
Visualization-Aided Classification Ensembles
Discriminate Lung Adenocarcinoma and Squamous Cell
Carcinoma Samples Using Their Gene Expression Profiles
Ao Zhang1, Chi Wang3, Shiji Wang1, Liang Li4, Zhongmin Liu1*, Suyan Tian2*

1 Intensive Care Unit (ICU), First Hospital of Jilin University, Changchun, Jilin, China, 2 Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun, Jilin,

China, 3 Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America, 4 LLX Solutions LLC., Waltham,

Massachusetts, United States of America

Abstract

Introduction: The widespread application of microarray experiments to cancer research is astounding including lung
cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC), there are two major
histological types of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC).

Results: In this paper, we proposed to integrate a visualization method called Radial Coordinate Visualization (Radviz) with a
suitable classifier, aiming at discriminating two NSCLC subtypes using patients’ gene expression profiles. Our analyses on
simulated data and a real microarray dataset show that combining with a classification method, Radviz may play a role in
selecting relevant features and ameliorating parsimony, while the final model suffers no or least loss of accuracy. Most
importantly, a graphic representation is more easily understandable and implementable for a clinician than statistical
methods and/or mathematic equations.

Conclusion: To conclude, using the NSCLC microarray data presented here as a benchmark, the comprehensive
understanding of the underlying mechanism associated with NSCLC and of the mechanisms with its subtypes and
respective stages will become reality in the near future.
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Introduction

Lung cancer is one of the most common fatal human tumors,

accounting for 25% of cancer death in both men and women

throughout the world [1]. About 85% of lung cancers are non-

small cell lung carcinoma (NSCLC), and two major histological

types of NSCLC, adenocarcinoma (AC) and squamous cell

carcinoma (SCC), represents about 40% of NSCLC cases,

respectively [2].

In clinical practice, homogeneous treatment strategies have

been traditionally implemented for both subtypes, which may

explain the poor treatment response achieved in NSCLC. The

recent-developed molecular targeted therapies such as an anti-

epidermal growth factor receptor (EGFR) antibody are effective in

patients harboring mutations in corresponding genes, which are

exclusively found in AC. This indicates fundamental differences in

the underlying mechanisms of tumor development, growth and

invasion between the two subtypes. The prognosis of NSCLC also

depends on tumor stage. The low survival rate is mainly

attributable to late diagnosis, when the tumor has become

unresectable. On the contrary, early-stage NSCLC patients have

a significantly better prognosis. Therefore, the successful classifi-

cation of NSCLC patients into their corresponding subtypes and

stages is of clinical significance.

The widespread application of microarray experiments to

cancer research is astounding. The lung cancer research is no

exception. Many researchers have employed microarray technol-

ogy to disclose the molecular nature of etiological differences in

between these two NSCLC subtypes and/or their stages [3,4]. For

instance the recent SBV IMPROVER Diagnostics Signature

Challenge [5,6], a crowd-sourcing competition organized by Philip

Morris International and IBM, aims at assessing and verifying

computational approaches to the classification of clinical samples

based on microarray data. One of the tasks, the lung cancer sub-

challenge, aimed at to classify AC and SCC, and early stages (I

and II) of these two histology stages using high-throughput gene
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expression data. The results from this sub-challenge indicated only

the subtype segregation had been successfully achieved [7].

In this subtask, Tian and Suarez-Farinas proposed a regular-

ization method called hierarchical- Threshold Gradient Decent

Regularization (TGDR) [8] that utilized biological hierarchy and

combined such internal structure with TGDR [9], a feature

selection algorithm, to do parameter estimation and class-

membership prediction on new samples. The detailed descriptions

on TGDR were presented by Ma and Huang [10]. Although

TGDR is an outstanding regularization algorithm with many

excellent features, it is criticized for having inferior parsimony

[11]. As an extension to TGDR, hierarchical-TGDR inherits this

disadvantage. Previously, Tian and Suarez-Farinas [12] tackled

this problem usingbagging procedure [13], which can reduce the

number of false negatives produced by a single run of the TGDR

classifier and thus improve upon parsimony. However, bagging

procedure cannot solve this issue completely as shown by the

simulation studies [14]. In addition, its computable and theoretical

complexity to a clinician unavoidably raised many concerns. In

this paper, we proposed to combine a visualization method called

Radial Coordinate Visualization (RadViz) [15] with a suitable

classifier to discriminate these two NSCLC subtypes, basing on

patients’ gene expression profiles.

