542

http://www.flame.ac.uk/
http://www.flame.ac.uk/


Markov process can be constructed on coarse time scales which

are larger than the typical time between individual encounters.

Hamann et al. do exactly this [1], but do not present such an

argument. Instead they justify their assumption empirically

through numerical experiments. For now, we just assume that

such a process exists and is a reasonably good approximation of

the behaviour of s over time.

Obviously, s(t) can only assume discrete values and hence the

corresponding stochastic process should be discrete. However, for

large N, the separation between the discrete levels of s becomes

negligible and a continuous approximation can be employed [1].

s(t) then obeys an Ito stochastic differential equation (SDE) of the

type

dst~a(s) dtzb(s) dW , ð1Þ

where as usual dW denotes the differential of the Wiener

process and the parameters a(s) and b(s) need to be determined

from the simulation output as follows. The equivalent Fokker-

Planck equation (FPE) is given by

Lp(s,t)

Lt
~{

L
Ls

a(s)p(s,t)½ �z 1

2

L2

Ls2
b2(s)p(s,t)
� �

: ð2Þ

We extract the information about the macroscopic continuous-

time process from the simulation output (details can be found in

Appendix 1.1). The process is time homogeneous and we can use

the whole time interval to compute the SDE coefficients. a(s) and

b2(s) for the model in Table 1 are shown as a function of s in

Fig. 1. The deterministic component a(s) (left panel in the figure)

acts to promote an emerging decision. For example, if more ‘‘red’’

robots are present (sw0:5), the drift component will further push

the symmetry parameter towards s~1. The diffusivity b2(s)
attains its maximum if a decision is emerging but still enough

robots of the opposite color are present to revise that decision.

b2(s) exhibits a local minimum at s~0:5 where fluctuations of

opposite directions tend to cancel each other out. It is clear from

the figure that the boundary fluctations (at s~0 and s~1) are

negligible. Note that Hamann et al. include a probabilistic decision

error in their model [1]. If robots are allowed to make an error

with a certain probability when changing their color, a non-

vanishing deterministic component a(s) at s~0 and s~1 will

appear [compare Fig. 1.d in [1]].

We integrate Eq. (2) numerically, using the previously obtained

a(s) and b(s), with an initial binomial distribution centered at

s~0:5

p(sk,t~0)~
n

k

� �
pk(1{p)n{k ð3Þ

where p~1=2 and the index k on sk indicates the discrete range

of s such that sk~k=N with k[f0, . . . ,Ng. The numerical

integration was performed using the simulation package INCHMAN

(http://inchman.github.io/Inchman/) with a vanishing probabil-

ity flux at the boundaries. Fig. 2 displays p(s,t) at three different

times (t~0 s, t~300 s and t~500 s) from the simulation results

(red curve) and from numerical integration of Eq. (2) (blue curve).

3 Stationary distribution, splitting probability, and time
to decision

Following Hamann et al. [1], we consider the splitting

probability p(s) as a measure for the robustness of the process.

p(s) is defined as follows. Consider the stochastic process (1) with

two absorbing boundaries erected at s~0zd and s~1{d, where

d is termed the decision threshold. The splitting probability p(s) is

then defined as the probability that, if the process starts at s at

t~t0, it will first exit through the boundary sr~1{d. In other

words, p(s) is the probability that a system starting in the state s
will come to the majority decision ‘‘red’’. We also introduced the

steady state distribution p�(s), which is defined as the probability

to find the process in the state s after it has attained its stationary

state. For all simulations presented in this article, this was the case

for t§1000. Appendix 1.2 demonstrates how p(s) and p�(s) can

be computed from the simulation output.

In Fig. 3, we compare the steady state distribution p�(s) (left

panel) and p(s) (right panel) obtained from the simulation results

[Eq. (53) in Appendix 1.2], plotted as red markers, and the

splitting probability computed through the FPE [Eq. (54) in

Appendix 1.2] (blue curve). The stationary PDF from the

simulation results (red markers in the left panel) is small but

non-vanishing in the interior region and smoothly rises at the

boundaries to meet the bimodal behaviour of the FPE solution

(blue curve). This is expected since we only use a limited time

interval from the simulation output to compute p�(s). We expect

that the agreement will be the better the longer the time interval is.

The shape of the splitting probability distribution from the

simulation results (red markers in the right panel) strongly

resembles the step function with a sharp rise at s~0:5. This

behaviour corresponds to a low decision error: if the system starts

in a state with a majority of ‘‘red’’ robots (sw0:5) it will almost

always find the consensus ‘‘red’’ (s~1) and vice versa. In contrast,

the integrated FPE exhibits a comparably smooth transition

centered at s~0:5 with a considerable decision error. While it is

also difficult to achieve a precise numerical intergation of this FPE,

Table 1. Parameters for the microscopic simulation of the virtual swarm using Flame.

Speed of agents u 0.01 [length units/time units]

Number of agents N 150

Initial prob. to be "red’’ p0 0.5

Avoidance radius da 0.01 [length units]

side length of domain L 1 [length units]

run time tmax 5000 [time units]

number of simulations J 5000

doi:10.1371/journal.pone.0111542.t001
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we can identify at least two systematic reasons for these deviations.

First, the underlying stochastic process for s is not Markovian (see

Sec. 2). Second, by only considering the spatially-integrated

variable s(t), we implicitly disregard any influence spatial

variations might have. We will return to these issues in Sections

‘‘The macroscopic-discrete approach’’ and ‘‘Constructing a time

coarse-grained Markov process for the symmetry parameter’’,

respectively, and fully analyze their influence. For now, we note

that robots of the same color tend to form clusters that are hard to

break up and hence promote an emerging decision. Even if the

spatial variability of the system is comparably low (see Section 4)

we expect that cluster formation improves the decision accuracy.

The last swarm property that we compute is the average time to

decision (see Appendix 1.2 for details). We display a comparison

between the decision time as computed directly from the

simulation output (red markers) and from integrating the FPE

(blue curve) in Fig. 4. For systems that start far away from the

center, sw*0:55 or sv*0:45, we have a good agreement between

the FPE solution and the simulation results. If the system is

prepared in a state with an approximately equal number of robots

of each color, the FPE solution is about 25 per cent lower than the

actual simulation solution. It appears that our description

underestimates the stochastic variance in s close to the center.

We do note, however, that the first passage time generally has a

high standard deviation and varies over many orders of magnitude

with varying noise levels [20].

4 Equations of motion and spatial correlations
In the original setting [1], the robots move in a straight line,

with a constant velocity u, until they encounter another robot.

Upon collision, the robot simply reverses its direction. In reality,

both the position as well as the heading, i.e. the direction of v, will

be subject to some variation. These effects will introduce a certain

amount of randomness into an otherwise deterministic system. To

take this into account, we describe the motion of a single robot in

terms of a continuous-time correlated random walk, more

specifically a velocity-jump process [21]. Here, collisions between

single robots are modelled as a Poisson process of intensity n. At

each collision, the robot changes its heading by an angle DQ[½0,p�,
which is chosen from a Gaussian distribution h centered at p:

h(DQ)~
1

A
exp {

(DQ{p)2

2s2

" #
, ð4Þ

where the normalization factor A~(2p)1=2 erf(p=s21=2) is

chosen such that

2

ðp

0

h(Q) dQ~1: ð5Þ

It can be demonstrated that such a system behaves, after a

transitional period, approximately diffusive [21]. For our purpose,

however, it is sufficient to know that the distribution of the robot

headings remains isotropic under the assumption that it is isotropic

initially. We can see that as follows. The probability to find a

particular velocity v after a collision, provided the current velocity

is v’, is given by the reorientation kernel T(v,v0) which depends on

h(Q{Q’) as

T(v,v0)~
d(u{u’)

u
h(Q{Q’), ð6Þ

where Q, Q’ denote the polar angles, i.e. the headings, of v and

v’, respectively, and the Dirac delta distribution d(u{u’) indicates

that the robot speed is conserved throughout the collision. Clearly,

Figure 1. Parameters a(s) (left) and b2(s) (right) for the stochastic differential equation as inferred from the simulation results for the
virtual swarm. Simulation parameters are given in Table 1.
doi:10.1371/journal.pone.0111542.g001

Figure 2. Probability density function. Probability density function
p(s,t) as obtained from the microscopic simulation (red curve) and from
the numerical integration of the FPE [Eq. (2)] (blue curve) at times
t~300 s, t~500 s and t~1000 s. The FPE coefficients were constructed
from the microscopic simulation of the virtual swarm (cf. Fig. 1).
doi:10.1371/journal.pone.0111542.g002
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if the initial distribution of headings is uniform,

P0(Q)~
1

2p
, ð7Þ

the probability to find a particular Q heading after the collision is

given by

P1(Q)~

ð2p

0

dQ’ h(Q{Q’)P0(Q’)~
1

2p

ð2p

0

dQ’h(Q{Q’)~
1

2p
: ð8Þ

Thus, PiQ~
1

2p
for all i. Not surprisingly, if the headings are

initially isotropically distributed, they will remain so during the

course of the simulation. This observation justifies our assumption

that the size of the velocity error does not affect the validity of the

time-continuous Markov model and we consequently set it to zero.

