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Abstract

Gliomas are aggressive primary brain tumors with high infiltrative potential. The expression of Angiotensin Il (Ang II)
receptors has been associated with poor prognosis in human astrocytomas, the most common type of glioma. In this study,
we investigated the role of Angiotensin Il in glioma malignancy through transcriptional profiling and network analysis of
cultured C6 rat glioma cells exposed to Ang Il and to inhibitors of its membrane receptor subtypes. C6 cells were treated
with Ang Il and specific antagonists of AT1 and AT2 receptors. Total RNA was isolated after three and six hours of Ang Il
treatment and analyzed by oligonucleotide microarray technology. Gene expression data was evaluated through
transcriptional network modeling to identify how differentially expressed (DE) genes are connected to each other.
Moreover, other genes co-expressing with the DE genes were considered in these analyses in order to support the
identification of enriched functions and pathways. A hub-based network analysis showed that the most connected nodes in
Ang ll-related networks exert functions associated with cell proliferation, migration and invasion, key aspects for glioma
progression. The subsequent functional enrichment analysis of these central genes highlighted their participation in
signaling pathways that are frequently deregulated in gliomas such as ErbB, MAPK and p53. Noteworthy, either AT1 or AT2
inhibitions were able to down-regulate different sets of hub genes involved in protumoral functions, suggesting that both
Ang Il receptors could be therapeutic targets for intervention in glioma. Taken together, our results point out multiple
actions of Ang Il in glioma pathogenesis and reveal the participation of both Ang Il receptors in the regulation of genes
relevant for glioma progression. This study is the first one to provide systems-level molecular data for better understanding
the protumoral effects of Ang Il in the proliferative and infiltrative behavior of gliomas.
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Background

Gliomas are highly prevalent and therapy-resistant types of
primary brain cancer. Despite recent advances in glioma therapy,
the current standard therapeutic procedure still comprises
maximum surgical resection and radiotherapy with temozolomide
[1]. Patients undergoing this procedure have a median survival
time of less than 2 years, illustrating how the prognosis of glioma
patients is bleak. Surgical treatment presents many limitations, as
the infiltrative nature of these tumors causes them to diffuse
around surrounding brain parenchyma [2]. Consequently, molec-
ular mechanisms underlying the poor prognosis of patients with
gliomas should be investigated in order to develop novel drug-
based treatments for blocking tumor progression. An interesting
clue for unraveling those mechanisms is given by the association
between expression of Angiotensin II (Ang II) receptors and poor
prognosis in human astrocytomas [3].
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The peptide Ang II is the main effector of the renin-angiotensin
system and exerts its effects by the activation of two selective
receptor subtypes named AT1 and AT2 [4]. Ang II was firstly
described as a key regulatory factor in blood pressure control.
However, non-canonical functions of Ang II such as cell
proliferation, apoptosis and angiogenesis were recently described
in malignant neoplasms [5-8]. Targeting Ang II signaling may
impede tumor progression in patients and experimental models of
cancer [9-11], as the invasiveness and immunosuppression state of
many types of cancer is dependent on the up-regulation of AT1
receptor [12,13]. Consequently, AT1 has been established as a
potential therapeutic target in cancer. On the other hand, the role
of AT2 in ncoplasias is poorly investigated and remains
controversial. While some authors state that AT2 is mostly
assoclated with protumoral functions [14,15], others indicate that
it is involved in carcinogenesis [16].

Different glioma cell lines express AT1 and AT2 receptors and
show a mitogenic response when incubated with Angiotensin
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Figure 1. Venn diagrams showing the number of common DE genes and the common enriched transcription factors across the
experimental comparisons. (A) Number of common and exclusively regulated genes at 3 and 6 hours intervals for Ang x Control, Ang Il+Los x
Ang Il and Ang I+PD123319 x Ang Il comparisons. (B) Number and enriched transcription factors observed when each time interval was analyzed
separately. (C) Number and enriched transcription factors observed for the same comparisons at both 3 and 6 hours time intervals.

doi:10.1371/journal.pone.0110934.g001

peptides [17]. Indeed, blocking AT1 receptor decreases the
synthesis of growth factors, induces apoptosis and reduces the
growth of cultured C6 glioma cells and C6 rat glioma in vivo
[18,19]. However, the molecular mechanisms underlying the
protumoral functions of Ang II are not fully described. Given the
known role of Ang II in transcriptional regulation [20-23], it is
worth investigating Ang II effects on glioma cells focusing on
transcriptional profile changes and the corresponding modifica-
tions in gene interaction networks.