Among many data visualization methods, prevalent means for

exposing interesting patterns graphically, Radviz can display data

with three or more attributes in a 2-dimensional projection.

Radviz has been demonstrated as a complement to computational

methods for inference of classification models to search for

biologically interesting patterns [16]. Moreover, graphic represen-

tation is more easily understandable and implementable for a

clinician than statistical methods and/or mathematic equations.

However, if using alone to classify new samples, the corresponding

posterior probability of the class memberships is absent in a

Radviz, thus many performance statistical metrics such as

generalized Brier score (GBS) [17] are not computable. Here,

we illustrate Radviz can be a useful tool to improve on parsimony

without any suffering in accuracy when being combined with a

suitable classifier.

Results

Synthesized data
In order to evaluate the empirical performance of RadViz in

terms of selecting informative features and eliminating irrelevant

features, we used the simulations presented in one previous study

[14]. However, the assignment of the class membership was

accorded to pre-determined logit functions f. Specifically, there

were 3 classes, 71 samples, and 384 features. The logit functions

for class 2 and 3 having class 1 as reference were given by

following relationship for three synthesized datasets,

Simulation 1.

f2vs1~{0:1X1z2X4z1:2X5,

f3vs1~1:5X2{0:8X3

where the logits for class 2 and 3 are two functions with different

parameters and the number of relevant features is 5. This is exactly

one simulated data used in Tian et al [14].

Simulation 2.

f2vs1~{0:1X1{0:8X2{0:9X3z2X4z1:2X5{X6,

f3vs1~0:4X7{0:5X8{0:8X9z1:7X10{1:5X11z1:3X12

where the logit for class 2 depends only on features X1, X6

while the logit for class 3 depends on features X7, X12. The

number of relevant features is 12, several features more than the

usually considered number of features in a RadViz projection

(usually 3–8 features).

Simulation 3.

f2vs1~{1:1X1z2X2

f3vs1~1:5X1{0:8X2

where the number of relevant features is two, less than the

minimum number of features in RadViz projections. All

parameters used in the simulations were simulated from a uniform

distribution on the interval of 0 to 2, i.e., unif (0,2). By this

means, the true relevant features are known and whether RadViz

can select them correctly can be investigated.

Upon the simulated data, 50000 RadViz projections were

evaluated. Then we locally optimized best projections for 10000

times. The choice of the number of RadViz projections appeared

to have little impact on the final results. We obtained very similar

results with different numbers, i.e., 10000, 20000, 30000, 40000,

50000, 80000, and 100000. Because the study in [16], which had

smaller sample size and more features, used 100000 RadViz

projections, we fixed the parameter at 50000 in our study.

This procedure had been run by varying the maximum number

of features in a projection from 3 to 8. The obtained best

projection for each run was listed in Table 1. Moreover, the

features were ranked based on the frequencies they had appeared

in all considered RadViz projections. Those most frequently

appearing features (All features were output until the last true

relevant feature was selected) were also given in Table 1. In

summary, RadViz projections can successfully identify the true

relevant features with an optimal subset of reasonable small size,

even in the case where irrelevant features were highly correlated

with relevant ones.

Real data
The study schema is shown in Figure 1. First, we show the

results on AC and SCC subtype-classification. Then we show the

results on multi-class classification by considering both subtypes

and their respective stages. For two-class Radviz constructions, the

numbers of the maximum features in projections varied from 3 to

8, the one obtaining the best VizRank Score [18] (see the method

section for the details) was presented. Similarly, for multi-class

cases the number of maximum features in projections ranged from

3 to 10, the one with the best VizRank score was tabulated.