In this limit, the reorientation kernel approaches the Dirac delta

distribution in the velocity angle Q.

When deriving a probabilistic macroscopic description from

microscopic principles, authors often assume a homogeneous

distribution of individual agents [8,9]. It is, however, not

immediately clear that such an assumption would be justified in

all cases. A first estimate of how homogeneously distributed our

system is can be obtained by comparing the characteristic length

scale to the linear dimensions of the compartment [22]. The

characteristic length scale in our case is given by the mean free

path between subsequent collisions,

L~
distance travelled

interaction volume|agent density
~

Vffiffiffi
2
p

N2da

, ð9Þ

where N is the total number of agents in the integration domain

of size V and da denotes the avoidance radius. If L is of the same

magnitude as the linear dimensions of the compartment, we expect

that all density fluctuations are of larger scale than the

compartment dimensions and hence we can assume a homoge-

neous distribution. In particular, Eq. (9) states that homogeneity is

better satisfied for smaller avoidance radii da.

For our microscopic simulations, direct information about the

spatial distribution is available and we can use this information to

estimate the degree of spatial correlation. From the multitude of

available second-order characteristics for point processes, we here

opt for the pair correlation function g(r), which is popular

throughout a wide variety of disciplines ranging from astrophysics

to biology [23]. Heuristically, (N2=V2)g(r)dV1dV2 gives the

probability to find two individuals in the infinitesimal volumes dV1

and dV2, which are separated by a distance r. In writing down

g(r), we employ the fact, which we established above, that our

system does not exhibit a preferred direction, i.e. it is isotropic, and

all spatial correlations can only depend on the absolute value of

the separation r. We can compute g(r) directly from the simulation

output (Appendix 1.3).

The pair correlation function g(r) allows us to estimate the

degree of clustering exhibited by the stochastic system. For a

Poisson, i.e. homogeneously-distributed, point process, g(r)~1. If

the process forms clusters at a particular scale r, g(r)w1, and,

likewise, g(r)v1 if it avoids this scale, i.e. fewer agents are found at

this distance than would be expected if the process was

homogeneously distributed [23]. In Fig. 5, we compare g(r) for

Figure 3. Stationary probability distribution and splitting probability for a virtual swarm. (left) Stationary probability distribution p�(s) as
estimated from the simulation output (red markers) and computed from the FPE coefficients [Eq. (56) in Appendix 1.2]. (right) Splitting probability
p(s), as estimated directly from the simulation output [cf. Eq. (53) in Appendix 1.2] (red markers) and computed using the integrated stationary
distribution [Eq. (54) in Appendix 1.2] (blue curve). Simulation parameters are given in Table 1.
doi:10.1371/journal.pone.0111542.g003

Figure 4. Decision time for a virtual swarm. Decision time T(s) as
estimated from the simulation output [Eq. 58] (red markers) and
computed from the FPE coefficients [Eq. (59)]. Simulation parameters
are given in table 1.
doi:10.1371/journal.pone.0111542.g004
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a virtual swarm using two different avoidance radii da~0:01 (blue

curve) and da~0:1 (red curve). It is immediately obvious that the

process with da~0:1 (red) exhibits a large clustering at small

length scale and, consequently, we can expect that spatial

structures will be important in this case. On the other hand, for

small da~0:01 (blue curve), the ‘‘red’’ agents are approximately

homogeneously distributed. Fig. 5 substantiates our back of the

envelope estimate Eq. (9), since L is inversely proportional to the

avoidance radius. For da~0:01, the characteristic length scale

evaluates to L&0:24 which is roughly of the order of the linear

dimensions. Conversely, for da~0:1, we find L&0:024, which is

one order of magnitude smaller than L.

The clustering at high da can be explaind as follows. Essentially,

g(r) is the probability (modulo the normalization factor) to find

two red robots at two randomly-picked spots (separated by a

distance r) of the total area. r is then the distance between these

two robots and if g(r) is higher than one, it means that robots seem

to be more likely to be found at that distance than one would

expect for a spatially-homoheneous distribution. Note that robots

can indeed be closer than the avoidance radius. If da is large and

the number of agents is high, the total avoidance area exceeds the

integration area and robots have no chance to steer clear of other

robots. In fact, while being able to communicate over a wider

range, they remain relatively stationary. This explain the large

clustering in this limiting case. The immobility of the robots

prevents clusters from being disrupted through robot movement,

which is consistent with the concept of the mean free path.

5 Avoidance radius
In order to investigate how spatial inhomogeneities affect the

validity of our approach, we perform numerical experiments

where we vary da over a range of values. In Fig. 6, we compare

swarm properties for da~0:01 (blue curves and markers),

da~0:05 (red curves and markers), da~0:075 (green curves and

markers) and da~0:1 (black curves and markers). All other

simulation parameters are as in Table 1. Shown are the SDE

coefficients (top panels), the splitting probability (bottom left panel)

and the decision time (bottom right panel).

We first notice that for a large avoidance radius (black), the drift

a(s) (top-left panel) becomes very flat with a sharp rise at s~0:5
and almost resembles a step function, which means that the drift

parameter s(t) will move towards a decision with almost constant,

albeit low, speed. This is clearly an effect of spatial clustering: only

the cluster members that are located at the boundary can convince

other robots to change their decision. In contrast, in the

homogeneous case, each robot of the majority color has a large

chance to encounter a robot of the opposite color. Hence, the

probability for a random agent to change its color is relatively high

when a particular color is already prevailing. This explains the

large drift in this case (top-left panel, blue curve).

b2(s) (top right panel) has a distinct peak in the inhomogeneous

case (black curve) at s~0:5. b2(s) represents the variability of the

agent colors and it is high when agents tend to frequently revise

their decisions. This is the case in the early cluster-formation stage

of the system evolution (at s~0:5). Once the clusters have formed,

color changes occur less frequently and in a more systematic

manner, hence b2(s) declines towards s?0 and s?1. In the

homogeneous case (blue curve), the change rate is comparably low

at s~0:5: any particular robot will, with approximately the same

probability, encounter robots of the same and of the opposite color

and hence is not very likely to change its color. The situation is

different, when one color is slightly dominant (at s&0:4 and

s&0:6). In this case, there are still a lot of agents of the non-

dominant color available. However, these robots are more likely to

encounter a robot of the dominant color, i.e. opposite, color and

change occurs. This explains the double peak in the blue curve.

Finally, da~0:05 (red curve) is the limiting case, where the total

avoidance area is comparable to the stage area and clustering

becomes dominant. Here, the double peak has vanished and a

distinct single peak becomes visible.

Finally, the wide shape of the decision time curve (bottom-right

panel) follows immediately from the large diffusivity in the high

and low s regions. In contrast, the actual decision time (black

markers in bottom-right panel) is low: if the system is prepared in a

state with a large majority, a consensus is achieved quickly. The

decision time curve also illustrates the qualitative change that

occurs in the transition from the low spatial correlation regime

(blue curve) to the regime where clustering becomes dominant

(red, blue, and black curves). Experiments with a low avoidance

radius da~0:01 where no clustering occurs (blue curve) are

characterized by a high drift contribution (compare top-left panel

and discussion above) which leads to a low decision time. In

contrast, clusters tend to be stable and spatial correlations greatly

increase the decision time. The same effects can be observed in the

splitting probability plot (bottom-left panel). Clustering might lead

to wrong decisions as large stable clusters can overturn a

developing decision.