Oligonucleotide microarray profiling is a powerful tool for
disclosing gene expression patterns associated with cell events [24].
This profiling coupled with bioinformatics analysis enables the
identification of biological functions downstream of receptor
activation, as well as how the differentially expressed genes behave
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in transcriptional networks. To date, there is a lack of information
on network modeling of Ang II transcriptional effects in glioma
cells. In this way, we sought here to reveal the transcriptional
networks modulated by Ang II in C6 glioma cells via AT1 and
AT2 receptors. Our results contribute to unravel the molecular
program initiated by the activation of Ang II receptors in C6 cells,
shedding a light on Ang II roles in glioma progression.

Results

Comparative transcriptomic analysis of Ang Il effects on
C6 glioma cells

We carried out microarray experiments to find gene expression
changes associated with Ang II treatment in C6 glioma cells. The
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Figure 2. Transcriptional network enrichment analysis of hub genes found at Ang Il x Control 3 h comparison. (A) Scatter plot of
betweenness centrality versus degree for nodes obtained in the transcriptional network analysis. Differentially expressed (DE) genes are represented
as red (up-regulated) or green (down-regulated) diamonds in the graphic. DE-related genes are represented as purple diamonds. (B) Transcriptional
interaction subnetwork containing the 25 DE genes and 15 DE-related genes with the highest centrality values in each network. DE genes are
represented as red (up-regulated) or green (down-regulated) squares in the networks. DE-related genes are represented as purple diamonds. Genes
previously associated with the keywords “Angiotensin II” and “glioma” display yellow border colors. Genes previously associated with the keywords
“glioma”, “migration” or “invasion” display sea green border colors. (C) KEGG categories showing enrichment in functions for the hub genes.

doi:10.1371/journal.pone.0110934.9g002

treatment scheme (see Methods) was designed to address the
individual contribution of ATl and AT2 receptors in the
transcriptomic changes mediated by Ang II, using specific
antagonists of AT1 and AT2 — respectively Losartan and
PD123319 [25] - in separate groups. The time intervals of 3 and
6 hours were selected following a previous study showing a slight
but significant increase in C6 cells proliferation after 6 hours
treatment with Ang II [18]. Taking this into consideration, we
were specifically interested in evaluating transcriptional events
preceding an increase in cell proliferation. Moreover, early but not
chronic transcriptional changes are more likely to be directly
induced by Ang II treatment. In parallel, human adrenocarcinoma
cells stimulated with Ang II had maximum expression levels for all
genes occurring 3 to 6 h after Ang II stimulation [26]. Therefore,
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it is reasonable to consider that relevant changes in the
transcriptomic profile of C6 cells may occur within the first
6 hours of Ang II exposure in an in vitro setting.

Differentially expressed (DE) genes in each comparison were
identified using t-tests with p<<0.05. Most of the DE genes had
their expression only slightly changed at the time intervals studied
here, ranging from 1.2 to 3 fold changes. The statistical
comparison between the Ang II-treated and Control groups
disclosed which genes had their expression levels changed due to
the activation of both AT1 and AT?2 receptors by Ang II. On the
other hand, the statistical comparison between the group treated
with Ang II plus Losartan and that treated only with Ang II
revealed DE genes regulated by AT1 receptor. Analogously, the
statistical comparison between Ang II plus PD123319 and Ang II
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Figure 3. Transcriptional network enrichment analysis of hub genes found at Ang Il x Control 6 h comparison. (A) Scatter plot of
betweenness centrality versus degree for nodes obtained in the transcriptional network analysis. Differentially expressed (DE) genes are represented
as red (up-regulated) or green (down-regulated) diamonds in the graphic. DE-related genes are represented as purple diamonds. (B) Transcriptional
interaction subnetwork containing the 25 DE genes and 15 DE-related genes with the highest centrality values in each network. DE genes are
represented as red (up-regulated) or green (down-regulated) squares in the networks. DE-related genes are represented as purple diamonds. Genes
previously associated with the keywords “Angiotensin II” and “glioma” display yellow border colors. Genes previously associated with the keywords
“glioma”, “migration” or “invasion” display sea green border colors. (C) KEGG categories showing enrichment in functions for the hub genes.

doi:10.1371/journal.pone.0110934.9003

only-treated groups disclosed which DE genes were regulated by
AT?2 receptor. Tables S1 to S12 in File S1 list the DE genes that
appeared in the functional enrichment analysis, according to Gene
Ontology (GO) and KEGG databases. Table S13 in File S2 and
Table S14 in File S3 lists the DE gene’s p-value and fold changes
for all comparisons at 3 and 6 hours, respectively.

