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Abstract

A challenge for physiologists and neuroscientists is to map information transfer between components of the systems that
they study at different scales, in order to derive important knowledge on structure and function from the analysis of the
recorded dynamics. The components of physiological networks often interact in a nonlinear way and through mechanisms
which are in general not completely known. It is then safer that the method of choice for analyzing these interactions does
not rely on any model or assumption on the nature of the data and their interactions. Transfer entropy has emerged as a
powerful tool to quantify directed dynamical interactions. In this paper we compare different approaches to evaluate
transfer entropy, some of them already proposed, some novel, and present their implementation in a freeware MATLAB
toolbox. Applications to simulated and real data are presented.
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Introduction

Since its first introduction by Schreiber [1] transfer entropy (TE)

has been recognized as a powerful tool to detect the transfer of

information between joint processes. The most appealing features

of TE are that it has a solid foundation in information theory and

it naturally detects directional and dynamical information.

Moreover, the formulation of TE does not assume any particular

model as underlying the interaction between the considered

processes, thus making it sensitive to all types of dynamical

interactions. The popularity of this tool has grown even more with

the recent elucidation of its close connection with the ubiquitous

concept of Granger causality [2], which has led to formally bridge

information-theoretic and predictive approaches to the evaluation

of directional interactions between processes. Given all these

advantages, TE has been increasingly used to assess the transfer of

information in physiological systems with several applications in

neurophysiology [3–6]. It is worth noting that speaking of the

transfer of information as measured by TE we refer to the

‘‘predictive information transfer’’ intended as the amount of

information added by the past (and present) states of a source

process to the present state of a target process.

The estimation of TE from time series data which constitute

realizations of the investigated physiological processes is compli-

cated by a number of practical issues that need to be addressed

and that are contributing to the development of several recipes to

compute this measure.

In this study we discuss three different approaches (binning,

nearest neighbor, linear) to evaluate the probability distribution

function which constitutes the basis for TE in multivariate systems.

In turn, each approach has to be paired with the choice of the time

series’ past values which contribute information to the knowledge

of the present state of a given target time series. The first choice is

the classical uniform embedding (UE) that considers a fixed

amount of past terms for each series; the second approach is quite

recent and employs a non-uniform embedding (NUE) [7,8]

iteratively selecting the most informative terms through an

optimization criterion.

These recipes, some of them already established, some novel,

are accordingly revisited or explained. Then, in order to

contribute to the foundation of a common framework for the

application of TE, we describe their implementation in a modular

MATLAB toolbox. Several examples are presented allowing a

critical comparison of UE and NUE approaches for all the three

entropy estimators.

The paper is organized as follows. We first provide an overview

of TE. We then distinguish between UE and NUE approaches to

the representation of the history of the observed processes. We

describe in detail the methods used to estimate the probabilities

involved in the evaluation of the TE and their implementation in

the toolbox. The approaches are then validated on synthetic time

series and then tested on real data: the electroencephalogram of an

epileptic patient and cardiovascular measurements in healthy

subjects.

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e109462

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1005245
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109462&domain=pdf


Materials and Methods

Transfer entropy
Let us consider a composite system described by a set of M

interacting dynamical subsystems and suppose that, within the

composite system, we are interested in evaluating the information

flow from the source system X to the destination system Y,

collecting the remaining systems in the vector

Z~ Zk
� �

k~1,...,M{2
. We develop our framework under the

assumption of stationarity, which allows to perform estimations

replacing ensemble averages with time averages (for non-

stationary formulations see, e.g., [9] and references therein).