In summary, clustering, when it occurs, has a large impact on

the shape of the SDE coefficients. The change is qualitative

(compare the blue and the black curves in the top panels) and can

be likened to a phase transition of the macroscopic system.

Naturally, if spatial effects dominate, our homogeneous descrip-

tion loses its validity. We conclude that our approach is best-suited

for small avoidance radii, when the system is approximately

homogeneous.

Kilobot Experiments

Simulations, by their very nature, can only model the swarm

behaviour in very idealized conditions. It is impossible to

Figure 5. Pair correlation function for a virtual swarm.
Comparison of the pair correlation function g(r) [Eq. (60)] for different
values of the avoidance radius da~0:01 (blue curve) and da~0:1 (red
curve). All other simulation parameters are given in table 1. For a large
avoidance radius (red curve), corresponding to L&0:024 [Eq. (9)] the
system tends to form spatial clusters. In contrast, if the avoidance radius
is low (blue curve, L&0:24) the distribution is nearly homogeneous.
doi:10.1371/journal.pone.0111542.g005
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incorporate all real-world challenges, such as changing environ-

mental conditions and noisy sensors and actuators, into a

simulation model a priori. One possibility to achieve a better

understanding of the actual physical swarm behaviour is to

perform experiments under controlled conditions in a laboratory

setting [4]. Here, we present results from experiments we

conducted using KILOBOTS.

1 Experiment setup
KILOBOTS are low-cost robots specifically designed to enable

large-scale experiments on swarm behaviour [16]. Locomotion of

the KILOBOTS is achieved using vibration motors which allows

them to move at about 1 cm s{1 and change their heading at an

angular velocity of 45 deg s{1. KILOBOTS can communicate via

infrared light, which is emitted isotropically by a LED at the

bottom of the KILOBOTS. Hence, communication requires the use

of a reflective table that allows another robot to detect the reflected

signal. The maximal communication distance is about 10 cm.

Measuring the light intensity allows distance estimates between

two KILOBOTS with a maximal accuracy of 2 mm.

For our experiments, we used a swarm of ten KILOBOTS moving

freely on a flat table. The KILOBOTS are confined to a square area of

60|60 cm2 which was marked out using layered tape. Initially the

KILOBOTS were distributed homogeneously over the table such that

they are outside the communication distance of each other. Each

Kilobot is initialized to either ‘‘red’’ or ‘‘green’’ state, with a probability

of p0~0:5. The state of each bot is indicated by a red or green LED.

The KILOBOTS achieve consensus using a behavioural algorithm similar

to the density estimation algorithm presented above [24]. The

communication distance is transmitted using an integer value

d[½0,127�. By experiment, we found that d~73(127) corresponds

to da&4(8) cm and we assume that inside this range the relationship is

linear. Fig. 7 illustrates the basic setup. An actual KILOBOT is shown in

Fig. 8. The swarm parameters are given in Table 2.

2 Results
We perform experiments where we vary over the communica-

tion distance (da[f4,6,8g cm). Note that the communication

distance of the KILOBOT is exactly the avoidance distance of the

virtual swarm. For each value of da, we conduct 31 experiments

and record the initial number of ‘‘red’’ robots and the time stamps

when a robot changes its color. The experiments were run until

consensus is achieved. In principle, we could extract all swarm

parameters from the experiment records as in Section ‘‘Micro-

scopic approach: Virtual swarm’’ (subsection 3). However, given

the small number of robots, it is questionable if the Fokker-Planck

approximation [Eq. (2)] of the underlying continuous-time

Markov chain is still applicable. We will return to this question

in Section ‘‘Constructing a time coarse-grained Markov process

for the symmetry parameter’’. For now, we elect to model the time

evolution of the symmetry parameter as a continuous-time,

discrete-state Markov process sk(t) (where the index

k[f0,1=N, . . . ,Ng indicates the discrete nature of the process)

with the corresponding Master equation [20]

L
Lt

P(sk,t)~W{(skz1)P(skz1,t)z

Wz(sk{1)P(sk{1,t){½Wz(sk)zW{(sk)�P(sk,t),

ð10Þ

Figure 6. Comparison of swarm properties for different values of the avoidance radius da . Shown are results for da~0:01 (blue curves and
markers), da~0:05 (red curves and markers), da~0:075 (green curves and markers) and d~0:1 (black curves and markers). All other simulation

parameters are given in Table 1. (top panels) Parameters a(s) (left) and b2(s) (right) for the stochastic differential equation as inferred from the
simulation results for the virtual swarm. (bottom left panel) Splitting probability p(s), as estimated directly from the simulation output [cf. Eq. (53)]
(markers) and computed using the integrated stationary distribution Eq. (54) (curves). (bottom right panel) Decision time T(s) as estimated from the
simulation output [Eq. 58] (markers) and computed from the FPE coefficients [Eq. (59)] (curves).
doi:10.1371/journal.pone.0111542.g006
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where the stepping functions W+(sk) are defined such that

W+(sk)dt gives the probability for the process to jump into the

state sk+1 in the next infinitesimal interval ½t,tzdt�, given that it

is currently in the state sk. From the definition of sk as the

proportion of robots to be in state ‘‘red’’, it follows that Wz

denotes a change in color from ‘‘green’’ to ‘‘red’’. We expect that

the continuous-state FPE description [Eq. (2)] naturally follows

from Eq. (10) in the limit N?? if a suitable limiting procedure,

such as the system-size expansion [25] is applied. This result is

demonstrated in Section ‘‘Constructing a time coarse-grained

Markov process for the symmetry parameter’’ for a simplified toy

problem.

We can easily estimate the jump probabilities W+(sk), the

splitting probabilities p+(sk) and the average time to decision

T(sk) from the experiment records using standard techniques [20].

For convenience, we collect the main literature results in Appendix

1.4.

The results are presented in Fig. 9, which displays the jump

probabilities W+(sk) (top panels), the splitting probability p(sk)
(bottom left panel) and the decision time T(sk) (bottom right

panel) for avoidance distances da~4 cm (blue), da~6 cm (red),

and da~8 cm (green). In the bottom panels, the markers indicate

the results extracted directly from the experiment records while

the curves are computed from the solution of the Master equation

(10). Generally, the variance is high and a clear trend is hard to

recognize in the plot. This is expected, as the number of

experiments we performed is low (31 experiments for each da).

The jump probabilities exhibit a tendency to promote an emerging

decision: if a majority of ‘‘red’’ robots is present (skw0:5), Wz(sk)
is high and the process will further move towards the consensus

‘‘red’’ (and vice versa).

Given the high variance of the transition probability, the

agreement between the solution of the Master equation (curves in

bottom panels) and the experimental results (markers in bottom

panels) is reasonable for the average decision time. However, for

the splitting probability the computed solution is quite poor. As in

Section ‘‘Microscopic approach’’ (cf. Fig. 6), the integrated

solution appears to overestimate the decision error, i.e. the

integrated solution suggests that a system prepared in a state close

to s~0:5 is likely to make a wrong decision. This disagrees with

the experiment where wrong decisions are virtually non-existent.

One possible cause for this is that the low number of experiments

caused a high variance in the transition probabilities and that

solving the Master equation with these yields inaccurate results.

Much more importantly, we can identify a systematic reason why

this might be the case: Projecting the multi-dimensional config-

uration space of the underlying problem, which consists of the

current position and collision history of each robot, onto a one-

dimensional finite space, the symmetry parameter, requires spatial

homogeneity as a necessary (but as we will demonstrate in Sections

‘‘The macroscopic-discrete approach’’ and ‘‘Constructing a time

coarse-grained Markov process for the symmetry parameter’’ not

sufficient) condition. In Section ‘‘Microscopic approach: Virtual

swarm’’ (subsection 4) above, we identified the mean free path

betweeen collisions L [Eq. (9)] as the characteristic length scale of

spatial inhomogeneities. For this setup, we find

0:53v*L=cmv*1:1%L=cm~60, i.e. we expect distinct clustering

of robots of the same color. Indeed, Fig. 7 clearly shows the

formation of two clusters.

