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Abstract

Community structure detection is of great importance because it can help in discovering the relationship between the
function and the topology structure of a network. Many community detection algorithms have been proposed, but how to
incorporate the prior knowledge in the detection process remains a challenging problem. In this paper, we propose a semi-
supervised community detection algorithm, which makes full utilization of the must-link and cannot-link constraints to
guide the process of community detection and thereby extracts high-quality community structures from networks. To
acquire the high-quality must-link and cannot-link constraints, we also propose a semi-supervised component generation
algorithm based on active learning, which actively selects nodes with maximum utility for the proposed semi-supervised
community detection algorithm step by step, and then generates the must-link and cannot-link constraints by accessing a
noiseless oracle. Extensive experiments were carried out, and the experimental results show that the introduction of active
learning into the problem of community detection makes a success. Our proposed method can extract high-quality
community structures from networks, and significantly outperforms other comparison methods.
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Introduction

Community structures are significant features observed in many

complex networks, meaning that the nodes in a network can be

divided naturally into groups, within which connections are

relatively dense but between which connections are much sparser.

Communities may correspond to the sets of topic-related Web

pages in Web graphs [1–3], the papers on certain scientific

research subjects in article citation networks [4,5], the real social

groupings in social networks [6–9], or the basic reaction modules

or other functional units in metabolic networks and protein-

protein interaction networks [3,10–15]. Thus, community struc-

ture detection is of great importance because it can shed light on

the relationships between the structural and functional character-

istics of networks. Furthermore, a number of research results have

provided evidence that networks may have quite different

properties when considered from a community perspective rather

than from the perspective of individual nodes or a whole network

[3,11], and therefore, many interesting network features may be

revealed through detecting the community structures from

networks.

Community detection has therefore attracted significant inter-

ests from researchers, and a large number of community detection

methods and algorithms have been developed during the last

decade. For example, the GN algorithm [6,7] is a divisive

community detection algorithm, the FastQ algorithm [8] and the

CNM algorithm [16] are agglomerative algorithms. Also, FastQ

and CNM are modularity-optimization based algorithms, which

take the modularity [7] as the optimization objective, and try to

maximize the modularity over all possible community structures of

a network. In addition to these, all of the methods in [10–12,17–

19] are based on the modularity-maximization strategies. Spectral

methods based on the eigenvalue spectra of various types of

matrices associated with networks have also yielded fruitful results

[10,11,20–26] in discovering community structures from networks.

The LPA algorithm [27] exploits a label propagation mechanism

to make the densely connected groups of nodes to reach

consensuses on node labels to form communities, and a series of

variants and improvements [28–30] have been derived from LPA

owing to its simplicity and near linear-time complexity. Methods

based on random walk utilize the tendency of a random walker to

identify community structures from networks, the walker tends to

be trapped in communities rather than walks across community

boundaries within a limited number of steps. Such methods have

also been applied in many applications successfully [31–38]. In

which, the Infohiermap (abbreviation for Hierarchical Infomap

[36]) algorithm [37], which reveals the best hierarchical commu-

nity structures in networks by finding the shortest multilevel

descriptions of the random walker, and the PPC (acronym for

Personalized PageRank Clustering) algorithm [38], which com-

bines the random walks and the modularity to efficiently identify

the community structures of networks, are two representatives of

the state-of-the-art algorithms based on random walk.

All of these algorithms and methods are in essence a kind of

unsupervised learning, meaning that they identify community

structures from networks using only topological information of the

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e110088

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0110088&domain=pdf


networks, without using any prior knowledge of the nodes.

However, in many real-world applications, there exists usually

some background information, which can be used as the guidance

in detecting the communities from networks. The must-link and

cannot-link constraints are one type of such background informa-

tion, which are also known as the pair-wise constraints that specify

whether the nodes involved must or cannot be classified into the

same communities. If the relationship between two nodes is ‘‘must-
link’’, the two nodes must be assigned to the same community. If

the relationship is ‘‘cannot-link’’, the two nodes cannot be

classified into the same community, and they must be allocated

into different communities. The must-link and cannot-link
constraints are generally adopted as a type of semi-supervised

information and have been successfully integrated in many

clustering algorithms to improve their performance. To some

extent, the essence of community detection is node clustering in

networks. Therefore, it is a natural idea to introduce these

constraints to guide the process of community detection. However,

this remains a challenge, and the first problem to be addressed is

how to obtain the high-quality semi-supervised components. In

general, the semi-supervised components are acquired by anno-

tating the data points involved by an oracle (e.g. a domain expert).

In order to maximize the utilities of the semi-supervised

components at the minimum cost, strategies based on active

learning [39] are used to actively select those data points to

annotate, such that the clustering algorithm can achieve as a high

performance as possible compared with random selection. Most

active learning algorithms are pool-based [40,41] or stream-based

[41–43], and most work with data represented by attribute vectors

[44–46]. However, for the problem of community detection, the

nodes in the networks have no other attributes except for the

topological information, thus these algorithms cannot be utilized

directly. As datasets with intrinsic graph structures become

ubiquitous, substantial efforts have been devoted in recent years

to the problem of active learning on graphs, and many algorithms

[47–50] have been proposed.

The main contributions of this paper are threefold. First, we

propose a semi-supervised community detection algorithm, which

fully utilizes the must-link and cannot-link constraints to guide the

procedure of community detection to extract high-quality

community structures from networks. Next, for being used in

the proposed semi-supervised community detection algorithm, we

propose an algorithm based on active learning to actively select

the nodes with maximum utilities from the networks to generate

the must-link and cannot-link constraints. This active learning

algorithm takes both the informative nodes and the nodes with

least certainty into account, and thus it can select the nodes with

local maximal degrees and the nodes located at the boundaries

between the ground truth communities step by step to access a

noiseless oracle for generating the must-link and cannot-link
constraints. Finally, we carried out extensive experiments on

several real-world networks to evaluate the performance of our

proposed method, the experimental results demonstrate that the

method can extract high-quality community structures from

networks, and outperforms other comparison methods signifi-

cantly.

Definitions

To facilitate the description of our algorithms, the following

notations are given in definition form:

Definition 1 A network is a graph G~(V ,E), where V and E

are the node set and the edge set, respectively, and DV D~n, DED~m.

In this paper, we only consider the simple networks as what are

involved in the conventional problem of community detection,

which means that all of the networks involved are undirected and

unweighted graphs, and every edge must connect two different

nodes.

Definition 2 The community structure of a network is a
partition C~fC1,C2, � � � ,Ckg of the network, subject to the
conditions |k

i~1Ci~V and Ci\Cj~w, i=j, where Ci represents
the node set of community i (i~1,2, � � � , k), and k is the number of
communities.

Compared with the general concept of a partition in graph theory,

another condition,
Pk

i~1 f(u,u)j (u,u) [ E,u [ Ci,u [ Cigj j&Pk
i~1
j~1
f(u,u)j(u,u) [ E,u [ Ci,u [ Cj ,i=jg
�� ��, must be attached to

the community structure, which indicates that the connections

between intra-community nodes are much denser than those

between inter-community nodes.

Definition 3 The must-link constraint set, CML: Vui,uj [ V ,
(ui,uj) [ CML indicates that two nodes ui and uj must belong to the
same community.

Definition 4 The cannot-link constraint set, CCL: Vui,uj [ V ,
(ui,uj) [ CCL indicates that two nodes ui and uj cannot be classified
into the same community, and they must be allocated into different
communities.

As only undirected and unweighted networks are considered in

this paper, the tuples in CML and CCL are order-independent, i.e.,

Vui,uj [ V , (ui,uj) [ CML[(uj ,ui) [ CML, and (ui,uj) [ CCL[

(uj ,ui) [ CCL also.

Definition 5 d(u) is the degree of node u, that is, the number of
edges associated with node u.