Identification of commonly regulated genes across the
comparisons

Venn diagrams were constructed using DE genes obtained in all
experimental comparisons in order to identify: i) DE genes
regulated by Ang II at both 3 and 6 hours intervals, or ii) genes
whose expression is altered by Ang II and by the presence of Ang
II and its antagonists. Genes encompassed in these overlaps are
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thereafter called common genes (Figure 1A and Table S15 in File
S4). Interestingly, Ang II x Control comparisons presented the
largest set of common genes (28 DE genes). From these genes, the
gene Rev3L, encoding the catalytic subunit of human polymerase
zeta, was previously associated with temozolomide resistance and
DNA repair mechanisms [27]. Another gene encoding the protein
Zyxin (Zyx) was also regulated at both time intervals. Zyx
concentrates at focal adhesions, regulates actin assembly and was
previously described to be relevant for cell migration and invasion
[28]. In addition, the Nek2 gene, which codes for a centrosomal
kinase, was also observed in the common genes list obtained from
Ang II x Control comparisons. Nek2 overexpression was shown to
confer an inferior survival in gliomas and it is associated with drug
resistance and cell proliferation in several types of cancer [29].
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Figure 4. Transcriptional network enrichment analysis of hub genes found at Ang Il + Losartan x Ang Il 3 h comparison. (A) Scatter
plot of betweenness centrality versus degree for nodes obtained in the transcriptional network analysis. Differentially expressed (DE) genes are
represented as red (up-regulated) or green (down-regulated) diamonds in the graphic. DE-related genes are represented as purple diamonds. (B)
Transcriptional interaction subnetwork containing the 25 DE genes and 15 DE-related genes with the highest centrality values in each network. DE
genes are represented as red (up-regulated) or green (down-regulated) squares in the networks. DE-related genes are represented as purple
diamonds. Genes previously associated with the keywords “Angiotensin II” and “glioma” display yellow border colors. Genes previously associated
with the keywords “glioma”, “migration” or “invasion” display sea green border colors. (C) KEGG categories showing enrichment in functions for the

hub genes.
doi:10.1371/journal.pone.0110934.g004

Finally, the Piasl gene, which encodes an inhibitor of signal
transducer and activator of transcriptionl (STAT-1), was also
found in this gene set. PIAS family members were already showed
to be greatly reduced in glioblastomas, resulting in overactivation
of STAT-dependent transcription [30].

Enrichment of transcription factors across differential
gene expression profiles

Enriched transcription factors (TFs) were identified from the
differential datasets in order to reveal upstream regulatory
pathways modulating gene expression changes. With this ap-
proach, we were able to identify transcription factors that are
downstream of ATIR and AT2R activation in glioma cells. We

PLOS ONE | www.plosone.org

constrained our further analysis on the 100 top statistically
enriched TFs displayed in both ChEA and Transfac databases.
The set lists of enriched TFs are depicted in Table S16 in File S5.
Then, the enriched TFs were used for building Venn diagrams in
order to identify TFs regulated by Ang II at both 3 and 6 hours
mtervals and those modulated by Ang II but also by the presence
of Ang II and its antagonists (Figure 1B and 1C). This analysis
disclosed TT's potentially associated with the upstream regulation
of DE genes by Ang II in each comparison, such as Crebl, E2f1,
Egrl, Myc, Runxl, Tfap2c, Ets] and Wtl. In fact, the
transcription factors Crebl, E2fl, Egrl, Myc and Etsl were
described to be regulated by Ang II in previous studies [31-35],
confirming our i silico results.
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Transcriptional network analysis reveals biological
functions and hierarchical characteristics of genes
regulated by Ang Il

Gene interaction networks were generated to shed light on the
patterns of gene-gene interactions from the measured datasets of
gene expression. We included in the networks the DE genes
obtained for each comparison and the genes that co-express with
the respective DE genes (DE-related genes). DE-related genes were
found through the Cytoscape plug-in GeneMANIA and included
in the network analysis to verify how DE genes interact with other
co-expressed genes according to data computed in GeneMANIA.
The resulting networks containing DE and DE-related genes

PLOS ONE | www.plosone.org

allowed the search for functions and pathways related to Ang II
role in glioma progression, as described below.

In a network model, genes are represented as nodes in a graphic
visualization, while functional relationships (e.g. protein-protein
interactions, transcription regulation, gene co-expression, etc.) are
represented as edges connecting the corresponding nodes. The
information about functional relationships is usually obtained
through different databases [36]. Moreover, the mathematical
analysis of the connections between nodes is usually applied to
reveal emergent properties of these networks [37].

Centrality measures (degree and betweenness) were used here to
mvestigate the topological characteristics of the nodes in the
networks. While node degree identifies the number of connections
incident upon a node, node betweenness discriminates the relative
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genes are represented as red (up-regulated) or green (down-regulated) squares in the networks. DE-related genes are represented as purple
diamonds. Genes previously associated with the keywords “Angiotensin II"” and “glioma” display yellow border colors. Genes previously associated

"o
’

with the keywords “glioma
hub genes.
doi:10.1371/journal.pone.0110934.g006

central position of a certain node in the network by calculating the
number of shortest paths passing through a specific node. These
centrality measures allowed the detection of highly connected and
central genes - the hubs - in each network. We next built scatter
plots showing the relationship among betweenness and degree
values for each node in order to identify the hub genes within the
networks. These scatter plots allowed the selection of 25 DE genes
and 15 co-expressed genes with the highest centrality values in
each network. These top-ranked genes were used to build network
graphic representations and were further analyzed to identify
enriched biological functions, as depicted in Figures 2 to 7.