For comparison, we use FLAME to simulate a swarm with the

same parameters as the KILOBOT swarm (Table 2). The results are

presented in Figure 10. The splitting probability p(s) (bottom left

panel in the figure) exhibits the same mismatch between the

simulation data (markers) and the integrated solution (curve)

despite the fact that the number of experiments is significantly

higher (J~1000). Again, we attribute the discrepancy to spatial

Figure 7. Setup for the kilobot experiments. The arrow marks the
current heading of each bot.
doi:10.1371/journal.pone.0111542.g007

Figure 8. Picture of a kilobot. Picture courtesy of K-Team (http://
www.k-team.com/).
doi:10.1371/journal.pone.0111542.g008

Multiscale Modelling of Collective Decision Making in Swarm Robotics

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e111542

http://www.k-team.com/
http://www.k-team.com/


correlations (see subsection 5 in Section ‘‘Microscopic approach:

Virtual swarm’’).

The Macroscopic-Discrete Approach

An important aim of this work is to explore how well self-

organizing phenomena can be represented using the mathematical

tool box of stochastic chemical kinetics [26]. The standard

approach to formulate individual-level behaviour uses Langevin-

type stochastic differential equations to describe the motion and

interaction of individual agents. A macroscopic-discrete description,

however, only keeps track of the number count of a population of

identical and indistinguishable individuals, termed species, in a

spatially-homogeneous integration domain.

For the task at hand, we introduce two species classes, namely

Gxy and Rwz. The capital letter denotes the color of the agent (R

for red and G for green) while the subscripts x,y,w,z[f0,1, . . . ,ng

stand for the number of previous encounters of ‘‘red’’ (first indices

x and w) and ‘‘green’’ (second indices y and z) robots. For

example, an individual of species R32 is of color ‘‘red’’ and has

previously encountered three ‘‘red’’ and two ‘‘green’’ robots. We

model the interactions, i.e. the collision encounters, using the

following set of reactions:

GxyzRwz?Gxz1,yzRw,zz1 (xzyvn{1 ^ wzzvn{1), ð11Þ

GxyzRwz?R00zRw,zz1

(xzy~n{1 ^ x§y ^ wzzvn{1),
ð12Þ

Table 2. Parameters for the kilobot swarm and the microscopic simulation of it using Flame.

Speed of agents u 1 [cm s{1]

Number of agents N 10

Initial prob. to be "red’’ p0 0.5

Avoidance radius da f4,6,8g [cm]

side length of domain L 60 [cm]

run time tmax 2000 [s]

number of simulations J 1000

doi:10.1371/journal.pone.0111542.t002

Figure 9. Comparison of properties of the kilobot swarm for different values of the avoidance radius da . Shown are results for da~4 cm
(blue curves and markers), da~6 cm (red curves and markers) and da~8 cm (green curve and markers). The experimental setup is described in
Section "Kilobot experiments’’ (subsection 1). (top panels) Jump probabilities Wz(sk) (left) and W{(sk) (right) for the Master equation (10) as inferred
from the experiment records [Eq. (63)]. (bottom left panel) Splitting probability p(sk), as estimated directly from the experimental records [cf. Eq. (53)]
(markers) and computed using the solution of the Master equation Eq. (68) (curves). (bottom right panel) Decision time T(sk) as estimated from the
experiment records [Eq. 58] (markers) and computed from the Master equation [Eq. (69)] (curves).
doi:10.1371/journal.pone.0111542.g009
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GxyzRwz?G00zRw,zz1

(xzy~n{1 ^ xvy ^ wzzvn{1),
ð13Þ

GxyzRwz?Gxz1,yzR00

(xzyvn{1 ^ wzz~n{1 ^ w§z),
ð14Þ

GxyzRwz?Gxz1,yzG00

(xzyvn{1 ^ wzz~n{1 ^ wvz),
ð15Þ

GxyzRwz?R00zR00

(xzy~n{1 ^ x§y ^ wzz~n{1 ^ w§z),
ð16Þ

GxyzRwz?R00zG00

(xzy~n{1 ^ x§y ^ wzz~n{1 ^ wvz),
ð17Þ

GxyzRwz?G00zR00

(xzy~n{1 ^ xvy ^ wzz~n{1 ^ w§z),
ð18Þ

GxyzRwz?G00zG00

(xzy~n{1 ^ xvy ^ wzz~n{1 ^ wvz),
ð19Þ

and corresponding sets for interaction between equal colors. For

n~5, we find a total of 30 species and 465 reactions. A decision

depth of n yields nels~n(nz1)=2 elements per species and a total

of nreactions~nels(2nelsz1).

In a reaction network the time evolution of the population count

for the various species can be described by the well-known

chemical Master equation (CME) and a large arsenal of analytical

and numerical methods for the solution of the CME is available

[27]. In particular, very efficient Monte-Carlo methods exist to

numerically compute individual realizations of the underlying

stochastic distribution [28]. A macroscopic-discrete model assumes

that the various components (species) are well mixed in the

container, i.e. spatial homogeneity of the system. We established in

Section ‘‘Microscopic approach: Virtual swarm’’ (subsection 4),

that the well-mixed constraint is satisfied, if the mean free path

between collisions is at least comparable to the container

dimensions. Here and in the following, we assume that the system

is spatially homogeneous. In this section, we present results of

macroscopic-discrete simulations of the robot swarm and investi-

gate how well the microscopic model (Section ‘‘Microscopic

approach’’) is approximated by a macroscopic-discrete description.

In the next section (Section ‘‘Constructing a time coarse-grained

Markov process for the symmetry parameter’’) we make an

attempt at analytically solving the chemical Master equation.

Figure 10. Comparison of properties of a flame simulation designed to mimic the kilobot swarm for different values of the
avoidance radius da . Also compare Fig. 9). Shown are results for da~4 cm (blue curves and markers), da~6 cm (red curves and markers) and
da~8 cm (green curve and markers). The experimental setup is described in Section "Kilobot experiments’’ (subsection 1). (top panels) Jump
probabilities Wz(sk) (left) and W{(sk) (right) for the Master equation (10) as inferred from the experiment records [Eq. (63)]. (bottom left panel)
Splitting probability p(sk), as estimated directly from the experimental records [cf. Eq. (53)] (markers) and computed using the solution of the Master
equation Eq. (68) (curves). (bottom right panel) Decision time T(sk) as estimated from the experiment records [Eq. 58] (markers) and computed from
the Master equation [Eq. (69)] (curves). The simulation parameters are given in table 2.
doi:10.1371/journal.pone.0111542.g010
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1 Deriving the reaction constants from the avoidance
radius

The density estimation algorithm as described previously [1,24]

permits communication between individual robots only if the

distance d between the individuals is below a certain communi-

cation or avoidance distance da. In the language of chemical

kinetics, this communication distance corresponds to the reaction

radius R in the sense that interaction reactions [Eqs. (11)–(19)]

occur if the distance between the individual ‘‘molecules’’ Rxy and

Gwz is smaller than R. The reaction is deterministic in the sense

that it will always occur if the molecules are close enough. This is

different to chemical kinetics, where molecules react only with a

certain probability, which depends on the particular reaction

mechanism. The macroscopic-discrete model, on the other hand,

assumes that the reaction propensity per compartment is given by

the law of mass action, viz. a~kRxyGwz, where Rxy and Gwz

denote the number of particles of each species in this compart-

ment.

The question of howto translate R into the rate constant k for

the bi-molecular reactions (11)–(19) has a long-going history in the

field of chemical kinetics. For our purpose, it suffices to work in the

‘‘ballistic regime’’, where the trajectories of particles (or robots, in

our case) between collisions are essentially straight lines [29,30]. It

can then be shown that the reaction constant is given by [30]

k~
2dau0

V
, ð20Þ

where V is the area of the compartment. This is the encounter

rate, when has also been used in previous work by other authors

[31,32]. Note that, in chemical kinetics, the actual reaction rate

might be lower as the encounter rate quoted here, since reactions

might only occur with a certain probability upon encounter. The

derivation hinges on an isotropically-distributed robot velocity and

assumes that the robots are homogeneously distributed inside the

compartment. We demonstrated above (subsection 4 in Section

‘‘Microscopic approach: Virtual swarm’’) that an isotropic

distribution of the robot headings is guaranteed as long as the

robot velocity is isotropic initially.