On AC/SCC subtypes (two-class case)
For the winner of the SBV LC subtask [19], referred to as Ben-

Hamo’s study herein, keratin 5 (KRT5) is the only gene used to

discriminate SCC and AC with an astounding misclassification
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rate on the test set of 15.3% (23/150). TGDR analysis selected 20

genes as shown in our previous work [8] with a slightly worse

prediction error of 16%. Nevertheless, the parsimony of hierar-

chical-TGDR model obviously lags behind. TGDR is an

embedded feature selection algorithm, which means it simulta-

neously selects the potential informative features with classifier

construction. Even combined TGDR with Bagging, our previous

study on the simulated data showed that the inferiority of

parsimony does not eliminate completely [14]. Alternative

methods that can ensemble with TGDR/multi-TGDR to filter

out the false positives are in demand. Radviz is one of such

methods given its goal is to usually use 3–8 features to show a good

separation among classes.

With the aid of Radviz, the best projection obtained from the

training set, which ignores the stages, consisted of 3 genes. They

are keratin 5 (KRT5), RAR-related orphan receptor C (RORC),

and melanoma antigen family A 4 (MAGEA4). Interesting, both

KRT5 and MAGEA4 were selected by the 23-gene signature of

Ben-Hamo’s study. On these 3 genes, the performance of different

classifiers was evaluated and their respective statistics are shown in

Table 2A.

ROC curves. Considered that the minimum number of

features in a Radviz is three, we additionally evaluated on the

Table 1. Results of simulation studies.

Max # of
features

Simulation 1 (selected
features/VizRank Score)

Simulation 2 (selected
features/VizRank Score)

Simulation 3 (selected features/
VizRank Score)

3 X4, X18, X3 (89.12%) X10, X38, X5 (68.67%) X1, X2, X75 (73.35%)

4 X4, X3, X18, X9 (90.44%) X5, X10, X3, X38 (75.35%) X1, X173, X2, X7 (75.78%)

5 X9, X2, X12, X3, X5 (93.06% X5, X10, X3, X38 (75.35%) X170, X1, X7, X2, X173 (78.34%)

6 X5, X4, X2, X12, X11, X3 (94.22%) X6, X11, X2, X1, X10, X5 (78.04%) X1, X28, X3, X32, X2, X83 (78.09%)

7 X5, X3, X11, X12, X9, X18, X4 (96.08%) X5, X4, X11, X38, X21, X3, X10 (79.75%) X170, X1, X7, X2, X173 (78.34%)

8 X3, X5, X4, X6, X9, X2, X11, X12 (94.15%) X7, X4, X11, X2, X3, X12, X10, X6
(80.81%)

X170, X1, X7, X2, X173 (78.34%)

Frequent ones X3, X4, X9, X12, X5, X11, X2, X16, X6,
X131, X18, X1

X11, X16, X10, X6, X1, X3, X131, X2, X4,
X7, X38, X5, X8, X9, X328, X12

X1 X4, X72, X338, X3, X173, X2

doi:10.1371/journal.pone.0110052.t001

Figure 1. Study flowchart.
doi:10.1371/journal.pone.0110052.g001
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different combinations of these 3 genes to find the optimal subset.