In the comparisons Ang II versus Control at 3h and 6 h
(Figures 2 and 3), most of the hubs were associated with focal
adhesion, regulation of actin cytoskeleton, cell cycle and signaling

PLOS ONE | www.plosone.org

migration” or “invasion” display sea green border colors. (C) KEGG categories showing enrichment in functions for the

pathways ErbB, VEGF and MAPK. Interestingly, anaphase-
promoting complex genes (Anapcl0, Cdc20, Cdc26, Psmdl4,
Psmal, Bublb, Nup107 and Ccnbl) were differentially expressed
in the Ang IlI-treated group. In the comparisons Ang II plus
Losartan versus Ang II at 3 h and 6 h, many hubs were related to
focal adhesion, regulation of actin cytoskeleton, cell cycle, ECM-
receptor interaction as well as to MAPK, p53 and Wnt signaling
pathways. On the other hand, in Ang II plus PD123319 versus
Ang II comparisons at 3 h and 6 h, hubs were associated with
pathways in cancer, focal adhesion and signaling pathways ErbB,
Wnt, p53, neurotrophin and MAPK. Of interest, treatment with
either Losartan or PD123319 mostly down-regulated the expres-
sion of genes associated with the protumoral processes described
above. This can be clearly observed in the comparisons Ang II
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Figure 7. Transcriptional network enrichment analysis of hub genes found at Ang Il +PD123319 x Ang Il 6 h comparison. (A) Scatter
plot of betweenness centrality versus degree for nodes obtained in the transcriptional network analysis. Differentially expressed (DE) genes are
represented as red (up-regulated) or green (down-regulated) diamonds in the graphic. DE-related genes are represented as purple diamonds. (B)
Transcriptional interaction subnetwork containing the 25 DE genes and 15 DE-related genes with the highest centrality values in each network. DE
genes are represented as red (up-regulated) or green (down-regulated) squares in the networks. DE-related genes are represented as purple
diamonds. Genes previously associated with the keywords “Angiotensin II"” and “glioma” display yellow border colors. Genes previously associated
with the keywords “glioma”, “migration” or “invasion” display sea green border colors. (C) KEGG categories showing enrichment in functions for the

hub genes.
doi:10.1371/journal.pone.0110934.9g007

plus Losartan versus Ang II (Figures 4 and 5) or Ang II plus
PD123319 versus Ang II (Figures 6 and 7), where the subnetworks
obtained for genes with highest centrality contain a larger number
of nodes corresponding to down-regulated genes.

Text mining using GenClip revealed that most of these hubs
have been associated with the keywords “Ang II"” and “gliomas”
or with the keywords ‘“glioma”, “migration” and “‘invasion”.
These hubs are represented in the networks with yellow and sea
green border colors, respectively. Finally, we selected for each of
the transcription interaction networks the top five DE and DE-
related genes, according to their node betweenness values. Main
literature findings were highlighted for these genes to provide
further information on their role on tumor progression (Tables 1
and 2).

PLOS ONE | www.plosone.org

Evaluation of microarray results by quantitative real-time
PCR (qPCR) experiments

The gene expression levels of AT1 and AT2 receptors were
evaluated by qPCR analysis. At 3 hours interval, Ang II caused a
slight up and down-regulation of AT1 and AT2 receptors,
respectively. On the other hand, at 6 hours, Ang II caused a
non-significant decrease in the expression of both Ang II receptor
subtypes (Figure 8A). The gene expression results of the micro-
array experiments were confirmed by qRT-PCR of genes
regulated by Ang II or its antagonists. Genes were selected
according to their fold change values and relevance for cancer
biology. Changes in gene expression were confirmed in a range
complying with the observed in microarray analysis. Figure 8B
shows DNA microarray and qPCR gene expression results.
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Figure 8. Quantitative PCR (qPCR) experiments for selected genes. A) Gene expression levels of Angiotensin Il receptors (Agtr1 and Agtr2)
were evaluated by qPCR. B) Technical validation of oligonucleotide microarray data by gPCR of Ang ll-requlated genes. The expression of the genes
Agtrap, Map2k4, Bcar1, Lamb1, Prkca, Hbegf, Aqp2, Vegfa, Ctgf and Nirp3 was assessed to confirm gene expression changes identified by
oligonucleotide microarray analysis. The gene Gapdh was used as an internal control. The comparison is made between average log2 expression
values derived from microarray experiments and arbitrary units obtained from qPCR assays.