2 Macroscopic-Discrete simulations
We perform simulations of the reaction network Eqs. (11)–(19)

using the highly efficient, GPU-accelerated, simulation package

INCHMAN. INCHMAN allows us to perform a large number of Monte-

Carlo experiments of the reaction network using an accelerated

implementation of the classical direct method [17,18,33]. We set

up simulations designed to reproduce the virtual swarm (Section

‘‘Microscopic approach’’). The species and reaction between

species are defined as in Eqs. (11)–(19) and we set up the reaction

rate according to Eq. (20), where the reaction radius R is given by

the avoidance radius da. The simulation parameters are given in

Table 3. The large number of experiments (J~16384) is only

feasible with an accelerated macroscopic-discrete simulation.

The results of these experiments are presented in Fig. 11. On

comparison with the microscopic simulation, Fig. 6, we note that

the SDE coefficients (top panels in both figures), exhibit the same

characteristic shape for a low avoidance radius (blue curve). The

drift function (top left panels) acts to promote an emerging decision

while the diffusivity (top right panels), which peaks at the same

values of the symmetry parameter as the drift function, allow

emerging decisions to be revised. However, the peak value of b2(s)
(at about s~0:25 and s~0:75) for the macroscopic-discrete

simulations (Fig. 11) is higher while b2(s~0:5) is roughly the same

for the macroscopic-discrete and the microscopic simulations. This

behaviour can be explained as follows. In the macroscopic-discrete

simulations, we explicitly disregard any spatial correlations such as

clustering - which we know (subsection 4 in Section ‘‘Microscopic

approach: Virtual swarm’’) are prevalent for high da. Conse-

quently, the SDE coefficients (top panels) are accurately repro-

duced for low da~0:01 (blue curves) while they markedly differ for

higher radii. The large avoidance radius case (for example black

curves for da~0:1) is basically a scaled version of the homoge-

neous case. The scaling is due to the higher reactivity k, which

stems from the larger da [compare Eq. (20)]. The lower panels in

the figure demonstrate that the macroscopic-discrete approach is

consistent in that the swarm properties splitting probability

(bottom-left panel) and decision time (bottom-right panel) are

fairly well reproduced by the FPE solution (curves) for all da.

Constructing a Time Coarse-Grained Markov
Process for the Symmetry Parameter

We have shown in the previous sections how the time evolution

of the symmetry parameter s can be described using a stochastic

differential equation [Eq. (1)] and how the coefficients of this SDE

can be extracted from the results of numerical and physical

experiments (Sections ‘‘Microscopic approach’’ and ‘‘Kilobot

experiments’’). Inspired by results from chemical kinetics, we

could also demonstrate in Section ‘‘The macroscopic-discrete

approach’’ how the microscopic description of the robot swarm

gives rise to a macroscopic-discrete description which focuses on

aggregate properties of the swarm. What is left open is the

important question how to determine the SDE coefficients a(s)

and b2(s) analytically. In this section, we close the loop by

outlining a new way to derive a and b analytically from the

macroscopic-discrete description. Again we will refer to techniques

from chemical kinetics as our task amounts to solving the chemical

Master equation for the reaction network given by Eqs. (11)–(19).

Unfortunately, even for the lowest sensible decision threshold

(n~3), the sheer size of the reaction network (78 reactions) makes

such an attempt a daunting undertaking. We therefore opt to

postpone a full solution of the problem and instead tackle a very

simplified toy problem, hoping to gain valuable insights into the

structure of the solution. The results presented in this section are

therefore only to be seen as an in-principle investigation that paves

the way towards a complete solution.

Our toy problem consists of two species, ‘‘red’’ and ‘‘green’’,

that can be in two states each, a ground state R0 and an excited

state R1 (and analogous for green). Whenever an individual of

species, say ‘‘red’’, in the ground state encounters any ‘‘green’’

individual (in the ground state or in the excited state), it changes

into the excited state R1. Whenever an excited ‘‘red’’ individual

encounters any ‘‘green’’ individual it changes its color to ‘‘green’’

in the ground state, G0. If an excited ‘‘red’’ individual encounters

any other ‘‘red’’ individual it changes into the ‘‘red’’ ground state.

Consequently, the discrete state space of our model is given by

S~f(r0,r1,g0,g1)[N4
0Dr0zr1zg0zg1~Ng, where, naturally, r0,1

and g0,1 denote the number of ‘‘red’’ and ‘‘green’’ robots in the

ground and excited state, respectively. The reactions are then

R0zG0?R1zG1 ð21Þ

R0zG1?R1zR0 ð22Þ
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Table 3. Parameters for the macroscopic-discrete simulations of the virtual swarm using inchman.

Speed of agents u 0.01 [length units/time units]

Number of agents N 150

Initial prob. to be "red’’ p0 0.5

Avoidance radius da 0.01 [length units]

side length of domain L 1 [length units]

run time tmax 4000 [time units]

number of simulations J 16384

Parameters for the macroscopic-discrete simulations of the virtual swarm using INCHMAN. The reaction rate is given by Eq. (20).
doi:10.1371/journal.pone.0111542.t003

Figure 11. Comparison of swarm properties for macroscopic-discrete simulations of the virtual swarm using different values of the
avoidance radius da . Shown are results for da~0:01 (blue curves and markers), da~0:05 (red curves and markers), da~0:075 (green curves and

markers) and d~0:1 (black curves and markers). All other simulation parameters are given in table 3. (top panels) Parameters a(s) (left) and b2(s)
(right) for the stochastic differential equation as inferred from the simulation results for the virtual swarm. (bottom left panel) Splitting probability
p(s), as estimated directly from the simulation output [cf. Eq. (53)] (markers) and computed using the integrated stationary distribution Eq. (54)
(curves). (bottom right panel) Decision time T(s) as estimated from the simulation output [Eq. 58] (markers) and computed from the FPE coefficients
[Eq. (59)] (curves).
doi:10.1371/journal.pone.0111542.g011
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R1zG0?G0zG1 ð23Þ

R1zG1?G0zR0 ð24Þ

R0zR1?R0zR0 ð25Þ

R1zR1?R0zR0 ð26Þ

G0zG1?G0zG0 ð27Þ

G1zG1?G0zG0: ð28Þ

For clarity of notation, we absorb the reaction rate k, which is

given by Eq. (20), into the time unit, i.e. we transform to a new

variable t’~t=k and drop the prime in the notation, and

henceforth omit k from any equations.

1 Non-Markov property of the lumped process
Before we proceed in writing down and solving the chemical

Master equation that belongs to Eqs. (21)–(28), we will show that

lumped process for the symmetry parameter s~(r0zr1)=N is

generally not Markov. The time evolution of s can be obtained by

partitioning S such that the state space of the new process is given

by �S~fr0zr1~0,r0zr1~1, . . . ,r0zr1~Ng:fs0, . . . ,sNg. Ac-

cording to Tian et al. [34], a continuous-time Markov chain with

finite state space S is lumpable, i.e. the lumped process is Markov

again, with respect to a particular partition �SS iff

Vtw0Vei ,ej[sj

X
ek[sg

pik(t)~
X
ek[sg

pjk(t), ð29Þ

where pik(t) is the transition probability of the original chain to

go from state i to state k and ei,j,k are the members of the state

space. Note that, for convenience of notation, we use an arbitrary

one-dimensional enumeration of the multi-dimensional state space

S.

In words, the lumpability condition Eq. (29) states that the

transition probability for any of the states in the original chain that

comprise the state s~j=N in the lumped chain to go into any state

corresponding to s~g=N in the lumped chain must be the same,

regardless of the source state. We can easily see that this condition

is not satisfied. Consider, for example, the situation that half of the

robots are initialized as ‘‘green’’ and have not had the chance to

encounter any other robot, i.e. g0~N=2 and r0~N=2, with all

other states zero. Clearly, this situation corresponds to s~1=2 and

the transition probability to go into any state with s=1=2 is zero,

since no robots are currently in the excited state. However, as the

simulation continues, some ‘‘red’’ robots might encounter ‘‘green’’

robots and and eventually there might be a number of robots in

the state r1. This situation still belongs to the state s~1=2 but now

the probability to go into a different state sv1=2 is non-vanishing

since these robots might change their color in the next encounter.

We conclude that the lumpability is not satisfied and, hence, the

lumped process is generally not Markov. It is obvious that this

argument extends to the full macroscopic-discrete system Eqs.

(11)–(19).

