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Abstract

Understanding of how neurons transform fluctuations of membrane potential, reflecting input activity, into spike responses,
which communicate the ultimate results of single-neuron computation, is one of the central challenges for cellular and
computational neuroscience. To study this transformation under controlled conditions, previous work has used a signal
immersed in noise paradigm where neurons are injected with a current consisting of fluctuating noise that mimics on-going
synaptic activity and a systematic signal whose transmission is studied. One limitation of this established paradigm is that it
is designed to examine the encoding of only one signal under a specific, repeated condition. As a result, characterizing how
encoding depends on neuronal properties, signal parameters, and the interaction of multiple inputs is cumbersome. Here
we introduce a novel fully-defined signal mixture paradigm, which allows us to overcome these problems. In this paradigm,
current for injection is synthetized as a sum of artificial postsynaptic currents (PSCs) resulting from the activity of a large
population of model presynaptic neurons. PSCs from any presynaptic neuron(s) can be now considered as ‘‘signal’’, while
the sum of all other inputs is considered as ‘‘noise’’. This allows us to study the encoding of a large number of different
signals in a single experiment, thus dramatically increasing the throughput of data acquisition. Using this novel paradigm,
we characterize the detection of excitatory and inhibitory PSCs from neuronal spike responses over a wide range of
amplitudes and firing-rates. We show, that for moderately-sized neuronal populations the detectability of individual inputs
is higher for excitatory than for inhibitory inputs during the 2–5 ms following PSC onset, but becomes comparable after 7–
8 ms. This transient imbalance of sensitivity in favor of excitation may enhance propagation of balanced signals through
neuronal networks. Finally, we discuss several open questions that this novel high-throughput paradigm may address.
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Introduction

Developing a mechanistic understanding of how neurons

transform fluctuations in membrane potential, driven by synaptic

inputs, into spike responses, which communicate the ultimate

results of single-neuron computation, is one of the central

challenges for cellular and computational neuroscience. To study

this transformation under controlled conditions, a signal immersed

in noise paradigm has been introduced [1,2]. In this paradigm, a

neuron is injected with a current consisting of different realizations

of fluctuating noise that mimics on-going synaptic activity, and a

systematic signal, such as a current step, artificial postsynaptic

current (PSC), sine-wave signal, or modulation of the noise

amplitude. Action potentials generated in response to repeated

current injection can then provide a precise measure of the

average output of the neuron in response to a specific input signal.

This allows quantitative characterization of the input-output

relationship during responses to defined stimuli, as they may

occur in vivo. By considering a population of neurons identical to

the recorded neuron this experimental paradigm for studying

single neuron computation can be also used to study population

encoding and computations, and inform our understanding of

network function. The signal immersed in noise paradigm has

been successfully applied to study signal propagation in feed-

forward networks [1,3], the speed of population responses to step-

like changes of the input [2,4,5,6] and characterization of the

frequency transfer function of neuronal population responses

[7,8,9,4,5].

One limitation of the signal immersed in noise paradigm is that

it is designed to examine the encoding of only one signal under a

defined condition. Studying the dependence of encoding on

parameters of the signal, such as its amplitude and time course, or

the properties of neurons themselves, such as firing rate, requires

additional, lengthy experiments. In particular, studying the

encoding of weak signals in the activity of sparsely firing neuronal

ensembles – the relevant regime for cortical processing [10,11] –

requires extremely long recordings to achieve adequate statistical

power [7,4,6]. Furthermore, although input synchrony plays
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important role in single neuron computation [12,13,14,15], the

signal immersed in noise paradigm makes it difficult to compre-

hensively study how multiple inputs may be altering spike output.

Here we introduce a novel fully-defined signal mixture

paradigm, which allows us to overcome these problems and

examine the effect of multiple inputs simultaneously. This

paradigm exploits the fact that ‘‘noise’’ fluctuations of the

membrane potential of a neuron in vivo represent the summed

activity at its numerous synapses [16], and thus can be considered

as a sum of numerous input signals. Current for injection is then

synthetized as a sum of multiple artificial PSCs resulting from

activity of large population of model presynaptic neurons. Because

the spike timing of each presynaptic neuron is defined, we can

consider PSCs from any presynaptic neuron or a combination of

neurons, as ‘‘signal’’, while the sum of all other inputs as ‘‘noise’’,

and study the encoding of a large number of different signals in a

single experiment. This dramatically increases the throughput of

data acquisition, allowing characterization of encoding over a

broad parameter space. Here we demonstrate the applicability of

this novel paradigm by characterizing the amplitude and firing-

rate dependence of detection of excitatory and inhibitory PSCs

from neuronal spike responses. Our results reveal that changes of

the firing rate of moderate-sized neuronal populations are more

sensitive to excitatory than to inhibitory inputs during the 2–5 ms

following PSC onset. At later times, the sensitivity to excitatory

and inhibitory inputs becomes about the same. This transient

imbalance of sensitivity in favor of excitation may enhance

propagation of balanced signals through neuronal networks.