doi:10.1371/journal.pone.0110934.9g008

Discussion

To gain insights into Ang II effects in gliomas, we analyzed the
transcriptomic changes occurring upon Ang II stimulation or AT'1
and AT2 inhibition in C6 glioma cells. Interestingly, we found a
high number of DE genes with low fold changes at both treatment
intervals. This observation is in line with a previous work that
investigated Ang II gene targets on glomerulosa cells, revealing
widespread effects on gene expression, particularly the rapid
induction of numerous transcriptional factors [38]. This tran-
scriptomic pattern is also consonant with the results obtained in a
breast cancer cell line stimulated with Ang II [39]. Therefore, it is
increasingly evident that Ang II induces a moderate and extensive
transcriptional response rather than a strong activation of a limited
group of genes.

Venn diagrams showed that Ang II promotes a time-dependent
transcriptional response in glioma cells, as different sets of DE
genes were observed at each time interval. This effect may be
associated with the non-continuous activation of some TTs over
time, which is corroborated by the distinct enriched transcription
factors observed at each time interval evaluated here. In line with
these evidences, a previous study has demonstrated that the
kinetics of gene expression changes induced by Ang II can be
persistent or transient depending on the cell type [40]. Moreover,
acute and chronic Ang II response genes are completely different
in adrenocortical cells [41], substantiating this interpretation.
Alternatively, these results could be explained by the fact that
chronic Ang II treatment regulates the balance between G protein
and B-arrestin coupling to Ang II receptors. This regulation
consequently changes downstream signaling outcomes and alters
the gene expression profiles observed at different intervals [42]. As
a matter of fact, alternative G protein-independent pathways such
as P-arrestin signaling may be relevant for cancer survival
pathways, as B-Arrestin-biased AT1 stimulation activates MAPK
pathway [43] and promotes cell survival during acute injury [44].

Our findings likewise indicated that the time-dependent effects
of Ang II on glioma cells were altered by the presence of Ang II
receptor antagonists. One reason for this is that Ang II exposure
modifies the plasma membrane density of its receptors by moving
AT1 and AT?2 in opposite directions, respectively to the cytosol
and to the plasma membrane. However, such receptor transloca-
tions are inhibited by Ang II receptor antagonists [45]. Conse-
quently, the ratio of the membrane expression of AT1 and AT?2
receptors may be also influenced by the presence of antagonists,
taking into consideration the dissociation of antagonist-receptor
complexes by Ang II over time. These different ratios would allow
Ang II to signal toward distinct downstream pathways, thereby
eliciting unique patterns of gene expression depending on the time
intervals or antagonists used in the assay.

Notably, gene expression changes induced by Ang II at different
time intervals may be relevant for glioma pathogenesis. In
accordance with this assumption, our results showed that common
genes and transcription factors overrepresented by DE genes at
both time intervals were linked to DNA repair, cell cycle control
and regulation of tumor suppression and development processes.
This anticipates that chronic transcriptome modulation by Ang II
may interfere with glioma proliferation in a long-lasting manner.
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In parallel, another study demonstrated that acute transcriptional
changes induced by Ang II influence aortic aneurysm progression
[46], suggesting that transient gene expression changes might be
also relevant for the protumoral actions of Ang II in glioma cells.

We focused our further transcriptional network analysis on the
genes differentially regulated by Ang II and on those that co-
express with these DE genes according to GeneMANIA. The
systems-level effects of Ang II in glioma cells suggest that this
peptide induces transcriptomic changes favoring glioma progres-
sion. Such statement is consistent with the presence of network
genes whose enriched functions include cell migration, pathways
in cancer, mitosis and cell cycle. Additionally, the network-based
approach used here enabled the disclosure of protumoral functions
of Ang II-regulated genes in glioma cells, through the detection of
central network genes (hubs) and their respective overrepresented
biological functions. Hub genes were already described to be
essential components of biological networks and to play crucial
roles in biological systems [47]. In this way, network analysis
focusing on the identification of hubs is useful for the prioritization
of candidate genes for further analysis [48] and subsequent
identification of novel drug targets [49]. Moreover, we functionally
enriched hub genes depicted in the networks to unveil which
biological functions they participate. This methodology is more
advantageous than common gene function enrichment analysis, as
it takes into account the interactions among the nodes in the
networks, considering a set of genes as an interconnected network.
Therefore, the subsequent network-based functional enrichment
allows the identification of enriched biological functions among
genes that are functionally connected [50]. This is relevant in
complex disorders such as cancer that are caused by the interplay
between multiple connected genes whose intricate interactions
cannot be understood by solely studying individual changes in
gene expression [51].