2 Elimination of fast variables
We now go about to write down and solve the Master equation

for our toy model. The key assumption in our approach is that

there is a separation of time-scales between transitions that change

the symmetry parameter s and transitions between the internal

states. In other words, for every transition s?+1=N, there were

many internal transitions between the ground and the excited

state. This assumption allows us to eliminate the fast variables that

are associated with the internal states and obtain an approximate

Master equation for the state parameter, which should be valid on

a time scale that is larger than the time scale of internal transitions.

Naturally, this assumption is satisfied best if there are many

internal states: For each change in s the system needs to undergo a

number of internal changes first as robot encounters occur. If the

number of internal states is high, we would therefore expect a

significant separation of time scales. Our toy model has only one

excited state and we expect a model with a larger internal decision

depth (e.g. n~5 as in the simulations above) will satisfy this key

premise reasonably well. Again, we will have to postpone a more

comprehensive discussion to further work. Here, we justify our

assumption a posteriori by validating the results.

The constraint that the total number of robots N is a conserved

quantity allows us to eliminate one of the state variables. We

decide to use the state variables (r,r1,g1) and the obvious relation

g~N{r, where r and g denote the total number of red and green

robots, respectively. The state space S is then

S~f(r,r1,g1)[N3
0D0ƒr1ƒrƒN,0ƒg1ƒN{rg, ð30Þ

and the Master equation we strive to solve is

L
Lt

P(r,r1,g1,t)~(E{1
r1

E{1
g1

{1)(r{r1)(g{g1)P

z(E{1
r E{1

r1
Eg1

{1)(r{r1)g1Pz(ErEr1
E{1

g1
{1)r1(g{g1)P

z(Er1
Eg1

{1)r1g1Pz(Er1
{1)(r{r1)r1Pz(E2

r1
{1)r1(r1{1)=2P

(Eg1
{1)(g{g1)g1Pz(E2

g1
{1)g1(g1{1)=2P,

ð31Þ

where P(r,r1,g1,t) is the probability to find the process in the

state (r,r1,g1) at time t. We omit the argument of P(r,r1,g1,t) on

the right-hand side and define the step operator E as

E+1
r f (r,r1,g1,t)~f (r+1,r1,g1,t) for any function f (r,r1,g1,t) and

accordingly for the other state variables r1 and g1 [25].

We now assume that the reactions between the ground and

excited states for each species occur much faster than the reactions

that change the color of species. This assumption is justified as

robots can only change their color, i.e. a change in s occurs, after

they encountered at least n robots of the opposite color. More

likely, however, the number of internal changes is much higher,

since before a color change occurs, the robots would encounter a

number of robots of different colors, each encounter causing a

change in internal state. Hence, the higher the decision depth n is,

the larger the more distinct the separation of time scales will be.

The separation of time scales causes the state (r1,g1), for a given

r, to equilibrate quickly. Following Frankowicz et al. [35], we can
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then eliminate the fast variables (r1,g1). The basic idea is to obtain

an equation for the slow variable r by marginalizing over the fast

variables, i.e. ~PP(r,t)~
Xg

g1~0

Xr

r1~0
P(r,r1,g1,t). The reduced

Master equation for ~PP is then

L~PP(r,t)

Lt
~

(Er{1)S(r{r1)g1DrT~PP(r,t)z(E{1
r {1)S(g{g1)r1DrT~PP(r,t),

ð32Þ

where we used the abbreviation Sf DrT~
X

r1,g1

f (r,r1,g1)

P(r1,g1Dr) and Bayes’ rule P(r1,g1Dr)~P(r,r1,g1)=~PP(r,t).

To close Eq. (32) we now make the assumption that the

conditional probability P(r1,g1Dr) obeys the reduced Master

equation [35]

LP(r1,g1,tDr)

Lt
~(E{1

r1
E{1

g1
{1)(r{r1)(g{g1)P(r1,g1,tDr)

z(E{1
r1

Eg1
{1)(r{r1)g1P(r1,g1,tDr)

z(Er1
E{1

g1
{1)r1(g{g1)P(r1,g1,tDr)

z(Er1
Eg1

{1)r1g1P(r1,g1,tDr)

z(Er1
{1)(r{r1)r1P(r1,g1,tDr)

z(E2
r1

{1)r1(r1{1)=2P(r1,g1,tDr)

z(Eg1
{1)(g{g1)g1P(r1,g1,tDr)

z(E2
g1

{1)g1(g1{1)=2P(r1,g1,tDr),

ð33Þ

which follows from Eq. (31) with r held constant.

We need to solve Equation (33) for the stationary state with r as

a parameter. Having obtained the stationary solution Ps(r1,g1,tDr),
we can compute the conditional averages needed to solve Eq. (32).

Since Sg1 r{r1ð ÞDrTs~rSg1Ts{Sg1r1Ts and S g{g1ð Þr1DrTs~

gSr1Ts{Sg1r1Ts, it is sufficient to compute the moments Sr1T,

Sg1T, and Sr1g1T. In principle, Ps(r1,g1,tDr) can be obtained

directly from Eq. (33) using graph-based methods [36]. However,

we avoid this rather cumbersome approach here and perform an

V-expansion of Eq. (33) instead [25].

3 Macroscopic equation for the fast variables
The system-size expansion is an expansion in a parameter V,

which often stands for the size of the integration domain, and

presupposes that, in the macroscopic limit, the probability density

is sharply peaked around the macroscopic solution with fluctua-

tions of order V1=2. Clearly, this requires that the macroscopic

solution is unique and stable such that fluctuations cannot grow. In

this subsection, we develop the macroscopic solution and show

that it is indeed stable.

The macroscopic equations for the fast variables r1(t) and g1(t)
follow immediately from the reaction network Eqs. (21)–(28) under

the condition r0(t)zr1(t)~r~const. We can easily write down

the macroscopic equivalent of Eq. (33) and obtain

r
d�rr1(t)

dt
~gr{2gr�rr1(t){r2�rr1(t){r2�rr1(t)2

g
d�gg1(t)

dt
~gr{2gr�gg1(t){g2�gg1(t){g2�gg1(t)2,

ð34Þ

where we use the scaled variables �rr1(t)~r1(t)=r and

�gg1(t)~g1(t)=r.

The initial condition is �rr1(t~0)~�gg1(t~0)~0 (we assume that

there are no excited robots initially) and we can solve Eq. (34),

finding

�rr1(t)~{
2gzrzr tanh½r(C1{t)=2�

2r

�gg1(t)~{
2rzgzc tanh½c(C2{t)=2�

2g
,

ð35Þ

with r~(4g2z8grzr2)1=2, c~(g2z8grz4r2)1=2, and the

integration constants are determined by the initial conditions to

be C1~{2 sech{1½2 ffiffiffiffiffi
gr
p

=r�=r and C2~{2 sech{1½2 ffiffiffiffiffi
gr
p

=c�=c.

The stationary solution is unique and can be found in the limit

t?? to be

�rr�1~{
2gzr{r

2r
, and �gg�1~{

2rzg{c

2g
: ð36Þ

Linearization of Eq. (34) around the fixed point (�rr�1,�rr�2) gives the

stability matrix

A~
{rr 0

0 {gc

� �
, ð37Þ

with the obvious eigenvalues l1,2~f{rr,{gcg. Clearly, the

eigenvalues are negative and the fixed point is stable.

4 System-size expansion of the fast variables
We solve the Master equation for the fast variables r1 and g1

[Eq. (33)] by performing a multi-variate V-expansion. We assume

that the solution exhibits a sharp localized peak and fluctuations

around that peak of order V1=2, hence r1~j
ffiffiffiffi
V
p

ztVw,

g1~g
ffiffiffiffi
V
p

ztyV, and P(r1,g1,tDr)~P(j,g,t). Expanding the step

operators and the total time derivative in terms of j and g and

keeping the terms up to V{1 yields the system size expansion [25].