Finally, we discuss several groups of questions that this novel

high-throughput experimental paradigm can be used to address.

Materials and Methods

All experimental procedures used in this study were in

accordance with National Institutes of Health regulations.

Experimental protocols were approved by the Institutional Animal

Care and Use Committee of University of Connecticut.

Slice preparation and recording
In vitro intracellular recordings were made in slices of rat visual

cortex. The details of slice preparation and recording were similar

to those used in our previous studies [17,4,5,6]. The Wistar rats

(P21–P28, Charles River or Harlan, USA) were anaesthetized with

isoflurane (Baxter, USA), decapitated, and the brain was rapidly

removed. One hemisphere was mounted onto an agar block and

350 mm thick coronal slices containing the visual cortex were cut

with a vibrotome (Leica, Germany) in ice cooled oxygenated

solution. After cutting, the slices were placed into an incubator

where they recovered for at least one hour at room temperature

before transferring them in to the submerged-type recording

chamber. The solution used during slice preparation and

recording contained (in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1

MgCl2, 1.25 NaH2PO4, 25 NaHCO3, 25 D-glucose and was

bubbled with 95% O2 and 5% CO2. In some experiments synaptic

transmission was blocked by adding 25 mM APV, 5 mM DNQX

and 80 mM PTX to the extracellular solution. Chemicals were

obtained from Sigma-Aldrich or Tocris.

Whole-cell recordings using patch electrodes were made from

layer 2/3 pyramidal neurons, selected under visual control using

Nomarski optics and infrared videomicroscopy. The patch

electrodes were filled with K-gluconate based solution (in mM:

130 K-Gluconate, 20 KCl, 4 Mg-ATP, 0.3 Na2-GTP, 10 Na-

Phosphocreatine, 10 HEPES) and had a resistance of 4–6 MV.

Membrane potential signals recorded using Dagan BVC-700A

amplifier (Dagan Corporation, USA) were low-pass filtering at

10 kHz, digitized at 20 kHz (Digidata 1440A interface and

pCLAMP software, Molecular Devices) and stored in a computer

for further processing. All recordings were made at 28–32uC.

Fluctuating current for injection into a neuron was
synthetized using two paradigms

In the first, signal immersed in noise paradigm (Fig. 1) current

for injection consisted of 3 components. (i) Fluctuating current

sg(t), where g(t) is an Ornstein-Uhlenbeck process with zero

mean, unit variance and correlation time tI = 5 ms, and s is the

standard deviation. (ii) A signal, artificial postsynaptic potential

(aPSC), synthesized as difference of two exponents, with rise time

1 ms and decay time 10 ms, and scalable peak amplitude. Timing

for the aPSCs was generated by a gamma renewal process (shape

k = 2, scale h = 2.5), which corresponds to a rate of 5 Hz. Intervals

,10 ms were resampled to avoid strongly overlapping PSCs. (iii)

A DC current.

In the second, fully-defined signal mixture paradigm (Fig. 2)

fluctuating current for injection is synthetized as a summed activity

of large population (N = 1024 in Fig. 2B) of model presynaptic

neurons. This paradigm exploits the fact that fluctuations in the

membrane potential of a neuron in vivo represent the summed

activity at its numerous synapses [16]. Each presynaptic neuron

contributed to the summary fluctuating current a sequence of

excitatory or inhibitory aPSCs of defined amplitude. Because the

timing of each aPSC is defined, we can consider trains of aPSCs

resulting from activity of any presynaptic neuron or a combination

of neurons, as ‘‘signal’’, while the sum of all other aPSCs as

‘‘noise’’, and study encoding of a large number of different signals

in a single experiment (Fig. 2C). Individual aPSCs were generated

as a difference of two exponentials with a rise time of 0.5 ms and

decay time of 5 ms. Firing of each presynaptic neuron (mean rate

5 Hz) was simulated as gamma renewal process, and, as before,

intervals ,10 ms were resampled. The population of presynaptic

neurons contained an equal number of excitatory and inhibitory

cells and the amplitudes of excitatory and inhibitory aPSCs had a

log-normal distribution, based on previous observations in paired

recordings in cortical slices [18]. This resulted in a balanced

fluctuating current. We note here that in real neuronal networks of

the neocortex the number of excitatory synapses exceeds the

number of inhibitory inputs, and the balance between excitation

and inhibition is achieved through contribution of additional

factors, such as higher firing rates of inhibitory neurons and

differential release dynamics at excitatory and inhibitory synapses,

as well as network mechanisms such as di-synaptic feed-forward

inhibition or strong recurrent inhibition. However, we have opted

for the straightforward case of absolute symmetry of excitatory and

inhibitory inputs for several reasons. First, it is arguably the

simplest way to achieve balanced input. Second, it does not

introduce additional variables and does not require fine-tuning.