By adopting this approach, we were able to reveal that a
significant part of the hub genes participate in signaling pathways
frequently deregulated in gliomas [52-56]. The diversity of
signaling pathways activated by Ang II is in line with previous
results showing that Ang II changes the expression of genes
mvolved in many signaling pathways, due to the activation of
common second messengers [57]. Most of these genes belong to
the cross-talked pathways Ras/Raf/MAPK and PISK/AKT/
mTOR, the two major pathways activated by overexpressed ErbB
receptors in glioblastoma cells [58,59]. These interconnected
pathways were previously linked to the trophic effects of Ang II in
vascular smooth muscle cells [60]. Moreover, both pathways are
stimulated by integrins in the context of focal adhesions, a
dynamically regulated process during cell migration [61] and
invasion [62-64]. Concordantly, two invasion-related functions -
focal adhesion and regulation of actin cytoskeleton - were
overrepresented by some hub genes identified through network
analysis in the different comparisons depicted in Figures 2 to 7.

Noteworthy, AT1 and AT2 inhibitors were both able to down-
regulate the expression of hub genes involved in protumoral
functions. This result contradicts the standard view in which AT
and AT?2 exert opposite functions in vasoconstriction [65] and cell
growth [66]. This paradigm may not apply in a cancer context
because tumor cells could also co-opt the signal transduction
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promoted by AT?2 to cooperate with protumoral functions. Such
cooperation could be achieved by means of either cumulative
genetic mutations or cross-activation of Ang II receptors by other
receptors [67-69]. Thus, an intriguing hypothesis, still to be fully
substantiated, is that both Ang II receptors represent therapeutic
targets for intervention in glioma. To date, only the effect of AT1
blockers was evaluated in clinical trials for glioma patients [70].
Therefore, the potential combination of AT1 and AT?2 blockers
should be tested in animal models of glioma in order to anticipate
whether this combination may potentially yield better results in the
treatment of those patients.

Conclusions

In this study, we identified potential molecular mechanisms
underlying the correlation between glioma malignancy and
positive expression of Ang II receptors. To the best of our
knowledge, this is the first work to provide molecular evidence
supporting the role of both Ang II receptors in the proliferative
and infiltrative behavior of gliomas. Moreover, the hub-based
network analysis showed that central genes in the transcriptional
networks modulated by Ang II exert functions associated with cell
proliferation, migration and invasion, key aspects for glioma
progression.

Methods

Culture of C6 rat glioma cells and MTT proliferation assay
The C6 rat glioma cell line [71] was used as an in vitro glioma
model. The cell line was a gift of Prof. Sueli Kazue Nagahashi
Marie from the Neurology Department of the School of Medicine,
University of Sdo Paulo. This cell line was obtained from the
American Type Culture Collection. They were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum, 100 Units/ml penicillin and
100 ug/ml streptomycin. Cells were seeded at 10° per well in
96-well plates and allowed to adhere overnight. Four sample
replicates were used for each group. They were then incubated at
37°C for 48 h with Ang II. A MTT Proliferation assay (Life
Technologies, Carlsbad, US) was carried out to assess C6 cell
viability (relative to the untreated control) in response to Ang II
treatment. Cells incubated with Ang II had a statistically
significant increase in proliferation rate compared to control cells
(Student’s t test with p<<0.0001, data not shown), confirming the
capability of Ang II to induce cell proliferation in glioma cells.

Treatment scheme for oligonucleotide microarray
experiments

Cells were seeded in cell culture dishes and incubated at 37°C/
5% COgq until becoming confluent. Then, these cells were pre-
treated (30 minutes) with either ATI] receptor antagonist
(Losartan: 107> M) or AT2 receptor antagonist (PD123319:
107> M) followed by Ang II treatment (10”7 M) according to
the treatment scheme: Group 1 — control; Group 2 — cells only
treated with Ang II; Group 3 — cells pre-treated (30 minutes) with
Losartan and then treated with Ang II; Group 4 — cells pre-treated
(30 minutes) with PD123319 and then treated with Ang II. Ang II,
Losartan and PD123319 were obtained from Sigma Chemicals (St
Louis, US).

RNA extraction for oligonucleotide microarray analysis
Total RNA was isolated from samples at 3 and 6 hours intervals

using Trizol reagent (Life Technologies, USA) and purified using

RNeasy Spin Columns (Qiagen, USA). RNA quantity was
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determined using a Nanovue spectrophotometer (GE Healthcare,
USA). The RNA quality was performed using a 2100 Bioanalyzer
with an RNA 6000 Nano kit and Ladder (Agilent Technologies,
USA), according to the manufacturer’s instructions. The Bioana-
lyzer produces an electropherogram, which shows the distribution
of RNA transcripts in the sample. In an ideal sample, the two
peaks of the ribosomal RNA 18 S and 28 S bands are observed,
while additional peaks suggest RNA degradation and/or DNA
contamination. The 2100 Bioanalyzer Expert software program
(version B.02.06.SI418) was used to assign an RNA integrity
number (RIN) from 1 to 10, with 1= degraded, 10 =intact [72].
Only samples with a RNA integrity number (RIN) of 8 or greater
were employed.