Definition 6 For a given node u, N(u)~fuD(u,u) [ Eg is a set
containing all neighbors of node u.

Definition 7 sim(u,u) is the similarity measure between two
nodes, u and u.

Definition 8 The similarity measure between community Ci and
node u, denoted as Sim(Ci,u), is formulated as follows:

Sim(Ci,u)~ max
u [ Ci

sim(u,u),

which means that it is defined as the maximal value of similarity

between every node in community Ci and node u.

Methods

Semi-supervised community detection algorithm
As mentioned above, the proposal is a semi-supervised

algorithm, which makes full utilization of the must-link and

cannot-link constraints to guide the process of community

detection. The pseudo-code outlining the procedure of our

algorithm is shown as Algorithm 1 in Table 1.

A set of must-link constraints define a transitive relation over the

nodes involved, and permit additional must-link constraints to be

derived from the original set, e.g., (ui,uj) [ CML, and

(uj ,uk) [ CML [ (ui,uk) [ CML. The cannot-link constraints

themselves do not have the transitive property, but the combina-

tion of cannot-link constraints and must-link constraints also

permits additional cannot-link constraints to be inferred, e.g.,

(ui,uj) [ CCL and (ui,uk) [ CML [ (uk,uj) [ CCL.

Thus, in Algorithm 1, we start with the derivations of must-link
constraints, and enlarge set CML by adding all derived constraints,

which are the functions of Transitive Augment(). Then, from the

combination of cannot-link constraints and enlarged must-link
constraints, all additional cannot-link constraints are inferred, and
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set CCL is augmented by adding all of the inferences, which is

conducted using the Combined Augment() function.

For any node pair in the cannot-link constraints, the two nodes

involved must be classified into different communities, and we

therefore use the cannot-link constraints to construct the initial

skeleton of the community structure. For any cannot-link
constraint node pair, we create two new communities and insert

the two nodes into each of the communities, respectively, i.e., for

any node pair (ui,uj) [ CCL, two communities fuig, fujg are

created. In this way, we obtain many communities with a sole

member in each of them. Among all of the communities, two

members across two communities may have a must-link relation-

ship, e.g., for node ui [ Ci and node uj [ Cj , (ui,uj) [ CML may

exist. According to the definition of the must-link constraints,

nodes ui and uj should be in the same community. Therefore, we

merge the two communities involved into one — in Algorithm 1,

Table 1. Algorithm 1: Semi-supervised community detection algorithm based on must-link and cannot-link constraints.

Input: G(V ,E), the network; CML , the must-link constraint set; CCL , the cannot-link constraint set

Output: C, a partition of the network corresponding to the community structure

1: Augment the must-link and cannot-link sets utilizing the transitive property of must-link:

CML/Transitive Augment(CML)

CCL/Combined Augment(CCL,CML)

/* Construct the initial skeleton of the community structure from the cannot-link and must-link constraints */

2: Initialize set C corresponding to the community structure, and set Vu used to record the unclassified nodes:

C/w

Vu/V

3: Take every node involved in each cannot-link constraint (ui,uj) [ CCL as a separate community:

foreach (ui ,uj ) [ CCL do

C/C|ffuig,fujgg

Vu/Vu\fui ,ujg

4: If some nodes contained in different communities Ci , Cj (i~1, 2, � � �, DCD, j~1, 2, � � �, DCD, i=j) are involved in some must-link constraints, then merge community Cj

into community Ci :

for ui [ Ci ,uj [ Cj do

if A(ui,uj) [ CML then

Ci/Ci|Cj

C/C\fCjg

/* Expand the communities to obtain the final community structure */

5: For each community Ci [ C, select those unclassified nodes that have must-link and transitive must-link relationships with the nodes contained in Ci , and insert them
into Ci , repeatedly:

foreach Ci [ C do

repeat

M/fuDu [ Vu,Au [ Ci ,(u,u) [ CMLg
Ci/Ci|M

Vu/Vu \M

until M~w

6: Among all communities and unclassified nodes, find the most similar pair (Ci,u) from the network greedily globally, and insert the node u into the community Ci first:

(Ci,u)/arg maxCj [ C,u [ Vu
(Sim(Cj ,u))

Ci/Ci|fug
Vu/Vu\fug

and then insert the nodes that have must-link and transitive must-link relationships with node u into community Ci :

M/fuDu [ Vu,(u,u) [ CMLg
repeat

Ci/Ci|M

Vu/Vu \M

M ’/fuDu [ Vu,Au’ [ M,(u,u’) [ CMLg

M/M
0

until M~w

7: Repeat step 6, until all nodes in the network are processed, i.e., until Vu~w

8: return C

doi:10.1371/journal.pone.0110088.t001
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community Cj is merged into community Ci using the operation

Ci/Ci|Cj . After all cases of this type are processed, we obtain

the initial skeleton of the community structure, and those nodes in

the initial communities are intended to be seeds or initiators of the

corresponding communities.

Then, based on the skeleton of the community structure, we

begin to expand the communities. First, if some unclassified nodes

(nodes that have not been allocated to any community yet) have

must-link or transitive must-link relationships with some classified

nodes (nodes that have already been assigned to communities), the

unclassified nodes are allured into joining the communities in

which their buddies belong. Concretely, for every community Ci

and any node u [ Ci, the algorithm selects the unclassified nodes

that have must-link and transitive must-link relationships with u,

and inserts them into community Ci.

After all of this type of must-link node pairs are processed, a

greedy strategy is employed in the next steps: the (community,
unclassified node) pair (Ci,u) with the largest value of similarity

between the community and unclassified node is chosen from all

(community, unclassified node) pairs, and the algorithm inserts

node u into the corresponding community Ci, which means that in

each iteration, a global optimal node is selected and assigned to the

corresponding community. In the next steps, we find all nodes that

have must-link and transitive must-link relationships with node u,

and insert them into community Ci as well. These greedy

operations are repeated until every node in the network is

classified into the corresponding community, and we finally obtain

the resulting community structure.

Active learning algorithm
In this subsection, we present the idea of the proposed semi-

supervised component generation algorithm based on active

learning. Generally, the semi-supervised components are obtained

by annotating the nodes involved by a noiseless oracle. However,

in real-world applications, annotating the nodes in networks is a

time-consuming job, and it is also very costly. Therefore, the goal

of the proposed algorithm is to select those nodes with the

maximum utilities for Algorithm 1 to generate the semi-supervised

components.

In Algorithm 1, the initial skeleton of the community structure is

constructed purely from the must-link and cannot-link constraints.

The nodes involved in the constraint pairs are taken as the seeds or

initiators of the communities, and the communities are then

expanded by pulling the most similar nodes to join the

corresponding community iteratively. From this perspective, the

selected nodes should cover all of the ground truth communities

and have relative larger degrees, such that the accuracy of

community assignments of the nodes can be ensured during the

expansion process. However, most of the nodes having a larger

degree are the internal nodes of the ground truth communities,

and are unlikely to be assigned to a wrong community. The nodes

located at the community boundaries tend to be misclassified, but

their selection does not facilitate the expansion of the communi-

ties. We make a compromise to select those nodes with a relative

larger degree and the boundary nodes to generate the must-link
constraints and the cannot-link constraints by accessing the oracle.

The basic idea of this active learning algorithm is to extract some

nodes with larger degrees in local area into a set and partition the

set into some clusters quickly, then to select the nodes having the

maximal degree values in each cluster and the nodes having

connections with other nodes in other clusters to access the oracle

to query the relationship between some pairs of the selected nodes.

Which means we try to maximize the utilities of the semi-

supervised components by taking both the informative nodes (the

nodes with a relative larger degree) and the nodes with least

certainty (the boundary nodes) into account during the process of

node selection.