For example, obtaining balanced currents with smaller number of

inhibitory vs excitatory inputs would require higher frequency or

higher amplitude at inhibitory synapses. Third, it is robust to

variations of the amplitude of synaptic currents and patterns of

input activity, allowing us to study broad range of these

fundamental parameters. Although many input characteristics

(e.g. PSC time-course, E-I ratios, E-I balance, input correlations,

rates) can be studied using this fully-defined signal mixture

paradigm, here we focus on a basic case where we can directly

compare the sensitivity of excitatory and inhibitory inputs of

different amplitudes.

In both series of experiments, the fluctuating current was scaled

to produce membrane potential fluctuations of 15–20 mV

High-Throughput Paradigm to Study Neuronal Encoding
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amplitude, similar to membrane potential fluctuations recorded in

neocortical neurons in vivo [16,19,20,21,22]. The SD of the scaled

fluctuating current was between 70 pA and 110 pA. DC current

was then adjusted to achieve a desired firing rate. All currents were

injected into the soma through the whole-cell recording pipette.

Current injections lasted 46 s, and were separated by a recovery

period of 60–100 s.

Processing. Data were processed offline in Matlab (The

Mathworks, Natick, MA). Spikes were detected in membrane

potential traces as positive zero crossings. Spike timings were used

for constructing PSTHs and for estimating PSC detection

probability. Spikes generated during first 2 s after beginning of

current injection were discarded from the analysis to minimize

possible impact of initial spike adaptation. After the initial

adaptation firing rate remained stable for the duration of current

injection.

The probability of aPSC detection was quantified using a

decoder [4,6] that reports a change in the input when the

constructed population firing rate falls above the 95% quantile

(excitatory inputs) or below the 5% quantile (inhibitory inputs) of

the pre-signal distribution. The probability of detection was

estimated as a function of the time interval T (from 0.4 ms to

15 ms after the aPSC onset) for populations of N = 250, N = 500,

N = 1000 and N = 2000 neurons. Single-side test statistics were

computed using bootstrap analysis and from parametric (Binomial)

distributions. For bootstrap analysis, we composed 100 trial sets of

N (N = 250, 500, 1000, or 2000) randomly selected sweeps. For

each time interval T we first used all 100 trial sets to calculate the

distribution of spike counts during the pre-signal interval T and

found the 5% and 95% quantile of this distribution. Next, for each

trial set, we determined whether the spike count in the interval T

after the PSC onset fell above the 95% quantile of the pre-signal

distribution (below the 5% quantile if inhibitory). The number of

trial sets, which fulfill this condition, provides an estimate of the

probability for a population of N neurons to detect the PSC within

time T after its onset. The whole procedure was then repeated 100

times for populations of each size (N = 250, 500, 1000 or 2000

neurons).

As an alternative to estimating detection probability with

bootstrapping, parametric curves of detection probability were

Figure 1. Analysis of AP encoding of a synaptic input using a ‘signal immersed in noise’ paradigm. A: A signal immersed in noise paradigm
to study information transmission in networks of neurons. In a three-layer, feed-forward model one first-layer ‘‘source’’ neuron provides common
input to a population of ‘‘transmitting’’ second-layer neurons which converge on a ‘‘decoder’’ neuron in the third layer. These neurons and
connections are shown in green. The rest of the network is shown in gray. B: Input to neurons in the second layer consists of a ‘‘signal’’ – the common
EPSC produced by the source neuron (green traces), and fluctuating ‘‘noise’’ produced by activity of other neurons (gray traces). Population firing of
the transmitting neurons provides input to the decoder. C: Experimentally, population encoding in B can be mimicked by injecting current into a
neuron consisting of artificial EPSCs (50 pA) immersed in fluctuating noise (SD = 110 pA). A sequence of EPSCs is shown with an enlarged Y-scale
(top). Green vertical bars show onset timing of EPSCs corresponding to simulated presynaptic spikes. Timing of action potentials generated by a
neuron in response to injected current was extracted from the membrane potential recording (bottom). D: Changes in a model population firing rate
in response to source aEPSC. Responses to a total of N = 7223 stimuli contributed to the histogram. PSTH was obtained using aEPSC onset as a trigger
for the neuron’s spike response. E: Probability of detection of aEPSC from firing of N = 1000 transmitting neurons by a theoretical decoder (see
scheme in A) as a function of time after the onset of the aEPSC. Filled diamond symbols: parametric detection probability. Open circles: results of
bootstrapping.
doi:10.1371/journal.pone.0109928.g001
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calculated as follows. The distribution of the number of spikes in a