RNA amplification and labeling

Agilent’s Quick Amp Labeling Kit was used to generate
fluorescent cRNA (complementary RNA) for the microarray
hybridizations, following the manufacturer’s instructions. Briefly, a
700 ng aliquot of total RNA was reverse transcribed into cDNA.
Synthesized cDNA was transcribed into cRNA and labeled with
the fluorescent dye Cyanine 3 (Cy3). Labeled cRNA was purified
with RNeasy Mini columns (Qiagen). The quality of each cRNA
sample was verified by total yield and Cy3 specific activity
calculated based on Nanovue spectrophotometer measurements
(GE Healthcare).

Microarray hybridization

Microarray hybridizations were carried out on labeled cRNAs
with Cy3 specific activity greater than 9 pmol Cy3 per ug de RNA.
Arrays were incubated at 65°C for 17 h in Agilent’s microarray
hybridization chambers and subsequently washed according to
Agilent’s one-color microarray-based gene expression analysis
protocol (Version 5.7, March 2008). Gene expression profiles were
evaluated using Agilent whole rat genome 4 x44K oligonucleotide
microarrays.

Data acquisition

Hybridized slides were scanned at 5 um resolution using an
Agilent G2505B DNA microarray scanner. Default settings were
modified to scan the same slide twice at two different sensitivity
levels (XDR Hi 100% and XDR Lo 10%). The two linked images
generated were analyzed together and data were extracted and
background subtracted using the standard procedures contained in
the Agilent Feature Extraction (FE) Software version 9.5.1. The
software returns a series of spot quality measures to assess the
reproducibility and the reliability of spot intensity estimates. These
parameters are summarized in a quality control report and were
evaluated in order to support the high quality of the data acquired.

Data processing and analysis

The R statistical environment (http://www.r-project.org) was
used to filter and analyze the data. The mean of the probes for
each gene was calculated, genes with missing values were removed
and then the signal intensities were log2 transformed. Subse-
quently, data was normalized using the Lowess normalization
method [73] to correct intensity-dependent ratio bias between the
arrays. These logarithmic normalized values were used to perform
the statistical analyses. To identify which genes were significantly
differentially expressed, t-tests (p<<0.05) were performed in the
following comparisons: Ang II x Control (3 h); Ang II x Control
(6 h); Ang II+Los x Ang II (3 h); Ang II+Los x Ang II (6 h); Ang
II+PD123319 x Ang II (3 h); Ang II+PD123319 x Ang II (6 h).
Microarray data set supporting the results of this article is available
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in GEO public database (http://www.ncbinlm.nih.gov/geo),
under accession number GSE47529.

Functional enrichment analyses

The differentially expressed genes found at 3 and 6 hours
intervals were used to carry out extensive analysis of functional
categories, i.e., gene ontology (GO) terms [74] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways [75].
We aimed at clarifying whether certain gene clusters are enriched
with particular over-represented functional categories. This
categorization was made using FunNet (http://www.funnet.ws)
as an intermediary tool. FunNet performs a functional profiling of
gene expression data, identifying overrepresented biological
themes in the microarray dataset using GO and KEGG databases
[76]. The common differentially expressed genes across the
comparisons were identified using the Gene List Venn Diagrams
software [77]. Finally, transcription factors (TFs) upstream to
differentially expressed genes were identified using Enrichr, a
bioinformatics tool that retrieves molecular information from
transcription factor databases and defines transcription factors
statistically enriched from gene lists [78]. We used the p-value
calculated by Enrichr for ranking enrichment results and were
considered significant the top 100 transcription factors with p<
0.05. In addition, only the TFs overrepresented in both ChEA and
Transfac databases were used for further analysis.

Network analysis of transcriptional changes

Transcriptional network analysis was performed to evaluate the
network representation of the molecular relationships between DE
genes. GeneMANIA [79], a Cytoscape plugin, was used to predict
DE gene interactions and to expand the networks with functionally
similar genes, using available genomics and proteomics data.
Networks were generated using only information derived from the
co-expression category [80]. Node centrality values were calculat-
ed with CentiScaPe [81] in order to determine their hierarchy in
the respective biological networks. We wused the centrality
betweenness and degree indexes, which correspond, respectively,
to the number of links incident upon a node and to the number of
shortest paths that passes through a specific node to connect
directly or indirectly two other nodes. GraphPad Prism software
(GraphPad, San Diego, CA, USA) was used to build scatter plots
showing the correlation between each node degree and between-
ness. Scatter plots allowed the selection of the 25 DE genes and 15
related genes with highest centrality values in each network.
Finally, networks showing the interactions between these top-
ranked genes were obtained using Cytoscape. Node size was
proportional to betweenness centrality values. In order to retrieve
literature information pertaining to each gene we used GenClip, a
bioinformatics tool that searches for genes related to keywords
based on up-to-date literature profiling [82].