The respective ROC curves were plotted in Figure 2. It provided

some justification that KRT5 only can tell AC and SCC apart

perfectly as shown in Figure 3. Also, Pearson’s correlation

coefficients among feature pairs were computed, which indicated

that KRT5 and RORC were highly negatively correlated in both

training data set and test set. Notably, the AUC value with RORC

only was secondary to that of KRT5 only. KRT5 had been

consistently identified [8,16,19] to explain the difference between

SCC and AC, which suggested that it was highly likely to be the

true ‘driver’ [20]. Therefore, RORC might be a ‘passenger’ [20]

gene, meaning it might be a downstream regulated gene controlled

by KRT5 located upstream. Upon a RNA-seq data, Radviz was

used to select relevant features. Again, KRT5 was appeared in the

final model. The results were presented in File S1. In summary,

KRT5 might drive in discrimination of AC and SCC. The

analyses conducted on data using both microarray and RNA-seq

technologies support this conclusion. It is recommended that a

new diagnostic kit on KRT5 be designed to complement the

current-used gold standard and to aid the precise and easy

diagnosis of these two NSCLC subtypes.

The identification of erroneously labelled samples. In

the test set, there are six samples that might be wrong-labelled with

extremely high misclassification rates in the SBV LC subtask, as

shown by the Ben-Hamo’s study. Here, we evaluated all

considered methods herein and found out almost all of those

methods including RadViz + SVM/TGDR/NB or RadViz alone

indicated opposite labels to the given ones for these six samples, as

shown in Table 3. Indeed, whether these six samples have been

mislabelled or not deserves further investigation.

On both subtypes and stages (multi-class case)
Another Radviz was plotted by considering both subtypes (i.e.,

AC and SCC) and stages (i.e., stage I and II) strata. The best

projection involved 8 genes, including KRT5 and RORC also

selected by the two-class Radviz best projection. With these 8

genes, the performances of different classifiers were evaluated. The

results were shown in Table 4B, from which we observed that

there was no obvious winner. Multi-TGDR had the best

Generalized Brier Score (GBS) and SVM had the best Area

Under the Precision-Recall Curve (AUPR) while naı̈ve Bayes

outperformed in terms of Belief Confusion Metric (BCM).

Moreover, the performance of these 8 genes on SCC and AC

classification was evaluated and the results were shown in

Table 2B. Using 8 genes on the histology subtype classification,

the respective statistics showed slightly superiority. It is observed

that AC and SCC samples can be discriminated with a reasonable

size of misclassification rate on both training and test sets.

However, no perfect discrimination between stages I and II within

each subtype has been achieved on both training and test datasets,

as shown in Figure 4.

An alternative way of utilizing Radviz seamlessly is to consider

the most frequent selected genes by all projections and then to find

the potential informative features. In this method, the features

were ranked based on the frequencies they had appeared in all

RadViz projections. Those most frequently appearing features

were considered. Among them, we selected a subset comprised of

7 over-expressed genes in SCC and 3 over-expressed genes in AC.

Using these 10 genes, the performances of different classifiers were

re-evaluated and the respective statistics were listed in Table 4C.

This time multi-TGDR obtained a performance comparable to

that of hierarchical-TGDR. Interestingly, there was a big overlap

between 10 genes and those selected by hierarchical-TGDR and

other methods, including KRT5. Most of them were biologically

and clinically meaningful. For example, desmocollin 3 (DSC3) and

desmoglein 3 (DSG3) had been recently justified as valuable in

classification of NSCLC subtypes [21] while Chloride channel
accessory 2 (CLCA2) had been recognized as a tumorigenesis gene.

Discussion

Radviz makes two implicitly false assumptions by evenly placing

features around the circle [22], which are 1) these features are

uncorrelated, and 2) these features are of equal importance. Being

used alone as a classification method, Radviz does not show any

superiority over other methods with respect to predictive accuracy

let alone many other statistics are not computable there. However,

as a complement to other classifiers, it may serve to optimize the

model parsimony. Upon the selected features, the ensembles of

Table 2. Performance metrics of classifiers on the lung cancer test set (AC and SCC subtype classification).