window of length T after the signal onset Dpost and the distribution

of the number of spikes in a window of the same length before

signal onset Dpre were modeled as two independent binomial

distributions with N equal to the number of neurons (N = 250,

500, 1000, or 2000), and estimated success probabilities Ppost (after

aPSC onset) and Ppre (before aPSC onset), respectively. The

success probabilities Ppost and Ppre were estimated using data from

all recordings as average probabilities of spikes, that is

total number of spikes in window Tð Þ= totalnumber of repetitionsð Þ

Due to the very short time windows (,10 ms) used for the analysis,

any given sweep contained no more than one spike. Assuming

independent sweeps with identical spike probabilities, the total

number of spikes, across sweeps, can be described by a Binomial

distribution. Parametric detection probabilities were then com-

puted as the probability that a Binomial distribution B(N,Ppost)

exceeds the 95% quantile (for excitatory PSCs), or is below the 5%

quantile (for inhibitory PSCs) of a Binomial distribution B(N,Ppre),

that is

1{FB(N,Ppost)(F
{1
B(N,Ppre) (0:95))

or

FB(N,Ppost)(F
{1
B(N,Ppre)(0:05))

with FB(N,Ppost) and F21
B(N,Ppre) denoting the distribution and

Figure 2. A ‘fully-defined signal mixture’ paradigm. A: Rather than considering a transmitting neuron receiving a single input, as in the signal
immersed in noise paradigm, we can also consider the three-layer network where multiple, known source signals are combined by the transmitting
neuron. B: Current injected in the neuron in the fully-defined signal mixture paradigm is a sum of aEPSCs and aIPSCs of different amplitudes
synthesized using the simulated activity of large number (N = 1024 in this example) of presynaptic neurons, with defined amplitudes of all aPSCs and
presynaptic spike timing (green bars above each trace). C: (top to bottom) Example of averaged aEPSCs of different amplitudes, each obtained using
spikes of one presynaptic neuron to trigger synthetized current for injection. Averaged membrane potential responses to these currents (aEPSPs),
obtained using spikes of the same presynaptic neurons to trigger membrane potential recorded during injection of synthetized current. Traces on the
right show the same responses, but amplitude-scaled. Examples of averaged aIPSCs and aIPSPs. To prevent contamination of membrane potential
responses by action potentials, only fluctuating current without DC component was injected during this recording so that no spikes were generated.
D: Response of a layer 2/3 pyramidal neuron to injection of a fully-defined signal mixture current. E: Changes of the population firing rate in response
to aEPSCs and aIPSCs of different amplitudes. Each histogram shows changes in firing rate induced by PSPs of one particular amplitude. The spikes of
individual presynaptic neurons which produced aPSCs of this amplitude were used as a trigger for postsynaptic spikes. In this way, responses to
aPSCs of different amplitudes can be examined using the same recording. F: Superimposed firing rate responses from E. Note similar time course of
responses to inputs of different amplitude.
doi:10.1371/journal.pone.0109928.g002
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quantile function of a Binomial random variable with parameters

N and P, respectively. Distributions and quantiles were computed

using the Matlab programs binoinv and binocdf.

Results

An established paradigm for studying population encoding

using intracellular recording in slices is to inject in a cell a current

in which a ‘‘signal’’, such as an aPSC or sine-wave modulated

current, is immersed in fluctuating ‘‘noise’’. This signal immersed
in noise paradigm provides a controlled setting for studying

information transmission across neurons as it might occur in vivo.

For instance, in a three-layer feed-forward network (Fig. 1A) each

‘‘transmitting’’ neuron in the second layer receives a signal from

one first-layer ‘‘source’’ neuron, as well as numerous inputs from

other neurons. These other neurons provide a background of noise

which the source neuron must overcome for successful information

transmission (Fig. 1B). We can assess the reliability of transmission

across the population by imagining a ‘‘decoder’’ neuron in the

third layer that receives inputs from a population of transmitting

neurons. Experimentally, activity of a population of transmitting

neurons is reproduced by repeatedly injecting a mixture of signal

and different realizations of fluctuating noise current into a single

cell (Fig. 1C). In our experiments, we scaled the amplitude of the

injected current to obtain membrane potential fluctuations with an

amplitude of ,15–20 mV, and adjusted the DC current to

achieve an average firing rate of ,5 Hz. Using the spike responses

of the recorded neuron to injected current, we can characterize the

detectability of the source signal by the decoder receiving input

from the population of transmitting neurons. The firing rate of a

hypothetical population of neurons would noticeably increase after

the onset of an aEPSC (Fig. 1D), and, depending on the amplitude

of the signal and size of the transmitting population, a downstream

decoder can detect this change in the activity of the population

(N = 1000 in this example) within a few milliseconds after the

aEPSC onset (Fig. 1E). Consistent with our prior observations [6],

parametric estimates of detection probability using the Binomial

distribution correspond closely to the estimates made with

bootstrapping. This suggests that the distributions of spike counts

before and after aPSC onset are well approximated by Binomial

distributions.