Although Algorithm 1 needs nodes with larger degrees to be

taken as community seeds to facilitate the expansion of the

communities, if we select nodes using only their degrees as a

condition, the nodes in small communities will necessarily be

ignored. For example, in the simple two-community network

illustrated in Figure 1, only node u1 will be selected according to

the values of the node degrees. It is obviously that the selected

nodes do not cover all of the ground truth communities. To solve

this problem, we calculate a degree-related score for every node u
in the network using the following formula:

score(u)~
X

u [ N(u)

X
w [ N(u)\N(u)

1

d(w)
,

and the score values of nodes are used in conjunction with the

degree values of nodes as a condition for node selection.

Concretely, the nodes whose score values are larger than a given

threshold, j, are extracted into a set, cand, as candidates firstly,

and cand is then partitioned into some clusters by calling the

function partition into clusters(). From every cluster, the node

with the maximal degree is selected as the representative of that

cluster, and the ties are broken by selecting the node with both the

maximal degree and the maximal score value. In this way, at least

nodes u1 and u10 (or u12) will be selected from the network

illustrated in Figure 1 after these steps. Using these operations

coupled with the following steps, we can ensure that the selected

nodes distribute over all of the ground truth communities.

For the selected representatives, we access the oracle to query

the relationship between each pair of them, and generate must-link
constraints or cannot-link constraints according to the query

results. There may exist other nodes having the same maximal

degree with the representative in each cluster, thus we process

these nodes in descending order of the degree values of the cluster

representatives. From each cluster, we draw out every one of such

nodes and access the oracle to query the relationship between the

node and the representative of that cluster. If the query result

indicates that the relationship is ‘‘cannot-link’’, then the relation-

Figure 1. A simple two-community network. If the nodes are
selected according to their degree values, only node u1 will be selected,
and community fu9,u10,u11,u12g will be ignored. However, using the
score value in conjunction with degree value of every node in the
network as the condition, we will select node u1,u10 (or u12) from the
network at least, which means that the selected nodes can cover all of
the ground truth communities. (The different node shapes and shades
indicate different communities, the black lines are the edges within
communities, and the light-gray connections represent the edges
across different communities. This illustration style is also applied in the
following figures.)
doi:10.1371/journal.pone.0110088.g001
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ships between the node and other representatives are queried. If

some of the results show that the node and certain representatives

have must-link relationships, we insert the node into the

corresponding clusters. And if all the results are ‘‘cannot-link’’s,

then a new cluster is constructed by taking the node as its

representative. During this process, the must-link constraint set or

the cannot-link constraint set is updated according to the result of

each query. This process is repeated until all nodes having the

same maximal degrees with the representative nodes are

processed, or until certain user-specified termination criteria, such

as the query number limit, etc., are reached. The initial must-link
and cannot-link constraints are then obtained, and the nodes with

the maximal degrees in all clusters will cover all of the ground

truth communities.

If more constraints are needed, the boundary nodes of the

clusters are considered in order of the numbers of nodes contained

in the clusters alternately, where the boundary nodes are those

having edges connected with nodes located in other clusters. From

each cluster, the boundary node with the maximal degree is

selected, and the algorithm accesses the oracle to query the

relationship between the boundary node and the representative of

that cluster. If the relationship is ‘‘cannot-link’’, then the

relationships between the boundary node and other representa-

tives are queried. If some of the results show the must-link
relationships between the boundary node and certain representa-

tives, we insert the boundary node into the corresponding clusters.

As with the process for nodes with the maximal degrees, during the

process for each boundary node, the must-link constraint set or the

cannot-link constraint set is updated after each query. This process

is repeated until all boundary nodes are selected, or certain user-

specified termination criteria are met. Finally, all must-link and

cannot-link constraints generated are returned and utilized in

Algorithm 1.

The steps of the entire procedure are listed as Algorithm 2 in

Table 2.

The function partition into clusters() in Algorithm 2 is

responsible for partitioning the candidate node set, cand, into

some clusters. In this function, we take every node in set cand as a

cluster first, then merge some clusters repeatedly to obtain the

resulting clusters. The logic of this function is described as

Algorithm 3 in Table 3.

To achieve the goals efficiently, in Algorithm 3, we first calculate

a value, S, for each pair of nodes (u,u) (u [ cand,u [ cand) using

the following formula:

S(u,u)~

P
w [ N(u)\N(u)

1

d(w)
(u,u) [ E

0 otherwise

8<
: ,

the value of S takes the role of the local similarity between the pair of

nodes in partition into clusters(). Next, for every node in set cand,

the most similar neighbors are identified according to the value of

local similarity S. Each node in set cand is then taken as a cluster,

and that node is the sole member of the corresponding cluster. In

the next steps, two clusters are merged into one iteratively, until all

nodes in set cand are processed. In each merge operation, the nodes

contained in one of the two clusters are some of the most similar
neighbors of the nodes contained in the other cluster. Finally, the set

of clusters is returned and used in Algorithm 2.

Similarity measure computation algorithm based on
random walk

In Algorithm 1, we expand the communities by selecting the

most similar unclassified nodes and inserting them into the

corresponding community iteratively. In general, the selected

unclassified nodes fall into two categories: nodes having must-link
relationships with the classified nodes, and nodes having the

largest similarity values with the corresponding communities

among all of the community and unclassified node pairs. Because

of the small number of must-link constraints, the vast majority of

nodes are pulled to join the communities for the latter reason.

Thus, the similarity between a community and a node plays an

important role in our algorithm. According to Definition 8,

Sim(Ci,u) is defined as the maximal similarity value between every

node in community Ci and node u, and thus we need to compute

the similarity sim(u,u) between every pair of nodes, (u,u), in the

network beforehand, where u [ V and u [ V .

Adapting Algorithm 1, we need the similarity to provide a

quantitative metric to measure the closeness between two nodes

from the global perspective of the entire network. When the length

of the random walks is set properly, a random walker starting from

any node can walk through the whole network, and thus the idea

of random walk can be used to compute the global similarity

between any pair of nodes. Most of the methods based on random

walk implicitly utilize the tendency of the walker being trapped in

a group of densely connected nodes corresponding to a

community by using the probabilistic theory knowledge and

matrix operations. In [35], the authors implemented a method

directly applying the idea of random walk by actually simulating

the process of random walk in a network to compute the

similarities between nodes. In this paper, we directly utilize such

method to compute the similarity values used in Algorithm 1, the

operations of this random walk method are listed as Algorithm 4 in

Table 4.

The operations are almost self-explanatory. First, all elements of

the similarity matrix sim are initialized to be 0. We then take every

node in the network as the start node to carry out a random walk.

During each random walk, we keep track of the visited nodes into

set path, and at the end of each walk, the similarity value between

each pair of nodes in path is increased. After all random walks are

completed, we finally obtain and return the similarity matrix, sim.

Clearly, Algorithm 4 applies to undirected networks only,

because we need the walker starting from any node can walk

through the whole network in principle. In many directed

networks, it is impossible. In addition, the networks should be

unweighted networks, or the walker have to consider the

influences of the edge weights in each jump. Because the edge

weights in different networks have different meanings, this will

increase the complexity of the similarity computation. For

simplicity, Algorithm 4 does not touch upon the edge weights at

all. Therefore, Algorithm 4 applies to unweighted networks only

also. This is also the major reason why we only consider the

undirected and unweighted networks in this paper.

Evaluation metrics

Although the algorithm can consistently produce a partition of a

network, how do we know whether the partition is acceptable as a

community structure or not? We need some metrics to measure

the quality of the community structure extracted by the algorithm.

The modularity [7] is the de facto standard at present to measure

the strength of a community structure, the accuracy and NMI
(Normalized Mutual Information) [51] are two metrics frequently

used to assess the performance of clustering algorithms in the fields
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of data mining and machine learning. To some extent, the essence

of detecting a community structure from a network is node

clustering, thus using the accuracy and NMI to measure the ability

of the community detection algorithms also makes sense.