The data used (Total # of samples) N# of Genes Error (%) GBS (0) BCM (1) AUPR (1)

Ben-Hamo’s study GSE10245, GSE18842, GSE31799 (151, 81AC, 70SCC) 1 15.3 NA NA NA

TGDR GSE10245, GSE18842, GSE2109, GSE31908
(175, 100AC, 75SCC)

20 16 0.1153 0.8325 0.9416

A. Radiz on 3-gene signature selected by AC and SCC subtype classification

Radviz alone GSE10245, GSE18842, GSE2109
(only stage I &II, 145, 71AC, 74SCC)

3 16.67 – – –

Radviz +TGDR GSE10245, GSE18842, GSE2109 (145) 3 14.67 0.2360 0.5144 0.8917

Radviz+naı̈ve Bayes GSE10245, GSE18842, GSE2109 (145) 3 13.33 0.1260 0.8447 0.8908

Radviz+SVM GSE10245, GSE18842, GSE2109 (145) 3 13.33 0.1208 0.6974 0.8978

B. Radiz on 8-gene signature selected by subtype & stage classification

Radviz alone GSE10245, GSE18842, GSE2109 (145) 8 14 – – –

Radviz +TGDR GSE10245, GSE18842, GSE2109 (145) 8 13.33 0.1061 0.8271 0.8935

Radviz+naı̈ve Bayes GSE10245, GSE18842, GSE2109 (145) 8 12.67 0.1191 0.8719 0.9067

Radviz+SVM GSE10245, GSE18842, GSE2109 (145) 8 14 0.1029 0.7983 0.9211

NA: not available. –: not computable because no posterior probabilities were provided.
doi:10.1371/journal.pone.0110052.t002

Radviz Helps Feature Selection in Microarray Data

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e110052



Radviz and NB/SVM/TGDR have comparable predictive

performance to other methods such as hierarchical-TGDR.

From our analysis, it is found that TGDR/multi-TGDR

methods might be in favor of AUPR and GBS but less preferable

to BCM. Notably, TGDR and multi-TGDR frameworks ignore

the co-expression features among genes. Thus those genes that

belong to the same/similar pathways or networks tend to end up

the final model. To tackle with this limitation, Ma and Huang [23]

proposed a new algorithm called clustering-TGDR. However,

extensions of clustering-TGDR to multi-class cases have not been

addressed, which is one of our future works. When combing with

Radviz, TGDR/multi-TGDR methods do not show much

superiority over other classifiers.

Finally, the poor performance of multi-class classifiers may be

due to the lack of molecular signature difference in different stages

of NSCLC. If this is true, it means that most of the selected

features are purely random noises. The fact that no team in the

SBV LC subtask can separate the respective stages within each

subtype shed some evidence on this conjecture. Nevertheless, our

observation is that the discrimination of ACI and ACII seems to be

easier compared to that of SCCI and SCCII. In File S1, those

classifiers were applied to another independent test set. The good

separation between AC and SCC samples and the poor

performance of multi-class classifiers were consistently observed,

which provides some justification on the validity and robustness of

our study here.

Our proposal of using Radviz to do feature selection, especially

using the most frequently selected features by thousands of Radviz

best projects, is a unique feature. Other visualization methods such

as a heat-map cannot cope with feature selection, thus Radviz has

its advantageous merit. Additionally, even though visualization

ensembles were originally proposed upon microarray experiments,

its broad applications to other ‘‘omics’’ data are out of question as

shown by its applications to a RNA-seq data and to a

metabolomics data in File S1.

On the complicated LC classification task, the ensemble of

Radviz and a classifier can obtain perfect model parsimony with

reasonable predictive performance. With this proposal the

segmentation of early stages in two LC major subtypes is still

unachievable, however, we believe more novel algorithms or novel

ensembles of existing methods will be developed by quantitative

researchers in the near future. Then using these benchmark data

sets, the comprehensive understanding of the underlying mecha-

nism associated with NSCLC subtypes and respective stages

becomes highly possible.