A drawback of the signal immersed in noise paradigm is that, by

design, it limits the study of neural computation to just one, or few,

signals at a time (Fig. 1C,D). A typical example in Fig. 1D,E

presents results from a ,1 hour experiment during which

recordings of responses to 31 episodes (46 s each) of current

injection were interleaved with 60–100 s recovery intervals. Thus,

it takes about 1 hour of recording to characterize the encoding of

just one setting of experimental parameter values: a single

amplitude for the PSC, a single output firing rate, with unchanged

electrophysiological properties of the neuron. This slow rate of

data acquisition, especially for low amplitude signals and/or low

firing rates which require larger numbers (thousands) of signal

presentations, makes complete characterization of encoding over a

parameter space (e.g. including different amplitudes of excitatory

and inhibitory PSCs, firing rates, control and manipulated

electrophysiological properties of neurons) cumbersome.

Fully-defined signal mixture paradigm
To overcome this drawback, we introduce a fully-defined signal

mixture paradigm. This paradigm exploits the fact that fluctuations

in the membrane potential of a neuron in vivo represent the

summed activity at its numerous synapses [16]. Rather than

defining ‘‘noise’’ based on the statistics of total input, in this

paradigm we explicitly model a mixture of many inputs – in this

case, from a large population of spiking presynaptic neurons. All

elements of the synaptic input received by the neuron are defined:

the spike timing of all simulated presynaptic neurons, as well as the

amplitude and time course of simulated postsynaptic currents at

each synapse (Fig. 2A). Fluctuating current for injection is

synthetized as a sum of multiple signals, such as artificial excitatory

and inhibitory postsynaptic currents resulting from activity of large

population (N = 1024 in Fig. 2B) of model presynaptic neurons.

Keeping track of the spike timings of all presynaptic neurons

allows us to disentangle the effects of individual presynaptic

neurons on membrane potential of the postsynaptic neuron

(Fig. 2C) and and relate postsynaptic spike responses to each of

the inputs (Fig. 2D,E). Figure 2E shows example histograms of

postsynaptic spike responses to excitatory and inhibitory aPSCs of

different amplitudes. Because the timing of each stimulus is

defined, we can consider any stimulus or a combination of stimuli,

as ‘‘signal’’, while the sum of all other stimuli is treated as ‘‘noise’’.

In this way we can study the encoding of a large number of

different signals in a single experiment (Fig. 2D,E). This closely

mimics the situation faced by neurons in vivo, for example when

neurons process sensory stimuli, relayed via specific sensory

pathways, on the background of uninterrupted bombardment at

all other synapses. As before, the second-layer neuron shown in

green in Fig. 2A can be considered representative of all second-

layer neurons, and its spiking can be used as input to a theoretical

decoder (as in Fig. 1A).

The fully-defined signal mixture paradigm allows us to

dramatically increase the throughput of data acquisition: instead

of obtaining the time-course of detection probability for one aPSC

per experiment (Fig. 1), we obtain a comprehensive characteriza-

tion of the time-dependence of detection probability for excitatory

and inhibitory PSCs of many different amplitudes. Figure 3

presents results from one experiment using the fully-defined signal

mixture paradigm. Current for injection was generated as a sum of

N = 1024 presynaptic neurons, 512 excitatory and 512 inhibitory.

Amplitudes of aPSCs were drawn pseudo-randomly from a

discrete approximation to the log-normal distribution with

m= 0.702 and s= 0.9355 [18], and constrained to 32 discrete,

log-spaced values (Fig. 3C, top). Excitatory and inhibitory inputs

had the same distribution, differing only by sign. As discussed in

the Methods, we opted for this simple and robust method of

achieving balanced input to simplify the parameter space and and

directly compare the spike responses to excitatory vs. inhibitory

inputs.

Amplitude-dependence of PSC detection
The probability of detection for aPSCs from the population

activity of N = 1000 neurons has clear dependence on both aPSC

amplitude and time available for sampling population activity

(Fig. 3A). Excitatory aPSC with amplitudes .,0.5s (s= 100 pA

in this experiment) can be detected reliably (p.0.75) very fast,

within ,3–4 ms. Smaller aPSCs required longer times for their

detection, and the probability of detection of aPSCs ,,0.25s
does not reach 0.5 even after 10 ms. The probability of detection

for inhibitory aPSCs (Fig. 3B) expresses similar overall patterns of

dependence on PSC amplitude and time, though it takes slightly

longer to detect inhibitory PSCs than excitatory PSCs of the same

amplitude. The difference between probability of detection of

excitatory and inhibitory PSCs is most pronounced at short

intervals. In Fig. 3C, amplitude dependence of PSC detection

within 3 ms is clearly asymmetric, with inhibitory PSCs detected

with lower probability than excitatory PSCs of the same

High-Throughput Paradigm to Study Neuronal Encoding

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109928



amplitudes. This asymmetry decreases when detection time is

increased to 5 ms, and becomes negligible after 7 ms (Fig. 3C).