Accordingly, we denote X, Y and Z as the stationary stochastic

processes describing the state visited by the systems X , Y and Z
over time, and Xn, Yn and Zn as the stochastic variables obtained

by sampling the processes at the present time n. Moreover, we

denote X{
n ~½Xn{1Xn{2 . . .�, Y{

n ~½Yn{1Yn{2 . . .�, and

Z{
n ~½Zn{1Zn{2 . . .� as the vector variables representing the

whole past of the processes X, Y and Z. In some cases it can be

desirable to take into account also the instantaneous influences of

the candidate drivers. In this case, the vectors X{
n and Z{

n defined

above should contain also the present terms Xn and Zn. Then, the

multivariate transfer entropy from X to Y conditioned to Z is

defined as:

TEX?Y DZ~
X

p Yn,Y{
n ,X{

n ,Z{
n

� �
log

p YnDY{
n ,X{

n ,Z{
n

� �
p YnDY{

n ,Z{
n

� � ð1Þ

where the sum extends over all the phase space points forming the

trajectory of the composite system. p(a) is then the probability

associated with the vector variable a while p(bDa)~p(a,b)=p(a) is

the probability of observing b knowing the values of a. The

conditional probabilities used in (1) can be interpreted as transition

probabilities, quantifying to which extent the transition of the

target system Y towards its present state is affected by the past

states visited by the source system X . Specifically, the TE

quantifies the information provided by the past of the process X
about the present of the process Y that is not already provided by

the past of Y or any other process included in Z.

The formulation presented in (1) is an extension of the original

TE measure proposed for pairwise systems [1] to the case of

multiple interacting processes. The conditional TE formulation,

also denoted as partial TE [5,8], rules out the information shared

between X and Y that is mediated by their common interaction

with Z. Note that the TE can be seen as a difference of two

conditional entropies (CE), or equivalently as a sum of four

Shannon entropies:

TEX?Y DZ ~H(YnDY{
n ,Z{

n ){H(YnDY{
n ,X{

n ,Z{
n )

~H(Yn,Y{
n ,Z{

n ){H(Y{
n ,Z{

n )

{H(Yn,Y{
n ,X{

n ,Z{
n )zH(Y{

n ,X{
n ,Z{

n )

ð2Þ

TE has a great potential in detecting information transfer

because it does not assume any particular model that can describe

the interactions governing the system dynamics, it is able to

discover purely non-linear interactions and to deal with a range of

interaction delays [4]. Recent research has proven that TE is

equivalent to Granger Causality (GC) for data that can be

assumed to be drawn from a Gaussian distribution, a case in which

the data covariance is fully described by a linear parametric model

[2,10]. This establishes a convenient joint framework for both

measures. Here we evaluate GC in the TE framework and

compare this model-based approach with two model-free

approaches.

Reconstruction of the system’s past states and TE
evaluation

We will discuss here the crucial issue of how to approximate the

infinite-dimensional variables representing the past of the

processes. This problem can be seen in terms of performing

suitable conditioned embedding of the considered set of time series

[11].

The main idea is to reconstruct the past of the whole system

represented by the processes X, Y, Z with reference to the present

of the destination process Y, in order to obtain a vector

V~½VY
n ,VX

n ,VZ
n � containing the most significant past variables

to explain the present of the destination. Once V is computed it is

easy to evaluate TE as the difference of two CEs or through the

four entropies using the whole V or convenient subsets of it

according to equation (2).

Uniform embedding. The large majority of approaches

applied so far to estimate TE implicitly follow uniform conditioned

embedding schemes where the components to be included in the

embedding vectors are selected a priori and separately for each

time series. For instance the vector Y{
n is approximated using the

embedding vector VY
n ~½Yn{m Yn{2m . . . Yn{dm�, where d and m

are respectively the embedding dimension and embedding delay

(the same for X{
n and Z{

n , approximated by VX
n and VZ

n ). In this

way it is possible to distinguish between a first phase during which

the past states are collected and a second phase during which the

estimate of the entropy, and consequently of the CE, is evaluated

by means of the chosen estimator, according to the following

pseudo-code:

1. build the vector V~½VY
n ,VX

n ,VZ
n �;

2. use V and Yn to evaluate the last two entropies of (2) and,

consequently, the lowest CE term (CE2);

3. use V \VX
n to evaluate the first two entropies of (2) and,

consequently, the highest CE term (CE1);

4. compute TE as equal to the difference CE1–CE2.