Therefore, in this paper, we take all of the three metrics to

evaluate the ability of the algorithms.

Table 2. Algorithm 2: Active approach to generate the must-link and cannot-link constraints.

Input: G(V ,E), the network; j, the score threshold

Output: CML,CCL , the sets of must-link constraints and cannot-link constraints

1: For each node u [ V , calculate a score:

score(u)/
P

u [ N(u)

P
w [ N(u)\N(u)

1
d(w)

2: Extract the nodes whose score values are larger than the given threshold, j, from V into set cand as candidates

3: K/partition into clusters(G,cand)

4: Select the node with the maximal degree in each cluster Ki [ K (i~1,2, � � � ,DK D) as its representative

ri/arg maxu [ Ki
d(u)

if more than one node having the same maximal degree exist, the node with the maximal score value is chosen

5: Initialize the sets of must-link constraints and cannot-link constraints:

CML/w; CCL/w

6: For any two representatives ri , rj (i,j~1,2, � � � ,DK D, and i=j), access the oracle to query their relationship:

rs/query from oracle(G,ri ,rj)

if rs = ‘‘must-link’’ then CML/CML|f(ri ,rj)g

if rs~‘‘cannot-link’’ then CCL/CCL|f(ri ,rj )g

7: Check each cluster Ki [ K in descending order of the degree values of the representative nodes, and select each node u [ Ki that has the same maximal degree with
ri to query the relationships between u and ri :

rs/query from oracle(G,u,ri)

N if rs~‘‘must-link’’ then update the must-link set: CML/CML|f(ri ,u)g
N if rs~‘‘cannot-link’’ then update the cannot-link set and Ki first:

CCL/CCL|f(ri ,u)g; Ki/Ki \fug
then query the relationships between u and other representatives rj (j~1,2, � � � ,DK D, j=i):

rs/query from oracle(G,u,rj )

N if the query result is ‘‘must-link’’, update CML and Kj : CML/CML|f(u,rj )g; Kj/Kj|fug

N if the result is ‘‘cannot-link’’, update CCL : CCL/CCL|f(u,rj)g

N for all rj (j~1,2, � � � ,DK D, j=i), if all query results are ‘‘cannot-link’’s, create a new cluster by taking u as its representative:

rDK Dz1/u; K/K|ffugg

8: Repeat step 7, until all nodes having the same maximal degrees in every cluster are processed, or until certain user-specified termination criteria are met

9: If more must-link constraints and cannot-link constraints are needed, consider the boundary nodes in each cluster Ki [ K (i~1,2, � � � ,DK D) alternately in order of the
number of nodes contained in Ki

N From the remainder nodes in Ki , extract the boundary nodes into set B, where the boundary nodes are those nodes having edges connected with nodes in other
clusters

N if B=w, select the node with the maximal degree, denoted as b, from B to query the relationship between b and the representative of Ki :

rs/query from oracle(G,b,ri)

N if rs~‘‘must-link’’, update CML :

CML/CML|f(ri ,b)g
N if rs~‘‘cannot-link’’, update CCL and cluster Ki first:

CCL/CCL|f(ri,b)g; Ki/Ki\fbg
then query the relationships between b and other representatives rj (j~1,2, � � � ,DK D, j=i):

rs/query from oracle(G,b,rj )

N if rs~‘‘cannot-link’’, update CCL :

CCL/CCL|f(rj ,b)g

N if rs~‘‘must-link’’ to certain rj , update CML and cluster Kj :

CML/CML|f(rj ,b)g; Kj/Kj|fbg

10: Repeat step 9, until certain user-specified criteria are met

11: return CCL,CML

doi:10.1371/journal.pone.0110088.t002
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Modularity

As mentioned above, The modularity, denoted as Q, is the

actual metric at present to measure the quality of a community

structure. Let us assume that a network is partitioned into k

communities, and define a k|k symmetric matrix e, whose

element eij is the proportion of edges in the network that connect

the nodes in community i with the nodes in community j. Further,

let us define the row sum of e as ai, i.e., ai~
Pk

j~1 eij , which

represents the proportion of edges that are incident to nodes in

community i. Based on the assumption and definitions, the metric

modularity is defined as:

Q~
Xk

i~1

(eii{a2
i )~Tr e{Ee2E, ð1Þ

where the first term,
Pk

i~1 eii, is the proportion of edges inside the

communities, and the second term,
Pk

i~1 a2
i , represents the

expected value of the same quantity in a random network

constructed by keeping the same node set and node degree

distribution, but connecting the edges between nodes randomly.

Table 3. Algorithm 3: partition into clusters(G,cand).

Input: G(V ,E), the network; cand , the set of candidate nodes

Output: K , the set of clusters

1: For each node pair (u,u), where u [ cand , u [ cand , calculate the value of S:

S(u,u)/
P

w [ N(u)\N(u)

1

d(w)
(u,u) [ E

0 otherwise

8<
:

2: For each node u [ cand , identify its most similar neighbors (abbreviated as msn):

maxS/maxu [ N(u) (S(u,u))

msn(u)/fuDS(u,u)~maxS,u [ N(u)g
3: Construct the initial clusters K by taking each node u [ cand as a cluster:

K~ffugDu [ candg
4: Select the node with the largest degree from the unprocessed nodes in cand as the start node

5: Merge the cluster containing the start node and every cluster containing any node in msn(start)

6: Take each node in msn(start) as a new start node alternately, and repeat step 5 until every new start node and msn(start) are in the same cluster

7: Repeat steps 4–6 until all of the nodes in cand are processed

8: return K

doi:10.1371/journal.pone.0110088.t003

Table 4. Algorithm 4: Similarity computation algorithm based on random walk.

Input: G(V ,E), the network; l, the length of the random walks

Output: sim, the similarity matrix whose elements are the similarity values between nodes in the network

1: Initialize the similarity matrix:

for u [ V , u [ V do

sim(u,u)/0

2: Take any node in the network as the start node to simulate a random walk, and record the visited nodes during the walk in set path:

path/fstartg
current/start

for number of steps~1 to l do

next/random select from(N(current))

path/path|fnextg
current/next

3: Increase the similarity value between every pair of nodes recorded in set path

for u [ path do

for u [ path (u=u) do

sim(u,u)/sim(u,u)z1

4: Take any other node as the start node, repeat the random walk and similarity-increase operations depicted in steps 2 and 3, until every node in the network is taken
as the start node to simulate a random walk once

5: return sim

doi:10.1371/journal.pone.0110088.t004
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Such randomness is generally accepted as a network having no

significant community structure.

The modularity Q measures the quality of a community

structure from the perspective of how far it deviates from a

random network: the more the value of Q is close to 0, the more

the term
Pk

i~1 eii is close to
Pk

i~1 a2
i , which means that the

network more approaches a random network, and thus the

strength of the community structure is weaker. In contrast, the

larger the value of Q is, the further the community structure

deviates from a random network, and thus the strength of the

community structure is stronger. In practice, values greater than

about 0.3 have already indicated significant community structures,

and typically fall within the range of ½0:3,0:7�. Higher values of Q
are rare.

The modularity can be computed using only the topological

connectivity of the network, without requiring any other

information. However, some disadvantages of the modularity
exist: in [52], the authors found that optimizing the modularity in

large networks would fail to identify communities that are smaller

than a scale, even when the smaller communities is well defined.

This is the so-called resolution limit problem. Furthermore, the

modularity formalizes the goal of attaining high intra-community

connectivity and low inter-community connectivity, and is an

internal criterion for measuring the quality of a community

structure. Regarding the internal criterion, it is well known that a

good score does not necessarily translate into a good effectiveness

in practice. For the modularity, a high value of Q does not

necessarily correspond to a real community structure, which will

be verified through the experimental results.