Dependence of PSC detection on population size and
firing rate

Two further factors had a strong influence on the probability of

aPSC detection: the size of the neuronal population and the mean

firing rate of the neurons. Fig. 4 shows the dependence of the

probability of detection for inhibitory (Fig. 4A) and excitatory

(Fig. 4B) inputs on time from aPSC onset and aPSC amplitude.

Moderate-size populations of neurons (N = 250, 500) transmit

excitatory PSCs into firing rate changes faster and more reliably

than inhibitory PSCs (Fig. 4A,B). Note that the detection

probability as a function of PSC amplitude is highly asymmetric

(Fig. 4C). With the increasing size of neuronal population the

latency of aPSC detection decreases, the range of reliably

detectable amplitudes increases, and the difference in detection

time of excitatory and inhibitory PSCs becomes negligible (Fig. 4C

bottom, N = 2000).

Fig. 5 illustrates how changing the average firing rate in a

population of N = 500 neurons affects PSC detectability. With low

firing rate around 1 Hz (average 1.19 Hz), only the strongest PSCs

can be detected reliably and the latency of their detection is long,

about 5–7 ms (Fig. 5A–C, upper plots). Increasing the population

firing rate to intermediate (5.21 Hz), and then to high (10.9 Hz)

leads to a significant improvement in the detectability of source

signals via changes in population firing (Fig. 5). These results

directly demonstrate that there are important minimum firing rate

constraints on information transmission by reasonably-sized

(N = 500 in this example) neuronal ensembles, and that these

constraints can be asymmetric for excitatory and inhibitory inputs.

Thus, the paradigm of fully-defined signal mixture allows us to

efficiently characterize how excitatory and inhibitory PSCs are

encoded in changes of the firing rates of neuronal populations.

This characterization can be made within reasonable recording

times in single neurons and opens up many new possibilities for

comprehensive, parametric characterization of neuronal encoding.

Using the signal immersed in noise paradigm we are studying

input from only one presynaptic neuron, while using the fully-

defined signal mixture paradigm, we are studying large number of

inputs (N = 1024 in our experiments) simultaneously, which is a

1024-fold increase of the throughput of data acquisition. Data

presented in Fig. 5 were obtained from a single cell to characterize

spike encoding of excitatory and inhibitory PSCs with 32 different

amplitudes at 3 different mean firing rates for the population of

transmitting neurons (3263 = 96 parameters). For comparison, an

experiment of the same length using the signal immersed in noise

paradigm (Fig. 1), would only allow us to characterize encoding

with only 1 or 2 of these parameter settings.

Figure 3. Detection probability of excitatory and inhibitory aPSCs of different amplitudes. Results from one experiment using the fully
defined signal mixture paradigm. A, B: Parametric detection probability of excitatory (A) and inhibitory (B) aPSCs from population firing of N = 1000
neurons as a function of time and amplitude of the aPSC. Results were obtained in a single experiment with fully-defined signal mixture. The
amplitudes are plotted in units of standard deviation (SD = 100 pA in this experiment) of the injected fluctuating current. C: Dependence of the
detection probability within 3 (top), 5 (middle), and 7 ms (bottom) after aPSC onset on the amplitude of excitatory and inhibitory aPSCs. Diamond
symbols denote parametric detection probability (data from A, B), while circles denote detection probability calculated from the same data using
bootstrapping. Top: the distribution of PSC amplitudes used to synthetize currents for injection (as illustrated in Fig. 2B).
doi:10.1371/journal.pone.0109928.g003
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Discussion

Here we introduce a novel experimental paradigm for studying

the transformation of input signals into spike output using fully-

defined signal mixtures. This paradigm exploits the fact that

‘‘noise’’ fluctuations in the membrane potential of a neuron in vivo

represent the summed activity at its numerous synapses [16].

Rather than modeling a signal immersed in noise, we can directly

simulate synaptic input from a population of presynaptic neurons.

The injected current is synthetized as a sum of multiple artificial

postsynaptic currents resulting from activity of large population of

model presynaptic neurons, and action potentials generated in

response to injection of this current provide a precise readout of

neuronal output. Because the timing of all signals contributing to

the injected current, including spike timing of each presynaptic

neuron is defined, we can consider any specific input or a

combination of inputs as ‘‘signal’’, while the sum of all other inputs

as ‘‘noise’’, and study encoding of a large number of different

signals in a single experiment. This experimental design dramat-

ically increases the efficiency of data acquisition, opens new

possibilities for later analysis, and allows characterization of

encoding over a broad parameter space.