The obvious arbitrariness and redundancy associated with this

strategy are likely to cause problems such as overfitting and

detection of false influences [11]. Moreover one should assess

which TE values are significant. The significance tests associated

with TE estimation based on UE are different for model-based and

model free estimators, and are described in the respective

following subsections.

Non-uniform embedding. Non-uniform embedding consti-

tutes the methodological advance, with respect to the state of art,

that we implement as a convenient alternative to UE. This

approach is based on the progressive selection, from a set of

candidate variables including the past of X, Y, and Z considered up

to a maximum lag (candidate set), of the lagged variables which are

most informative for the target variable Yn. At each step, selection

is performed maximizing the amount of information that can be

explained about Y by observing the variables considered with their

specific lag up to the current step. This results in a criterion for

maximum relevance and minimum redundancy for candidate

selection, so that the resulting embedding vector V~½VX
n VY

n VZ
n �

includes only the components of X{
n , Y{

n and Z{
n , which

contribute most to the description of Yn. Starting from the full

candidate set, the procedure which prunes the less informative

terms is described below:

MuTE: A MATLAB Toolbox for Multivariate Transfer Entropy
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1. Get the matrix with all the candidate terms MC

~½Xn{1 . . . Xn{lX Yn{1 . . . Yn{lY Zn{1 . . . Zn{lZ �, with lX , lY , lZ
representing the maximum lag considered for the past variables of

the observed processes; these matrices will contain also the terms

Xn and Zn in case one wants to take into account instantaneous

effects.

2. Run the procedure to select the most informative past variables

and the optimal embedding vector:

(a) Initialize an empty embedding vector V (0)
n

(b) Perform a while loop on k, where k can assume values from 1

to the number of initial available candidates, numC, in the MC

matrix. At the k-th iteration, after having chosen k{1 candidates

collected in the vector V (k{1)
n :

for 1ƒiƒ number of current candidate terms

N N add the i-th term of MC, W (i)
n , to a copy of V (k{1)

n to

form the temporary storage variable V ’n ~½W (i)
n V (k{1)

n �
N N compute the mutual information between Yn and V ’n,

estimating the probability density function according to

the chosen estimator

(c) Among the tested W (i)
n , select the term Ŵn which maximizes

the mutual information

(d) if Ŵn fulfills a test for candidate significance, as described

below, include it in the embedding vector, V (k)
n ~½ŴnV (k{1)

n �,
delete it from MC and set k~kz1.

(e) else end the procedure setting k~numCz1 and returning

V~V (k{1)
n

3. Use Yn and the full embedding vector V~½VX
n VY

n VZ
n � to

evaluate the third and fourth entropy values of (2) and,

consequently, the lowest CE term (CE2)

4. Take the subset of V without the past states belonging to the

source process, ½VY
n VZ

n � to evaluate the first and the second term

of (2) and, consequently, the highest CE term (CE1)

5. compute TE subtracting CE2 from CE1.

As described above, candidate selection is performed maximiz-

ing the mutual information between the target variable and the

vector of the candidates already selected, incremented by the

candidate under examination. As we will see in the following

sections, the practical implementation of this general criterion

consists of an optimization process (i.e., minimization of the

conditional entropy or maximization of the conditional mutual

information, depending on the estimator chosen). The perfor-

mances of the processes mentioned above in the reconstruction of

the optimal embedding for an assigned target process are also

discussed in [8].

The complexity of the algorithm concerns mainly step 2, in

particular step 2(b), involving a for loop nested inside a while loop:

in the worst case the body of the for loop is executed numC2 times

resulting in a complexity O(numC2).

At step 2(d), the test for candidate significance is performed at

the k-th step comparing the conditional mutual information

between the target variable and the selected candidate given the

candidates previously selected up to the (k{1)-th step,

I(Yn;ŴnDV (k{1)
n ), with its null distribution empirically built by

means of a proper randomization procedure applied to the points

of Ŵn. The test for candidate significance is fulfilled if the original

measure I(Yn;ŴnDV (k{1)
n ) is above the 100(1{a) th percentile

(where a is the desired significance level) of its null distribution. In

order to maximize detection accuracy, the adopted randomization

procedure is varied for each estimator, and is thus described in the

relevant section.