Details of the expansion can be found in Appendix 2. Here we

only give the results for the moments of the fast variables:

Sr1Ts~Vwsz
ffiffiffiffi
V
p

SjTs~
1

2
V r{2g{rð Þ, ð38Þ

Sg1Ts~Vysz
ffiffiffiffi
V
p

SjTs~
1

2
V c{g{2rð Þ, ð39Þ
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and

Sr1g1Ts~SrTsSgTszV SjgTs{SjTsSgTsð Þ

~
V {2g3zg2 r{2rð Þzr2 2r{cð Þz2gr2
� �

(g{r)(gzr)

{
1

4
V2 {rz2gzrð Þ c{g{2rð Þ:

ð40Þ

5 The reduced Master equation for the slow variable
We are now in a position to compute the coefficients for the

reduced Master equation (32). To allow comparison with the

results from the previous section, we first transform Eq. (32) back

into a Master equation for the symmetry parameter s~r=N,

where we also restore the reaction rate k:

LP(s,t)

Lt
~

k(Er{1)S(r{r1)g1DrTP(s,t)zk(E{1
r {1)S(g{g1)r1DrT~PP(s,t):

ð41Þ

We need the terms

Sg1 r{r1ð ÞDrTs~rSg1Ts{Sg1r1Ts

~
Nf4f~rrzs½~rr(s{2)z4{s~cc�{2g{N(2s{1)(sz1{~cc)(sz2{~rr)g

8s{4

ð42Þ

and

S g{g1ð Þr1DrTs~gSr1Ts{Sg1r1Ts

~
Nf4f~rrzs½~rr(s{2)z4{s~cc�{2g{N(2s{1)(~cczs{3)(~rrzs{2)g

8s{4
,
ð43Þ

where we used g~N{r, ~rr~(4{3s2)1=2, ~cc~½1{3(s{2)s�1=2

and also set V~1.

A comparison with the Master equation (10) and the definition

of the stepping functions W+(sk) allows us to identify

W{(sk)~kS g{g1ð Þr1DrTs, and Wz(sk)~kSg1 r{r1ð ÞDrTs: ð44Þ

In Fig. 12, we compare the approximate solution (44) of the

Master equation (curve) with a macroscopic-discrete simulation of

our toy model (circles) and a macroscopic-discrete simulation of

the full model (‘‘plus’’ markers). We first observe that the toy

model systematically overestimates the tendency to agree on an

emerging decision, i.e. W+(s) are higher for the toy model. This is

easy to explain, as the toy model only allows for two states, the

ground state and the excited state, whereas the full model has a

decision depth of n~5. This means that, in the toy model, a robot

can be more easily convinced to change its decision. In a similar

manner, the approximate solution (curve in the Figure) tends to

promote consensus more than the actual macroscopic-discrete

system (plus markers). The reason for this is that the time scale for

the fast variables to equilibrate, which is given by the eigenvalues

of the linear system (Sec. 3) to teq~{1=lk. For the macroscopic-

discrete toy system (circles), teq*1=Nk&33 s is larger than the

typical time scale for a change in the symmetry parameter. The

latter can be obtained from W+(s) through

1=½Wz(s)zW{(s)�*3 s [20]. Hence, the fast variables cannot

generally attain equilibrium before the slow variable changes and

the fast variable elimination procedure is not fully accurate. We

would expect that an analytic solution that allows more than two

internal states would cause a more distinct separation of time

scales and hence allow better equilibration of the fast states. We

speculate that the more detailed model would result in a more

accurate approximation of the full Master equation of the toy

model and the full macroscopic-discrete simulation. Ultimately,

only solving the analytic model for a higher decision depth will

provide a definite confirmation.

Discussion

In this article we have presented a consistent multiscale

approach to modelling a typical decision making scenario in

swarm robotics. We perform microscopic simulations of the swarm

(Section ‘‘Microscopic approach’’) and conduct physical experi-

ments using a swarm of KILOBOTS (Section ‘‘Kilobot experiments’’)

to validate our simulations. Following up on previous work [1], we

identify a symmetry parameter as the fundamental collective

swarm variable and tentatively suggest a continuous-time Markov

process to describe its evolution. We derive various macroscopic

swarm properties, such as decision time and splitting probability,

from the time evolution of the symmetry parameter and compare

these results to the data obtained from the simulations and the

experiments. Extending upon previous work, we identify approx-

imate spatial homogeneity as a key requirement for this type of

modelling and investigate the conditions under which it is valid to

assume spatial homogeneity. For this regime we derive a

macroscopic-probabilistic model using techniques from chemical

kinetics (Section ‘‘The macroscopic-discrete approach’’). We

simulate the macroscopic-discrete model and assess its agreement

with the previous results. Finally, we detail an approach to

deriving the defining properties of the continuous-time Markov

process for the symmetry parameter analytically by solving the

macroscopic-probabilistic model (Section ‘‘Constructing a time

coarse-grained Markov process for the symmetry parameter’’).

Generally, the decision process is approximated well by the

continuous-time Markov process. This is a surprising result given

the very restrictive assumptions which are required to obtain the

aggregate description.

We investigate the validity of the multiscale approach for

different regimes of the microscopic swarm properties. We identify

the limiting factors and derive hard quantitative limits for the

applicability of the approach. Firstly, depending on the magnitude

of the avoidance radius, the assumption of spatial homogeneity

breaks down. The mean free path length is the characteristic

quantity for spatial homogeneity. If the mean free path length is

much smaller than the container dimensions robots will start to

form clusters. One case of this is where the avoidance radius is

large. Clustering affects the behaviour of the symmetry parameter

and, in general, predictions made based on this collective property

will be less accurate. Future work will investigate further if spatial

structures can be incorporated into a collective description.

Secondly, even if spatial homogeneity is satisfied, the lumped

process describing the evolution of the symmetry parameter will,

in general, not be memoryless and hence not Markov. The

symmetry parameter will generally only be well-approximated if

the process is ‘almost Markov’, i.e. the memory influences the

macroscopic behaviour only marginally. Our analytic toy model

suggest that the Markov property will be satisfied better if the
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decision depth is larger. Future work will extend this analytic

model to accomodate a larger decision depth and eventually the

full macroscopic-probabilistic model. We believe that this exten-

sion, while cumbersome, should not pose any in-principle

difficulties.

The analytic treatment of our case study has allowed us to

identify the properties under which the proposed empirical

parameter estimate of the macroscopic model yields a good

approximation of the system’s behaviour. For other scenarios these

properties would have to be established on a case-by-case basis.

How this can be done analytically in other scenarios is beyond the

scope of the proposed methodology. In how far the proposed

methodology can be generalized thus requires further investiga-

tion. Our description hinges on the assumption of spatial

homogeneity. Some probabilistic models use homogeneous

compartments and incorporate spatial separation by introducing

delay times for travelling between compartments [7]. Stochastic

delay-differential equations are hard to formulate and even harder

to solve and hence we do not expect our approach to work in this

case. On the other hand, several studies that assume spatial

homogeneity can successfully address problems of collaborative

manipulation [8] and task allocation [9]. We believe that our

approach can be fruitfully applied to these and related scenarios.

Demonstrating the applicability of our approach to these and

related scenarios in future work will hopefully allow us to gain

increased confidence that this simpler empirical macroscopic

method approximates a broad spectrum of application scenarios

reliably.
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APPENDIX

1 Estimating parameters of the macroscopic process
from the simulation output

1.1 Probability mass function and SDE parameters.
We can estimate the discrete probability mass function (PMF) from

the simulation output sj(iDt) via

p(sk,iDt)&
1

J

XJ

j~1

x½sj(iDt),sk�, ð45Þ

where j[f1, . . . ,Jg denotes the individual simulation,

i[f0, . . . ,tmax=Dtg is an index for the output time in each

simulation and the output period Dt does not change. The index k
on sk indicates the discrete range of s such that sk~k=N with

k[f0, . . . ,Ng. The characteristic, or indicator, function is defined

as

x(sk,sk’)~
1, k~k’

0, k=k’
:

	
ð46Þ

Note that there is no explicit time dependence and the

stochastic process is time homogeneous. For any solution

p(sk’,tDsk,t0) of the FPE [Eq. (2)], the moments of Ds~sk’{sk

correspond to the coefficients as [25]

a(sk)~
vDsw

Dt
ð47Þ

and

b2(sk)~
v(Ds)2

w

Dt
, ð48Þ

in the limit Dt?0. We can use these relations to estimate the

drift a(sk) and diffusivity b2(sk)=2 of the SDE by computing

Dsi,j~sj(iDt){sj((i{1)Dt) ð49Þ

and

(Dsi,j)
2~½sj(iDt){sj((i{1)Dt)�2, ð50Þ

where, as in Eq. (45), j denotes the experiment and i is an index

for the output time. The average is then given by

vDsw(sk)~

X
i,j
Dsi,jx½sk,sj(iDt)�X
i,j

x½sk,sj(iDt)�
ð51Þ

and

vDs2
w(sk)~

X
i,j

(Dsi,j)
2x½sk,sj(iDt)�X

i,j
x½sk,sj(iDt)�

: ð52Þ

The coefficients for the SDE then follow immediately.