Figure 2. ROC curves for 3-gene signature combinations. The signature of KRT5 alone has the best AUC values on both training and test sets.
doi:10.1371/journal.pone.0110052.g002
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Materials and Methods

Microarray data
The lung cancer microarray experiments under consideration

included all chips in the Gene Expression Omnibus’ (GEO)

repository series GSE10245, GSE18842, GSE2109, GSE31908,

and GSE43580 (test set) all of which were hybridized on

Affymetrix HGU133 Plus 2.0 chips.

Pre-processing procedures
The raw Affymetrix data (CEL files) of all lung cancer data sets

were downloaded from the GEO repository, and expression values

were obtained using the fRMA algorithm [24]. Then the training

data was normalized to the target distribution of the testing data

set. To address the batch effects from different experiments,

the COMBAT algorithm (http://www.bu.edu/jlab/wp-assets/

ComBat/Abstract.html) was used to adjust for the combined

expression values for these studies because a comprehensive

Figure 3. Scatterplots on the training data and test data. A. 3D scatterplots with KRT5 on x-axis, MAGEA4 on y-axis, and RORC on z-axis. B. 2D
scatterplots with KRT5 on x-axis, MAGEA4 on y-axis. From these scatterplot, it is obvious that KRT5 alone can discriminate AC and SCC samples apart
on both training and test sets.
doi:10.1371/journal.pone.0110052.g003

Table 3. Might-be wrongly labeled samples identified by Ben-Hamo’s study.

ID Label Overall SBV misclassification rate Methods indicating opposite labels

115 AC 84% All eight methods

19 SCC 86% All except Radviz alone on 3 gene signature

100 SCC 88% All except Radviz alone on 3 gene signature

3 SCC 90% All eight methods

70 SCC 76% All except Radviz alone on 3 gene signature

9 SCC 88% All eight methods

doi:10.1371/journal.pone.0110052.t003
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evaluation on several commonly-used batch-effect adjustment

methods showed that COMBAT outperformed others overall

[25].

Moderated t-tests (limma package)were conducted to identify

differentially expressed genes (DEGs) with cutoffs for False

Discovery Rate (FDR) and fold change as 0.05 and 2, respectively.

When there were multiple probe sets representing the same gene,

the one with the largest fold change was chosen. Finally,

expression values were further centralized and normalized to

have a mean of 0 and a variance of 1 for both training data and

test data, respectively. The resulting normalized expression values

for 676 unique genes were fed into the downstream classification

analysis.

Radviz & VizRank. In a Radviz, the features such as genes

are presented as anchor points spaced around the perimeter of a

circle while samples are as points inside the circle. The position of

one sample is determined by a metaphor from physics, saying each

point is held in place with springs that are attached at the other

Figure 4. RadViz plots using 8-gene signature on the training data and test data. From these plots, it is observed that AC and SCC samples
can be discriminated with a reasonable size of misclassification rate on both training and test sets. However, the discrimination between different
stages within each subtype is not achieved on both training and test datasets.
doi:10.1371/journal.pone.0110052.g004

Table 4. Performance metrics of classifiers on the lung cancer test set (subtype and stage classification).

N# of Genes Error (%) GBS (0) BCM (1) AUPR (1)

A. On classifiers

Ben-Hamo’s study 23 49.3 NA 0.48 0.46

Hierarchical-TGDR 66 53.3 0.3736 0.4401 0.4709

Pairwise Coupling 158 54 0.3794 0.4371 0.4010

Multi-TGDR local 83 54 0.3579 0.4210 0.4681

Multi-TGDR global 60 54 0.3524 0.4164 0.4685

B. Radviz on 8-gene signature selected by subtype and stage classification

Radviz + multi-TGDR 8 54.7 0.3423 0.4137 0.4557

Radviz+ naı̈ve Bayes 8 54.7 0.4104 0.4437 0.4494

Radviz+SVM 8 54 0.3654 0.4137 0.4562

C. Radviz on the most frequently selected features

Radviz + multi-TGDR 10 53.3 0.3215 0.4269 0.4710

Radviz+ naı̈ve Bayes 10 55.3 0.4256 0.4503 0.4573

Radviz+ SVM 10 54.7 0.3516 0.3612 0.4815

NA: not available.
doi:10.1371/journal.pone.0110052.t004
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end to the feature anchors. The stiffness of each spring is

proportional to the value of the corresponding feature and the

point ends up at the position where the spring forces are in

equilibrium. Therefore, subjects that are close to a set of feature

anchors have high values on these features than on the others.