Therefore, in addition to the modularity, we use the accuracy
and NMI to measure the ability of the community detection

algorithms.

Accuracy
Compared with the modularity, the accuracy, denoted as A, is

an external criterion for evaluating the ability of the community

detection algorithms, and is defined as the ratio of the number of

nodes classified into the correct communities to the total number

of nodes in the network. As mentioned above, community

detection is equivalent to node clustering in the network to some

extent, thus it is a basic requirement that the nodes be classified

into the correct communities. The accuracy takes the ground truth

community structure as a baseline, and utilizes the ratio to

measure the proximity between the extracted community structure

and the ground truth community structure, and to measure the

ability of the algorithm.

Let us denote the ground truth community structure and the

extracted community structure as CT~fCT
1 ,CT

2 , � � � ,CT
k g and

C~fC1,C2, � � � ,Ck’g, respectively. To compute the accuracy, we

assign every community CT
i [ CT a unique label, which is also

assigned to each node v [ CT
i concurrently as its true label,

denoted as v:label. We then resolve which community CT
j [ CT

matches with community Ci [ C. To do so, for each community

Ci [ C, we scan all of the nodes in Ci to count the occurrences of

each label in Ci, and take the label occurring most frequently in Ci

as the label of community Ci. After this process, some

communities may have the same labels. For these communities,

we keep the community with the largest number of nodes with the

same label, and for each of the other communities, if the nodes in

the community have no other labels, that community is removed

from C, and all nodes in that community are taken as misclassified

nodes; otherwise, we take the next label whose node number is the

next-largest in the community as the label of that community. If

some communities still have the same labels, this procedure is

repeated until every community has a unique label. Then,

community Ci [ C and community CT
j [ CT with the same label

match with each other, and we assign the label of community Ci to

each node u [ Ci as its predicted label, denoted as u:label�. Based

on the above description, A is defined as

A~

P
u [ |DCD

i~1
Ci

d(u:label,u:label�)

n
, ð2Þ

where d() is the Kronecker delta function.

The accuracy A measures how the extracted community

structure approaches the ground truth community structure.

Obviously, the value of A falls within the range of ½0,1�, and the

more it is close to 1, the more the extracted community structure is

close to the ground truth community structure. The ideal scenario

is A~1, which is corresponding to the result that all nodes in the

network are classified into the corresponding communities

correctly, so that the extracted community structure is identical

to the ground truth community structure.

NMI
NMI is an information-theory based metric, which measures the

quality of the extracted community structure from the perspective

of the agreement between the extracted community structure and

the ground truth community structure, i.e., it also takes the ground

truth community structure as a baseline, and thus is also an

external criterion for measuring the ability of the community

detection algorithm.

Taking the frequency counts as approximations of the

probabilities, the entropies of the ground truth community

structure and the extracted community structure can be repre-

sented as H(CT )~{
Pk

j~1

nCT

j

n
log(

nCT

j

n
) and H(C)~{

Pk’
i~1

nC
i

n
log(

nC
i

n
), respectively, where nCT

j ~DCT
j D, nC

i ~DCi D. The joint

entropy of them can be expressed as H(C,CT )~{
Pk’

i~1Pk
j~1

nij

n
log(

nij

n
), where nij~DCi\CT

j D, which is the number of

shared nodes in Ci and CT
j . The agreement between the extracted

community structure C and the ground truth community structure

CT is measured by the mutual information I(C,CT ), which is

defined as follows:

I(C,CT )~H(C)zH(CT ){H(C,CT )

~
Xk’

i~1

Xk

j~1

nij

n
log(

nij

n

nC
i

n
:
nCT

j

n

):

In practice, it is the normalized version of the mutual

information that is frequently used to measure the agreement

between the extracted community structure and the ground truth

community structure, rather than the mutual information itself. It

is easy to prove that I(C,CT )ƒ H(C)zH(CT )
2

, therefore, the

normalized mutual information, NMI , is defined as follows:
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NMI(C,CT )~
I(C,CT )

H(C)zH(CT )

2

~

{2
Pk’
i~1

Pk
j~1

nij log(
nij
:n

nC
i
:nCT

j

)

Pk’
i~1

nC
i log(

nC
i

n
)z
Xk

j~1

nCT

j log(
nCT

j

n
)

:

ð3Þ

Clearly, the value of NMI also falls within the range of [0, 1],

and the larger the value of NMI is, the more the extracted

community structure agrees with the ground truth community

structure, whereas the smaller the value of NMI is, the farther they

differentiate from each other, and vice versa.

Results and Discussion

Datasets
In our experiments, we need to evaluate the results both

qualitatively and quantitatively, thus the networks used for the

evaluation have to satisfy certain criteria: their ground truth

community structures must be known a priori, their scales must be

sufficiently small to facilitate the interpretation and visualization of

the results, and the networks should be publicly available to

facilitate the verification of the methods or algorithms. These

restrictions resulted in the selection of four real-world networks,

i.e., Zachary’s karate club network [6–8,53], Lusseau’s bottlenose

dolphin social network [54], a map used in the board game Risk

[35], and a collaboration network of scientists working at the Santa

Fe Institute, which is an interdisciplinary research center in Santa

Fe, New Mexico [6]. The statistical information of these networks

is listed in Table 5.

Using these networks, we carried out two types of experiments:

one for testifying the ability of the semi-supervised community

detection algorithm based on the must-link and cannot-link
constraints, and the other for demonstrating the utility of the

semi-supervised component-generation algorithm based on active

learning.

Parameter settings
In Algorithm 2, the score threshold, j, works as a parameter to

control the number of nodes extracted into the candidate set,

cand. Too large j will filter out too many nodes with larger

degrees, this will lead to the result that the selected nodes cannot

distribute over all of the ground truth communities. On the

contrary, too small j will extract too many nodes into set cand,

this will influence the efficiency of partitioning set cand into some

clusters. In the following experiments, we controlled the value of j,

so that the nodes whose score are among the top 50% of score
values were extracted into set cand, and then cand was quickly

partitioned into some clusters.

In Algorithm 4, the length of the random walks, l, is also a

parameter. In our experiments, we accepted the setting, l = n, as

what is used in [35], so that the walker starting from any node can

reach any other node in the network, theoretically. Therefore, the

similarity between any two nodes in the network can be computed.

Experiments on the ability of semi-supervised
community detection algorithm

To test the ability of our semi-supervised community detection

algorithm, we ran the proposed algorithm on the four networks

described above, and compared the results with those of four

unsupervised community detection algorithms, FastQ, LPA,

Infohiermap, and PPC. For our proposal, the initial skeleton of

the community structure is constructed from the must-link and

cannot-link constraints, and as the minimum requirement, the

nodes that are selected to generate these constraints should

distribute over all of the ground truth communities. Thus, to

accommodate this minimum requirement, in these experiments,

we controlled the termination criteria of the active node selection

approach in Algorithm 2, and selected only the nodes with the

maximal degrees in the corresponding clusters to query their

relationships. As for LPA, it is a non-deterministic algorithm,

running the algorithm on a given network many times may incur

different results. We therefore took the method originated in [27]

to run the LPA 30 times on every network, and then aggregated

these community structures to obtain the resulting structure. But

to be frank, the aggregated structure on each network is still non-

deterministic, and in the experiments described below, we

therefore performed the aggregation operations 20 times on every

network, and the aggregated community structure occurring most

frequently was taken as the resulting structure of that network.

Zachary’s karate club network. This is a well-known

benchmark network for testing community detection algorithms.