Figure 12. Jump probabilities for the toy model. Jump
probabilites Wz(s) (red curves and markers) and W{(s) (blue curves
and markers) for the toy model [Eqs. (21)–(28)] obtained from the
analytic approximation [Eq. (44), curves] and a macroscopic-discrete
simulation (circles). For comparison, we include simulation results of the
full macroscopic-discrete model (Sec. 2, "plus’’ markers).
doi:10.1371/journal.pone.0111542.g012
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1.2 Aggregate measures. We can estimate the splitting

probability from the simulation results by computing

p(sk)~

XJ

j~1
sj(t~tmax)x½sk,sj(t~0)�XJ

j~1
x½sk,sj(t~0)�

, ð53Þ

i.e. for each bin sk we select all simulations that start at

sj(t~0)~sk and average the consensus result of these simulations.

We can also compute the splitting probability from Eq. (2)

through [27]:

p(s)~

ðs

d

y{1(s’) ds’
ð1{d

d

y{1(s’) ds’

 �{1

, ð54Þ

where the potential y(s) is defined as

y(s)~exp

ðs

0

2
a(y)

b2(y)
dy


 �
: ð55Þ

Note that the corresponding Eqs. (5.5.52) and (5.5.53) in [27]

incorrectly state that the splitting probability is the integral of y

rather than y{1.

The stationary state p�(s) can be determined either directly

from the simulation output or through the potential y(s):

p�(s)~C
y(s)

b2(s)
, ð56Þ

where C is a normalization constant. To estimate p�(sk) from

the simulation output, we make use of the ergodicity of the process

and compute

p�(sk)&
1

imax{i0

Ximax

i~i0

p(sk,iDt), ð57Þ

where p(sk,iDt) is given by Eq. (45) and i0 is chosen such that

most simulations of the ensemble will have attained the stationary

solution at t~i0Dt.

The time to decision can be extracted directly from the

simulation output,

T(sk)&

XJ

j~1
td
j x½sk,sj(t~0)�XJ

j~1
x½sk,sj(t~0)�

, ð58Þ

where the decision time td
j is the first time where a decision is

made, i.e. td
j ~ min ftw0Ds(tjvd) _ s(tj)w1{dg. We can also

calculate T(s) indirectly using the potential y(s) computed in Eq.

(55) [27]:

T(s)~

2

ðs0

d

dy

y(y)

� �ð1{d

s0

dy’
y(y’)

ðy’

d

dz y(z)

b(z)2
{

ð1{d

s0

dy

y(y)

 !ðs0

d

dy’
y(y’)

ðy’

d

dz y(z)

b(z)2

" #
ð1{d

d

dy

y(y)

:
ð59Þ

1.3 Pair correlation function. We can estimate the pair

correlation function for the ‘‘red’’ robots from the simulation

output using [23]

g(r)~
V2

2prN2�ccW (r)

X
x1=x2

k(r{Ex1{x2E), ð60Þ

where x1,x2 are the positions of the ‘‘red’’ individuals and we

use a box kernel with bandwidth h~0:01

k(r)~
1=2h,

0,

{hƒrƒh,

otherwise
:

	
ð61Þ

The isotropized set covariance �ccW (r) is designed to minimize

boundary effects for large r and is given for a square domain of

side length L by [23]

�ccW (r)~L2{
2r

p
L2z

L2

p
, rƒL: ð62Þ

1.4 Discrete-state Markov process. Standard techniques

to estimate the aggregate measures of the discrete-state Markov

process from the experiment output can be found in text books

[20]. We briefly collect the main results here.

The jump probabilities W+(sk) can be computed using the

relation

W+(sk)~m+(sk)=t(sk) ð63Þ

between the average time the system stays in state sk, t(sk), and

the average number of sk?sk+1 steps, m+(sk) [20]. For each

experiment j we then observe the times t
j
i (i[N0, where t

j
0 denotes

the starting time of the experiment), where a robot changes its

color and the corresponding state s
j
i,k. We can then extract

m+(sk)~

P
i,j x(s

j
i{1,k,s

j
i,k+1)P

i,j ½x(s
j
i{1,k,s

j
i,kz1)zx(s

j
i{1,k,s

j
i,k{1)�

, ð64Þ

and

t(sk)~

P
i,j x(s

j
i,k,sk)(t

j
i{t

j
i{1)P

i,j x(s
j
i,k,sk)

ð65Þ

(59)

Multiscale Modelling of Collective Decision Making in Swarm Robotics

PLOS ONE | www.plosone.org 17 November 2014 | Volume 9 | Issue 11 | e111542



and obtain the jump probabilities using relation (63).

The jump probabilities can be used to compute the splitting

probability p(sk) and the average decision time T(sk) [20]. To this

end we employ the recurrence relations

t1(sk)~

1
W{(s1)

,

1
W{(sk )

1zWz(sk{1)t1(sk{1)½ �,
k~1

k~2, . . . ,N

8<
: ð66Þ

and

t2(sk)~

1
Wz(sN{1)

,

1
Wz(sk )

1zW{(skz1)t2(skz1)½ �,
k~N{1

k~N{2, . . . ,1
:

8<
: ð67Þ

The splitting probabilities p1(sk) and p(sk) are then given by

p1(sk)~
t2(sk)

t1(sk)zt2(sk)
and p(sk)~

t1(sk)

t1(sk)zt2(sk)
: ð68Þ

Finally, we have for the average decision time

T(sk)~p1(sk)
Xk

n~1

t1(sn)zp2(sk)
XN{1

n~kz1

t2(sn): ð69Þ

2 System-size expansion

We perform a sistem-size expansion of the Master equation for

the fast variables [Eq. (33)] [25].

Terms of order V1=2 need to cancel out which gives the

condition

{
ffiffiffiffi
V
p dw

dt

LP
Lj

{
ffiffiffiffi
V
p dy

dt

LP
Lg

~
ffiffiffiffi
V
p

{gr
LP
Lg

zgy
LP
Lg

z2ry
LP
Lg

zy2 LP
Lg

{gr
LP
Lj

z2gw
LP
Lj

zrw
LP
Lj

zw2 LP
Lj


 �
:

ð70Þ

Evidently, Eq. (70) is satisfied if

{
dw

dt
~{grz2gwzrwzw2 ð71Þ

{
dy

dt
~{grzgyz2ryzy2, ð72Þ

which are exactly the macroscopic equations Eq. (34) with the

stable stationary point w�~{(2gzr{r)=2 and

y�~{(2rzg{c)=2.

Collecting terms of order V0 yields a quasi-linear Fokker-Planck

equation

LP
Lt

~(gz2rz2y) L
Lg (gP)z(2gzrz2w) L

Lj (jP)

z 1
2

(grzgyz3y2) L2

Lg2 Pz(gr{2gw{2ryz4yw) L2

LgLj
P

z 1
2

(grzrwz3w2) L2

Lj2 P

, ð73Þ

with a Gaussian solution [25]. We can use this equation to

obtain expressions for the various moments:

LtSykT~
X

j

AkjSyjT ð74Þ

and

LtSykylT~
X

i

AkiSyiylTz
X

j

AljSyjykTzBkl , ð75Þ

where we define y~(j,g)T and the coefficient matrices are

A~
{(2gzrz2w) 0

0 {(gz2rz2y)

� �
ð76Þ

and

B~
grzrwz3w2 gr{2gw{2ryz4yw

gr{2gw{2ryz4yw grzgyz3y2

 !
: ð77Þ

We can solve these equations in the stationary state (w�,y�) and

finally arrive at the expressions

SjTs~SgTs~0, ð78Þ

Sj2Ts~
{3gr{rrz6g2z9grzr2

2r
, ð79Þ

Sg2Ts~
{gc{3rczg2z9grz6r2

2c
, ð80Þ

and

SjgTs~
{2g3zg2 r{2rð Þzr2 2r{cð Þz2gr2

(g{r)(gzr)
: ð81Þ

Transforming back into the original variables we find the results

Eqs. (38)–(40).
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