Validation of microarray by real-time gRT-PCR

To validate the results of microarray analysis, the differential
expression of representative genes in the microarray analysis was
confirmed using the same RNA samples that were used for
microarray, by qRT-PCR amplification. For cDNA synthesis, an
aliquot of 0,5 ug of total RNA from each sample was incubated
with 1 pLL of Oligo(dT) 0,05 ug/pL, 1 uL. de SuperScript II
Reverse Transcriptase and completed with 20 pL. of DEPC
treated water. For polymerase chain reaction (PCR) to amplify
cDNA, QuantiFast SYBR Green PCR Kit (Qiagen) was used
according to the manufacturer’s instructions in a final volume of
25 uLL per reaction. The following primers (10 pmol/uL) were
designed using Primer 3 software (23) and used for qRT-PCR:
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Agtr]l sense (CCATCGTCCACCCAATGAAG) and antisense
(GTGACTTTGGCCACCAGCAT), Agtr2 sense (AATTACC-
CGTGACCAAGTCTTG) and antisense (ATACCCATCCAG-
GTCAGAGCAT), Prkca sense (ATGCTCATGTTTCCAGTC-
TGC) and antisense (CTGATAGAGTGCCAGTGTGTGG),
Agtrap sense (CAAAGAAGACAAGAAGCCCAAG) and anti-
sense  (AGCGCTCTACCACTGAGCTAAA), Map2k4 sense
(GTGGACAGCTCGTGGACTCTAT) and antisense (TCA-
TACCCTTGTCTTGATGCAC), Hbegf sense (GGAGAGTG-
CAGATACCTGAAGGA) and antisense (GTCAGCCCATGA-
CACCTCTGT), Ctgf sense (AAGAAGACTCAGCCAGACC)
and antisense (AGAGGAGGAGCACCAAGG), Nlrp3 sense
(CAGACCTCCAAGACCACGACTG) and antisense (CATC-
CGCAGCCAATGAACAGAG), Bcarl sense (GCACACAG-
CAAGTTTGTCATTC) and antisense (GCTGTAGTGGGT-
CACTTTGCTT), Aqgp2 sense (CTGGTGCTGTGCATCT-
TTGC) and antisense (ATGGAGCAACCGGTGAAAT), Lambl
sense  (GOCGTAAAGCTGCCCAGAACTCTG) and antisense
(TCCTCCTGGCATCTGCTGACTC), Vegfa sense (GCCCAT-
GAAGTGGTGAAGTT) and antisense (TATGTGCTGGCTT-
TGGTGAG), and Gapdh sense (GACATGCCGCCTGGA-
GAAAC) and antisense (AGCCCAGGATGCCCTTTAGT), this
last used as a housekeeping gene. The amplification protocol
design was: initial denaturation step at 95°C. for 5 min followed by
40 cycles using Applied Biosystems 7300 Real-Time PCR System.
Each cycle included a denaturation step at 95°C for 15 seconds
and a primer-annealing/clongation step at 60°C for 30 seconds.
The relative standard curve method was used for quantification of
gene transcription between the groups evaluated. For all PCR
reactions, dissociation curves were constructed in order to verify
the amplification reaction specifity and confirm the absence of
primer dimer formation. Statistical analysis was carried out using
one-way paired t-tests between selected experimental groups using
a significant threshold of p<<0.10.

Supporting Information

File S1 Tables S1 to S12: Differentially expressed (DE)
genes for each comparison and their respective enriched
biological functions. DE genes were functionally enriched
using Gene Ontology (GO — Biological Processes) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases, through
FunNet bioinformatics tool.

(PDF)

File $2 Table S13: DE gene’s p-value and fold changes
for all comparisons at 3 hours interval after Ang II
treatment.

(XLSX)

File S3 Table S14: DE gene’s p-value and fold changes
for all comparisons at 6 hours interval after Ang II
treatment.

(XLSX)

File S4 Table S15: Venn diagrams showing the overlap-
ping differentially expressed (DE) genes across the
experimental comparisons. Venn diagrams were constructed
using all experimental comparisons in order to identify DE genes
regulated by Ang II at both 3 or 6 hours intervals, and genes
whose expression is altered by Ang II and by the presence of Ang
II and its antagonists. Genes encompassed in these overlaps are
called common genes.

(XLSX)

File S5 Table S16: Venn diagrams showing the enriched
transcription factors (TFs) overlapped among the
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