The network is made up of 34 nodes and 78 edges, where every

node represents a member of a karate club at an American

university. If two members are observed to have social interactions

within or away from the karate club, they are connected by an

edge. Later, because of a dispute arising between the club’s

administrator and instructor, the club is eventually split into two

factions centered on the administrator and the instructor,

respectively. Matched with these two factions, the ground truth

community structure is illustrated in Figure 2-(a). Feeding this

network into the proposed and comparison algorithms, we

obtained the results illustrated in Figures 2-(b), 2-(c), 2-(d), 2-(e),

and 2-(f), respectively. The comparison results of the three metrics

are listed in Table 6.

To obtain the illustrated results, we controlled the termination

criteria in Algorithm 2, such that only nodes ‘‘1’’ and ‘‘34’’ were

selected to generate the must-link and cannot-link constraints by

Table 5. Statistical information of the networks.

network nodes edges communities

karate 34 78 2

dolphin 62 159 4

Risk map 42 83 6

collaboration 118 197 6

doi:10.1371/journal.pone.0110088.t005
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Figure 2. Zachary’s karate club network. (a) The ground truth community structure; (b) The community structure extracted by the proposed
algorithm; (c) The community structure extracted by FastQ; (d) The community structure aggregated from 30 community structures extracted by LPA;
(e) The community structure detected by Infohiermap; (f) The community structure identified by PPC.
doi:10.1371/journal.pone.0110088.g002

Active Semi-Supervised Community Detection

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e110088



accessing the oracle. Clearly, the relationship between this pair of

nodes is ‘‘cannot-link’’. Based on this constraint, our method

identified the correct community structure from this network

easily, the result of which is identical to the ground truth

community structure. Compared with this, all of the community

structures extracted by FastQ, LPA, Infohiermap, and PPC have

some deviations from the ground truth. This means that by

introducing only the minimum semi-supervised components, we

can obtain the best community structure.

It is worth noting that the output of FastQ herein is different

from the counterpart described in [8]. In [8], when the value of

modularity Q reaches its peak (Q = 0.381), the dendrogram

agglomerated by the algorithm is cut into two communities

correspondingly. However, in our experiments, we carried out the

algorithm using a variety of implementations, including conduct-

ing the programming ourselves, compiling the source code

downloaded from a Web site [55], running the executable file,

and calling the function implemented in igraph package [56]. All

outputs are consistent with that presented herein, i.e., when

Q = 0.381, the corresponding structure contains three communi-

ties, as illustrated in Figure 2-(c), rather than two.

In Table 6, all of the values of Q obtained by FastQ,

Infohiermap, PPC, and the maximal, the average and the

aggregated values of Q acquired by LPA are larger than that of

the ground truth community structure, but all of the correspond-

ing community structures deviate from the ground truth commu-

nity structure more or less, which confirms one of the shortcom-

ings of the modularity mentioned before.

Lusseau’s bottlenose dolphin social network. This is also

a famous network widely used as a benchmark to validate

community detection algorithms. It contains 62 nodes that

represent bottlenose dolphins living in Doubtful Sound, New

Zealand, and 159 edges that represent associations between

dolphin pairs observed to co-occur more often than expected

occasionally. The nodes in this network can be partitioned into

four groups, which corresponds to the ground truth community

structures illustrated in Figure 3-(a). Running our proposed

algorithm and the comparison algorithms on this network, we

obtained the results illustrated in Figures 3-(b), 3-(c), 3-(d), 3-(e),

and 3-(f). The comparison results of the three metrics are listed in

Table 6.

In this network, the nodes with the maximal degrees in the

clusters selected by Algorithm 2 are nodes ‘‘grin’’, ‘‘topless’’,

‘‘web’’, ‘‘jet’’, ‘‘tr77’’, and ‘‘double’’. Among them, nodes ‘‘grin’’

and ‘‘double’’ belong in the same ground truth community, as do

the pair of nodes ‘‘web’’ and ‘‘jet’’. To meet the minimum

requirement that the selected nodes simply cover all of the ground

truth communities, we interfered manually to select the node

whose degree is larger than the other node in the pair. When the

two nodes had the same degree value, the one with the larger

Table 6. Comparisons of the 3 metrics: A rank (number in parentheses) is attached to the value of each metric for each network,
and the value with the highest rank for each metric on each network is shown in bold.

network algorithm Q A NMI rank score rank

karate ground truth 0.371 1.00 1.00

FastQ 0.381 (4) 0.735 (4) 0.692 (4) 4.00 5

LPA 0.399 (3) (max: 0.416 average: 0.397) 0.853 (2) 0.826 (2) 2.33 1

Infohiermap 0.402 (2) 0.824 (3) 0.699 (3) 2.67 3

PPC 0.42 (1) 0.676 (5) 0.687 (5) 3.67 4

proposal 0.371 (5) 1.00 (1) 1.00 (1) 2.33 1

dolphin ground truth 0.519 1.00 1.00

FastQ 0.491 (5) 0.839 (4) 0.733 (5) 4.67 5

LPA 0.503 (4) (max: 0.526 average: 0.506) 0.823 (5) 0.837 (3) 4.00 4

Infohiermap 0.525 (2) 0.887 (2) 0.898 (1) 1.67 2

PPC 0.519 (3) 0.871 (3) 0.812 (4) 3.33 3

proposal 0.526 (1) 0.935 (1) 0.85 (2) 1.33 1

Risk map ground truth 0.621 1.00 1.00

FastQ 0.625 (2) 0.929 (2) 0.894 (3) 2.33 3

LPA 0.624 (3) (max: 0.634 average: 0.619) 0.81 (4) 0.848 (4) 3.67 4

Infohiermap 0.634 (1) 0.857 (3) 0.945 (2) 2.00 1

PPC 0.621 (4) 0.81 (4) 0.803 (5) 4.33 5

proposal 0.621 (4) 1.00 (1) 1.00 (1) 2.00 1

collaboration ground truth 0.739 1.00 1.00

FastQ 0.749 (2) 0.831 (3) 0.867 (3) 2.67 3

LPA 0.681 (5) (max: 0.726 average: 0.678) 0.627 (5) 0.799 (5) 5.00 4

Infohiermap1st 0.651 (6) 0.636 (4) 0.764 (6) 5.33 6

Infohiermap2nd 0.704 (4) 0.602 (6) 0.805 (4) 4.67 5

PPC 0.751 (1) 0.847 (2) 0.876 (2) 1.67 1

proposal 0.72 (3) 0.873 (1) 0.877 (1) 1.67 1

Infohiermap1st and Infohiermap2nd represent the first-level and the second-level community structures extracted by the Infohiermap algorithm, respectivly.
doi:10.1371/journal.pone.0110088.t006
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score value was selected. Thus, the semi-supervised components

were generated from nodes ‘‘grin’’, ‘‘topless’’, ‘‘web’’, and ‘‘tr77’’

in this experiment, and it is clear that the relationships between

their pairs are all ‘‘cannot-link’’s. Compared with the ground truth

community structure shown in Figure 3-(a), in the result of our

proposed method illustrated in Figure 3-(b), nodes ‘‘sn89’’, ‘‘zap’’,

‘‘double’’, and ‘‘ccl’’ were classified into the wrong communities.

The first 3 of them are all located at the community boundaries,

and they tend to be classified erroneously. For the misclassifica-

tions of nodes ‘‘double’’ and ‘‘zap’’, node ‘‘ccl’’ also becomes a

boundary node. Thus, it is easy to understand why they were

classified into the wrong communities.

Figure 3. Lusseau’s bottlenose dolphin social network. (a) The ground truth community structure; (b) The community structure extracted by
the proposed algorithm; (c) The community structure identified by FastQ; (d) The community structure aggregated from 30 outputs of LPA; (e) The
community structure detected by Infohiermap; (f) The community structure identified by PPC.
doi:10.1371/journal.pone.0110088.g003
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Despite this, from the perspective of the proximity of the

community structures identified by the algorithms and the ground

truth community structure, the proposed algorithm performs

better than the other algorithms. Both the values of Q and A are

larger in the proposed algorithm than in the comparison

algorithms, and the value of NMI of the proposed algorithm is

only smaller than that of the Infohiermap algorithm, but still larger

than those of the others. Additionally, along with the increase in

the number of selected nodes participating in generating the semi-

supervised components, some of the misclassifications will be

eliminated, the value of Q will approach that of the ground truth

community structure, the values of A and NMI will increase

further, all of which are verified in the next type of experiments.