The paradigm of fully-defined signal mixtures is a development

of the established signal immersed in noise paradigm [1,2]. In this

established paradigm, current for injection is composed of a signal

such as steps of current, artificial PSCs, sine-wave signals or

modulation of the noise amplitude, is immersed in different

realizations of fluctuating noise current that mimics on-going

synaptic activity. Experimental results obtained with the use of this

paradigm have led to important insights on signal propagation and

encoding in feed-forward neuronal networks. They have demon-

strated that synchronized activity can naturally appear when

signals propagate through multilayer feed-forward neural networks

[1], and that populations of cortical neurons can very quickly

change their firing rate in response to abrupt changes of the input,

within 1–3 milliseconds [2,4,5,6]. This speed of population

responses has been related to the ability of neuronal populations

to phase-lock their firing to high-frequency, hundreds of Hz,

periodic signals [7,8,9,4,5]. Further work has shown that the

ability of neuronal populations to encode high-frequency signals

depends of the activity of Kv1 potassium channels [23], and on the

rapidness of the action potential onset [5]. This latter finding

confirmed an earlier theoretical prediction [24,25]. Similar

approaches, injecting a signal and background noise or injecting

correlated inputs, have been previously used in both experimental

and theoretical analyses to assess the impact of correlated activity

on neuronal firing and signal propagation in neuronal networks

[1,26,27,28,29,30]. One limitation of the signal immersed in noise

paradigm, however, is that it is designed to examine encoding of

one signal under one set condition. Studying the dependence of

neuronal encoding and correlations on parameters of the input,

e.g. amplitude and time course of postsynaptic current, or the

Figure 4. Dependence of the detection probability of excitatory and inhibitory aPSCs on the size of neuronal population. A, B:
Parametric detection probability for inhibitory (A) and excitatory (B) aPSCs from population firing of N = 250, 500, 1000 and 2000 neurons as a
function of time and PSC amplitude. The amplitudes are plotted in units of SD (SD = 100 pA in this experiment) of the injected fluctuating current.
Detection probability (Z-axis) is color-coded. C: Detection probability within 5 ms after PSC onset as a function of PSC amplitude for populations of
different sizes. Detection probability was calculated either parametrically (filled diamond symbols, data from A, B) and using bootstrapping (open
circle symbols) from firing of a population of N = 250, 500, 1000 or 2000 neurons. Data from the same cell as in Fig. 3.
doi:10.1371/journal.pone.0109928.g004
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properties of neuronal populations, e.g. firing rate and input

correlations, requires additional lengthy experiments. Especially

studies of encoding of weak signals in activity of sparsely firing

neuronal ensembles – which is the most interesting and relevant

case for cortical processing [10,11] – require extremely long

recordings [7,4,6].

The use of the new paradigm of fully-defined signal mixture

allowed us to measure dynamic changes of population firing of

cortical neurons in response to excitatory and inhibitory PSCs,

with physiological time courses and amplitudes covering the broad

physiological range. This analysis allowed us to identify threshold

amplitudes at which excitatory and inhibitory PSCs can produce

significant change of the population firing, and thus be detected in

the activity of neuronal populations. The detection threshold

depends on the size of neuronal population, mean firing rate, and

time after the PSC onset available for analysis. Notably, even with

large populations (N = 2000), high firing rates (10 Hz), and

integration times of ,7–8 ms, where detection reaches a plateau,

PSCs that have amplitudes of ,0.15snoise (corresponding to

,15 pA PSC amplitude in our experiments) can be detected only

with probability of ,0.4. Decreasing of any of these parameters

leads to a steep decrease of detection probability. These

dependences are in agreement with previously reported depen-

dence of detection of step-like input changes on the size of

neuronal population and time [4,5], and theoretically predicted

rate-dependence of the sensitivity of population firing to fast input

changes [24,25,31]. Interestingly, with decreasing population size

and detection time, an asymmetry in sensitivity of population

firing responses to excitatory and inhibitory inputs becomes

evident. This higher sensitivity and more rapid firing rate response

to excitatory inputs were predicted in earlier analysis of model

neurons firing at high rates (30 or 100 Hz) [26]. Our results show

that for realistic cortical neuron firing rates (,1–10 Hz), moderate

size populations (N = 250; 500), and short integration times (,

5 ms), excitatory inputs are detected with higher probability than

inhibitory PSCs of the same amplitude. This differential sensitivity

of population firing to excitation vs. inhibition may lead to a

transient, few milliseconds only, period of predominance of

excitation in response to an input composed of statistically-

balanced excitatory and inhibitory components. This transient

imbalance may be instrumental for spreading precisely-timed

waves of activity through the balanced neuronal networks

[32,33,34].