In order to obtain a clear and good separation among different

classes using just several features, Radviz needs to search over a

myriad of possible combinations. Therefore the search is tedious.

To automatically solve this problem, an approach called VizRank

had been proposed by [18], which scores the visualization projects

according to the degree of class separation and investigates over

possible projection candidates to find those with the highest scores.

Briefly, VizRank implements a heuristic search, which saves on the

computing time. The features are ranked using signal-to-noise

ratio and a subset of the features is randomly chosen favoring

features with higher ranks. By doing this, genes with more

information about the given classification problem are more likely

to be selected in a Radviz projection. Upon a selected gene subset,

VizRank then evaluates exhaustively all possible Radviz projec-

tions defined by different permutations of feature anchors on a

unit circle.
The classifiers. Here, we used Radviz to do the redundant

feature elimination, and used an extra classifier to classify samples

and to compute posterior probabilities. Those classifiers were

described briefly as follows.

TGDR and Multi-TGDR
As mentioned in the Introduction section, the TGDR frame-

work was presented and described by Ma and Huang [10] in

details. For the detailed descriptions on multi-TGDR frameworks

and how the tuning parameters k and t regularize the sparseness of

the final models, our previous work [12,14] is referred. Two things

worthy to be mentioned about multi-TGDR frameworks are 1)

when multi-TGDR frameworks are simply used as classifiers, i.e.,

they only serve to estimate the beta parameters of a pre-

determined feature set without implementing the feature selection,

multi-TGDR global and multi-TGDR local correspond to the

same thing since the tuning parameter t is set as zero. 2) When the

number of the classes is two, both multi-TGDR frameworks

collapse back into TGDR.

Naı̈ve Bayes
A naı̈ve Bayes (NB) classifier is a simple probabilistic classifier.

Based upon Bayes’ theorem, it makes an independence assump-

tion, which assumes that features are independent giventhe class.

The performance of NB on data sets with redundant features can

be improved by removing such features usually with a forward

search strategy being used with NB since it can immediately detect

dependencies as many redundant features being added.

Support Vector Machine (SVM)
Simply put, SVM [26] used a kernel function to implicitly map

data to ahigh dimensional space. Then, it constructed the

maximum margin hyperplane by solving an optimization problem

on the training data. SVMs have been shown to work well for high

dimensional microarray data sets, especially on two-class classifi-

cations [27].

Statistical Metrics. According to [5], considering a single

metric as only standard on evaluation of an algorithm tends to

produce bias, and an algorithm may be erroneously claimed as

superiority if a metric favouring it were chosen. Thus we use four

metrics i.e., Belief Confusion Metric (BCM), Area Under the
Precision-Recall Curve (AUPR), Generalized Brier Score (GBS),

and predictive error rate on the test set, to evaluate the

performance of the combinations between Radviz and different

classifiers more precisely and rigorously.

GBS is described in details in our previous work [8,12]. In

principle, the closer it is to zero the better a model is. BCM and

AUPR are among three metrics used by SBV challenge. Why

those metrics were chosen in SBV challenge is explained in [7].

The definition and interpretation of BCM and AUPR are

available in the SBV homepage (http://www.sbvimprover.com/

sites/default/files/scoring_metrics.pdf).

Statistical language and packages. The statistical analysis

was carried out in the R language version 3.0 (www.r-project.org)

and packages such as limma were from the Bioconductor project

(www.bioconductor.org). The analysis using visualization methods

including RadViz and VizRank was conducted in the Orange

software, version 2.7 (www.orange.biolab.si).
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