Risk map network. This network is a map of the popular

board game Risk, which was invented by Albert Lamorisse and

released in 1957 originally. The game can be played by two to six

players on a board representing a political map of the Earth, which

is divided into 42 territories grouped into 6 continents. Hence, this

network is composed of 42 nodes and 83 edges, and all nodes can

be partitioned naturally into 6 communities. To eliminate any

political sensitivity, we assigned each of the nodes a continuous

number instead of the name of the country or territory, the ground

truth community structure of which is shown in Figure 4-(a).

Taking this network as an input in the proposed and comparison

algorithms, the outputs are demonstrated in Figures 4-(b), 4-(c), 4-

(d), 4-(e), and 4-(f), individually, and the comparison results of the

three metrics are enumerated in Table 6.

In this network, the minimum number of nodes with the

maximal degrees in the clusters selected by Algorithm 2 are nodes

‘‘5’’, ‘‘36’’, ‘‘24’’, ‘‘31’’, ‘‘40’’, and ‘‘16’’, and all relationships

between every pair of them are ‘‘cannot-link’’s. Based on these

constraints, the proposed algorithm yielded the result shown in

Figure 4-(b), which is identical to the ground truth community

structure. This means that, by utilizing the minimum number of

semi-supervised components to guide the community detection

procedure, we obtain the best result for this network.

The 6 communities in this network are well separated, but

because of the existence of some special nodes, some mistakes

tended to be introduced into the results of many algorithms. For

instance, node ‘‘26’’ is such a special node, which has 6 edges, but

only 2 of them are intra-community connections. For 4 other

inter-community edges, 2 of them connect nodes in another

community, and 2 other of them are incident to nodes in the third

community. Thus, it is hard to say which one of the three

communities the node is more intimate with. Similar scenarios

occur for nodes ‘‘12’’, ‘‘16’’, and ‘‘33’’. It seems rational that they

be classified into any one of the communities that they are

associated with, if we do not consider the physical meaning of the

nodes in this network. The results produced by the comparison

algorithms have certain biases from the ground truth community

structure, and most of the mistakes occur around these nodes.

For our proposed method, a special node, ‘‘16’’, was selected to

participate in the generation of the semi-supervised components.

Because the relationship between nodes ‘‘16’’ and ‘‘36’’ is ‘‘cannot-
link’’, as is the relationship between nodes ‘‘16’’ and ‘‘24’’, and the

similarity values computed by Algorithm 3 indicated that nodes

‘‘33’’ and ‘‘34’’ were more intimate with node ‘‘36’’ than with

node ‘‘16’’, and that node ‘‘26’’ was closer to node ‘‘24’’ than to

node ‘‘16’’ or node ‘‘36’’, and thus the misclassifications of these

nodes were eliminated. The resulting structure identified by our

proposed method is already identical to the ground truth

community structure, and naturally, the values of the three

metrics of our algorithm are superior to those of the comparison

algorithms. In fact, if more semi-supervised components are

needed, nodes ‘‘23’’, ‘‘26’’, ‘‘12’’, ‘‘33’’, ‘‘18’’, etc. will be selected

by Algorithim 2 individually to generate the semi-supervised

components.

Scientist collaboration network. This network is the largest

component of a collaboration network of scientists in residence at

Santa Fe Institute. Here, the nodes represent the scientists, and the

edges connect those scientists who have coauthored at least one

article. This network contains 118 nodes and 197 edges, and can

be divided into 6 partitions as its ground truth community

structure, which is as presented in Figure 5-(a). Feeding this

network into the algorithms, we achieved the final results

visualized in Figures 5-(b), 5-(c), 5-(d), 5-(e), 5-(f), and 5-(g),

separately. The comparison results of the three evaluation metrics

are listed in Table 6.

In this network, nodes ‘‘78’’, ‘‘42’’, ‘‘7’’, ‘‘65’’, ‘‘109’’, ‘‘33’’,

‘‘111’’, and ‘‘75’’ were chosen by Algorithm 2. In the ground truth

community structure, nodes ‘‘75’’ and ‘‘65’’ belong to the same

community, and as do nodes ‘‘109’’ and ‘‘111’’. To meet the

minimum requirement that the selected nodes simply cover all of

the ground truth communities, we also manually interfered and

selected from the two node pairs the node with the larger degree,

i.e., in this experiment, nodes ‘‘78’’, ‘‘42’’, ‘‘7’’, ‘‘65’’, ‘‘109’’, and

‘‘33’’ were selected to generate the semi-supervised components.

Apparently, all of the relationships between each pair of nodes are

‘‘cannot-link’’s. Utilizing these constraints, the proposed algorithm

extracted the community structure shown in Figure 5-(b).

Compared with the ground truth community structure shown in

Figure 5-(a), 15 nodes (‘‘39’’, ‘‘40’’, ‘‘41’’, ‘‘102’’, ‘‘103’’, ‘‘104’’,

‘‘105’’, ‘‘106’’, ‘‘107’’, ‘‘108’’, ‘‘110’’, ‘‘111’’, ‘‘112’’, ‘‘117’’, and

‘‘118’’) were classified into incorrect communities. Some of them,

including nodes ‘‘39’’, ‘‘40’’, ‘‘102’’, ‘‘103’’, ‘‘104’’, and ‘‘105’’, are

located at the community boundaries. Among the neighbors of

each of them, there exists a node with a very large influence who

acts like a center of gravitation. For the first two boundary nodes,

node ‘‘42’’ plays this role; and for the latter four nodes, node ‘‘78’’

is the authority. In the random walks passing through those

boundary nodes, the walker is more likely to be attracted by these

two centers to depart from the communities where the boundary

nodes originally belonged, and to be trapped in opposite

communities, thus these boundary nodes tend to be misclassified

into the opposite communities. Owing to the mistakes this

introduces, misclassifications of the other nodes (‘‘41’’, ‘‘107’’,

‘‘108’’, ‘‘106’’, ‘‘110’’, ‘‘111’’, ‘‘117’’, and ‘‘118’’) are inevitable.

Along with the increase in the number of selected nodes, most of

these boundary nodes will be taken as the nodes with least

certainty and be selected to generate the must-link and cannot-link
constraints, thus the vast majority of their misclassifications will be

eliminated, which is verified by the next type of experiments we

conducted.

Although, these nodes were misclassified by the proposed

algorithm, the resulting structure of the proposed algorithm is the

closest to the ground truth community structure compared with

the other algorithms. FastQ took apart two small groups of nodes

from two larger communities, and took them as two additional

communities; in addition, 8 other nodes (‘‘108’’, ‘‘107’’, ‘‘102’’,

‘‘103’’, ‘‘105’’, ‘‘104’’, ‘‘106’’, and ‘‘112’’) were also misclassified

into the incorrect communities. For LPA, its resulting structure is

quite poor, in addition to some nodes being assigned to the

incorrect communities, many small groups of nodes were

separated from the larger communities, and the resulting structure

deviates far from the ground truth community structure.

Infohiermap extracted two levels of community structures from

this network, the first level contains 3 communities, which is shown

in Figure 5-(e), and the second level consists of 16 communities,
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Figure 4. Risk map network. (a) The ground truth community structure; (b) The community structure identified by the proposed algorithm; (c) The
community structure extracted by FastQ; (d) The community structure aggregated from 30 outputs of LPA; (e) The community structure detected by
Infohiermap; (f) The community structure extracted by PPC.
doi:10.1371/journal.pone.0110088.g004
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which is illustrated in Figure 5-(f). Both of them depart far from

the ground truth community structure. For PPC, the resulting

structure is somewhat similar with that of FastQ, except for the

community assignments of nodes ‘‘105’’, and ‘‘112’’. Therefore, it

is still not an ideal result.