It is important to note that the simulated presynaptic input used

here was assumed to be a result of independent gamma renewal

processes. Neither correlations within groups of excitatory or

inhibitory synapses, nor correlations between the excitation and

inhibition were implemented. In vivo presynaptic input may be

substantially more coordinated [14,35,36,37], and synchronous

inputs can be further amplified by dendritic nonlinearities, and

thus become more easily detectable [38,39,40]. In this scenario,

very weak inputs, non-detectable alone, may still influence

Figure 5. Dependence of the detection probability of inhibitory and excitatory aPSCs on postsynaptic firing rate. A, B: Parametric
probability of detection for inhibitory (A) and excitatory (B) aPSCs from population firing of N = 500 neurons as a function of time and amplitude.
Firing rate of neurons in the population was kept around 1 Hz (averaged 1.19 Hz), 5 Hz (5.21 Hz) or 10 Hz (10.9 Hz), as indicated. The amplitudes are
plotted in units of SD (SD = 110 pA) of the injected fluctuating current. Detection probability (Z-axis) is color-coded. C, D: Dependence of the
detection probability within 5 ms (C) and 7 ms (D) after onset on PSC amplitude. Detection probability calculated parametrically (filled diamond
symbols, data from A, B) and using bootstrapping (open circle symbols) from activity of a populations of N = 500 neurons firing at averaged rates of
1 Hz, 5 Hz, or 10 Hz, as indicated. E: Each symbol shows firing rate during 46 s recording episodes, averaged over 5 s intervals. For each target
frequency, N = 20 episodes were used; numbers on the right show gross averages.
doi:10.1371/journal.pone.0109928.g005
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postsynaptic firing when synchronized. Such correlations between

inputs can be easily implemented into the current for injection,

making the paradigm of fully-defined signal mixture well suited for

quantitative characterization of the effects of synchrony among

weak inputs on information transmission through neuronal

networks.

It is also important to note that in our experiments in vivo-like

fluctuations of the membrane potential were induced by injection

of currents with pre-defined waveforms through the somatic

electrode. In contrast, membrane potential fluctuations in vivo

result from changes of conductance at numerous synapses located

all over the dendritic tree. The use of dynamic clamp or other real-

time closed-loop experimental paradigms [41,42] may help to

circumvent the first discrepancy – induce fluctuating conductance

changes instead of injection of pre-defined fluctuating current.

Optogenetic approaches [43,44,45] may be instrumental for

photo-inducing conductance changes at different parts of the

dendritic tree. Combining these techniques with the fully-defined

signal mixture paradigm will help to bring in vitro tools of studying

neuronal encoding yet closer to conditions experienced by neurons

in vivo.

Outlook: which questions can be addressed with
fully-defined signal mixture paradigm

The fully-defined signal mixture paradigm opens a number of

new opportunities to study neuronal encoding and neuronal

computations. First, by allowing high-throughput data acquisition

and analysis of multiple inputs from the same recordings, it allows

parametric characterization of encoding in different types of

cortical neurons. Because data for comprehensive characterization

of encoding can be obtained from individual neurons, it will allow

assessment of both between-type specifics as well as within-type

variability in the encoding properties of different types of neurons

[46,47,48,49,50]. Second, the high-throughput of this novel

paradigm, by allowing a large number of presynaptic inputs to

be studied using only a few recording episodes, will also allow us to

characterize the effects of postsynaptic cell properties on encoding,

such as firing rate, specific ionic conductances, spike-generation

mechanisms and cell membrane properties. Although varying

these postsynaptic parameters does require recording of separate

sets of episodes, the high-throughput paradigm will allow to

acquire sufficient amount of data from the same cell, and thus

make examination of the influence of postsynaptic cell properties

on encoding more feasible. The properties of the input, such as

correlations, rate and regularity of presynaptic firing or short-term

synaptic plasticity can be systematically varied to address effects of

the input structure on possible encoding schemes. Additional input

signals, such as periodic sine waves of different frequencies, can

also easily be added to the injected current. This will allow testing

hypotheses about encoding using the power of within-subject

comparisons. Third, the high-throughput of the fully-defined input

paradigm makes it possible to use real neurons as ‘‘model devices’’

to study propagation of neuronal activity through neuronal layers

and ensembles of neurons of different types. Such hybrid cell-

computer experimental systems have the potential to replace

simulations that fail to describe genuine electrophysiological

properties and spike generation of real neurons [5,51,52]. Finally,

modeling the sequences of action potentials generated in response

to fully-defined input from a population of modeled presynaptic

neurons provides a useful instrument for testing models of

functional connectivity inference from large-scale recordings and

verification of new tools for statistical analysis of spike trains

[53,54,55,56,57]. This latter point becomes especially important in

view of rapid development of electrophysiological and optical

imaging techniques which are allowing simultaneous recording of

spiking in increasingly large neuronal populations [58,59].

Thus, the fully-defined signal mixture paradigm represents a

novel, powerful tool to study neuronal computations performed by

spike generation mechanism, but also it provides a testing

instrument for development of new tools for processing large-

scale spike recordings.
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18. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly

nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol

3(3): e68.

19. Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for

synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad

Sci U S A 97: 8110–8115.

High-Throughput Paradigm to Study Neuronal Encoding

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109928
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