All values of the three evaluation metrics of the community

structures extracted by the proposed algorithm and the compar-

ison algorithms are listed in Table 6. Here, PPC obtained the

largest modularity twice (on the karate club network and scientist

collaboration network), both Infohiermap and the proposed

algorithm obtained the largest modularity once (on the Risk map

network and on the dolphin social network, respectively).

However, as discussed above, all of the community structures

corresponding to these largest modularities have certain deviations

from the ground truth community structures, which verifies one of

the previously mentioned shortcomings of the modularity. How-

ever, the proposed algorithm achieved the largest accuracy on all

four networks, got the largest NMI on three networks and the

second largest NMI on the other network. When considering the

meanings of the accuracy and NMI, this result indicates that the

community structure extracted by the proposed algorithm is the

closest to the ground truth community structure, i.e., by

introducing only the minimum semi-supervised components, we

can obtain the best results. This indicates the effectiveness and

significant ability of our proposed semi-supervised community

detection algorithm. For another perspective, we attached a rank

(the number in the parentheses) to each of the metrics of each

network, calculated a score by averaging these ranks for every

algorithm, and used the score to rank the algorithms. From the

ranks listed in the last column of Table 6, we can confirm that the

proposed semi-supervised algorithm is superior to the comparison

algorithms in its ability to detect the community structures from

networks.

Experiments on the utility of the semi-supervised
component generation strategy

In this subsection, we demonstrate the utility of our proposed

semi-supervised component generation strategy based on active

learning. In Algorithm 2, we loosened the termination criteria step

by step, thus the number of selected nodes and then the number of

generated semi-supervised components increased gradually. Each

time the semi-supervised components were generated, we

integrated them in Algorithm 1 as constraints to guide the

community detection process. Meanwhile, we applied a random-

selection strategy to select an equal number of nodes to generate

the semi-supervised components, and then incorporated them in

Algorithm 1 to detect the community structure from the network

as a comparison. Here, two kinds of random-selection strategies

were employed: selecting the nodes from the network completely

at random (denoted as ‘‘random 1’’), and selecting the nodes

randomly but ensuring that the selected nodes cover all of the

ground truth communities (denoted as ‘‘random 2’’). When the

community structures were extracted from each network, we

applied comparisons using Q, A, and NMI to determine which

strategy can produce the result closest to the ground truth

community structure. In this way, we demonstrated that the

proposed semi-supervised component generation strategy based on

active learning can actively acquire the must-link and cannot-link
constraints with the maximum utility for the proposed community

detection algorithm, thus showing that our proposal is an effective

method for extracting high-quality community structures from

networks.

As described in the first type of experiments, incorporating only

the minimum number of semi-supervised components, the

community structures detected from the karate club network

and the Risk map network by the proposed method are identical to

the ground truth community structures. This means that the

experiments effectively demonstrated the utility of the proposed

active semi-supervised component generation strategy on these

networks, and it was unnecessary to further increase the number of

selected nodes. Thus, we conducted the following experiments

only on the dolphin social network and the scientist collaboration

network.

There are 4 and 6 communities in the ground truth community

structures of these two networks, respectively, but as described in

the previous subsection, the minimum numbers of nodes selected

from these networks by Algorithm 2 were 6 and 8, respectively. In

the first type of experiments, to accommodate the minimum

requirement that the selected nodes distribute simply over all of

the ground truth communities, we interfered manually to choose 4

Figure 5. Collaboration network of scientists at the Santa Fe Institute. (a) The ground truth community structure; (b) The community
structure detected by the proposed algorithm; (c) The community structure obtained by FastQ; (d) The community structure aggregated from 30
results of LPA; (e) The first-level community structure extracted by Infohiermap; (f) The second-level community structure extracted by Infohiermap;
(g) The community structure identified by PPC.
doi:10.1371/journal.pone.0110088.g005

Figure 6. The evolutions of the three metrics on the dolphin social network.
doi:10.1371/journal.pone.0110088.g006
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of the selected nodes from the dolphin social network, and 6 of the

selected nodes from the scientist collaboration network, to

generate the semi-supervised components.

However, no minimum limit is needed in this type of

experiments, and thus we loosened the termination criteria in

Algorithm 2 step by step, such that the number of nodes selected to

generate the semi-supervised components increased one by one.

Each time the semi-supervised components were generated, we

incorporated them in Algorithm 1 to obtain the resulting

community structure. This process ended when the values of A
and NMI no longer increased. For the two random methods, the

selected nodes were non-deterministic. To eliminate the occasion-

ality, we repeated the two random methods 10 times each for each

number of selected nodes, and took the average values of Q, A,

and NMI as the resulting values of the three metrics. In this way,

for dolphin social network, we carried out 6 groups of experiments

starting from 6 selected nodes, and increased one selected node

each time. The evolutions of the values of Q, A, and NMI
corresponding to the community structures extracted by the

proposed method and the two random methods are shown in

Figure 6. For the scientist collaboration network, starting from 8

selected nodes, we carried out 11 groups of experiments by adding

one node into the selected node set each time. The evolutions of

the values of Q, A, and NMI of the extracted community

structures from this network are illustrated in Figure 7. To

maintain the completeness of the experiments, the values of the

three metrics corresponding to the scenarios that the minimum

number limit is met are also plotted in Figures 6 and 7.

In both Figures 6 and 7, all values of Q, A, and NMI of the

community structures extracted by the proposed algorithm are

significantly larger than the counterparts of the two random

methods. For the proposed algorithm, along with the increase in

the number of selected nodes, the values of Q approach those of

the ground truth community structures, and the values of A and

NMI increase steadily. When the number of selected nodes is

increased to 10 in the dolphin social network (about

10762&16:13% of the total nodes in the network) and to 17 in

the scientist collaboration network (about 177118&14:4% of the

total nodes in the network), the values of A and NMI reach their

peaks, and the extracted community structures are almost identical

with the ground truth community structures (only 1 node was

misclassified in both of the two networks). However, for the two

random methods, the values of all three evaluation metrics

fluctuate along with the increase in the number of the selected

nodes, and even when A and NMI get their peak values, more

than 12% of the nodes in the networks still cannot be assigned to

the correct communities. These comparisons show that the

proposed active learning algorithm can generate the semi-

supervised components with the maximum utility from the

networks.

Conclusions

In this paper, we introduced active learning into the problem of

community detection, and presented a community detection

method, which is a combination of a semi-supervised community

detection algorithm and a must-link and cannot-link constraint

generation strategy based on active learning. In the semi-

supervised community detection algorithm, the skeleton of the

initial community structure is constructed from the nodes involved

in the must-link and cannot-link constraints first. The (community,
unclassified node) pair with the largest similarity value is then

identified, and that unclassified node and all of its must-link and

transitive must-link partners are inserted into the community
repeatedly, until all nodes in the network are assigned to the

corresponding community. In this way, we obtain the final

community structure. To acquire the high-quality must-link and

cannot-link constraints, a semi-supervised component generation

algorithm was proposed. We first calculate a score value for every

node in the network, and the nodes whose score values are larger

than a given threshold, j, are then extracted into a node set from

the network. Next, this node set is quickly partitioned into some

clusters, and the nodes with the maximal degrees in each cluster,

along with the boundary nodes of each cluster, are selected step by

step, and the must-link and cannot-link constraints are finally

generated by accessing a noiseless oracle. We also performed

extensive experiments on 4 real-world networks, the experimental

results illustrate the effectiveness and significant ability of our

proposed method.
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