Summarizing, the non-uniform embedding is a feature selection

technique selecting, among the available variables describing the

past of the observed processes, those who are the most significant -

in the sense of predictive information - for the target variable.

Moreover, given the fact that the variables are included into the

embedding vector only if associated with a statistically significant

contribution to the description of the target, the statistical

significance of the TE estimated with the NUE approach results

simply from the selection of at least one lagged component of the

source process. In other words, if at least one component from X is

selected by NUE, the estimated TE is strictly positive and can be

assumed as statistically significant. If this is not the case, the

estimated TE results exactly zero and is assumed as non-

significant. This latter case occurs also when the first candidate

(k~1) does not reach the desired level of significance, meaning

that none of the candidates provides statistically significant

information about the target variable. In such a case, that is

encountered for instance when the target process is a white noise,

the code returns an empty embedding vector and assigns a value of

zero to the TE.

Entropy estimators
Estimation of the TE, performed according to either UE or

NUE presented above, results from the application of estimators of

entropy and CE to the various terms in (2). The toolbox contains

three of such estimators. The first is the linear estimator (LIN) that

assumes that data are drawn from a Gaussian distribution. Under

this assumption, the two CE terms defining the TE can be

quantified by means of linear regressions involving the relevant

variables taken from the embedding vector [2]. The second

estimator is the classical binning estimator (BIN), which consists of

coarse-graining the observed dynamics using Q quantization

levels, and then computing entropies by approximating probability

distributions with the frequencies of occurrence of the quantized

values [12]. The third estimator is based on k-nearest neighbor

techniques (NN) which exploit the statistics of distances between

neighboring data points in the embedding space to estimate

entropy terms; we adopted the bias-reduction method of

estimating entropies through neighbor search in the space of

higher dimension and range searches in the subspaces of lower

dimension [13].

A problem that can arise dealing with UE and NUE procedures

when we use entropy estimators that does not assume any

probability distribution concerns the curse of dimensionality.

Indeed the more candidates we work with, the more the data

points will be spread in the phase space, the more the probability

density function will assume a constant value. Consequently the

NUE should be the most apt method to avoid the curse of

dimensionality because it reduces the dimension of the phase

space. We will prove this statement in the Results section when it

will be clear from the comparison between UE and NUE for the

BIN and NN estimators in multidimensional spaces. We are now

going to introduce each estimator in detail.

Linear estimator (LIN). The linear estimator method works

under the assumption that the overall process fX ,Y ,Zg has a joint

Gaussian distribution. This assumption allows to work with well-

known expressions for the probability density functions. Under this

assumption, the two CE terms defining the TE in (2) are expressed

by means of linear regressions involving the past states of the

systems collected in the vector variables [14]. When the UE is

implemented, X{
n is approximated with the vector of length p,

MuTE: A MATLAB Toolbox for Multivariate Transfer Entropy
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VX
n ~ Xn{1, . . . ,Xn{p

� �
, and the same for Y{

n and Z{
n which

are approximated by VY
n ~½Yn{1, . . . ,Yn{p� and VZ

n ~

½Zn{1, . . . ,Zn{p� (here m~1, p~d ). When the NUE is imple-

mented, the embedding vectors will contain only the components

resulting from the selection procedure. Then, an unrestricted

regression of Yn on the full vector V (u)~½VX
n VY

n VZ
n �

T
, and a

restricted regression of Yn on the reduced vector V (r)~½VY
n VZ

n �
T

,

are performed as follows:

Yn~A(u)V (u)ze(u)
n ð3Þ

Yn~A(r)V (r)ze(r)
n ð4Þ

where A(u) and A(r) are vectors of linear regression coefficients. The

terms e(u)
n and e(r)

n are scalar white noise residuals with variance s(u)

and s(r). Under the joint Gaussian assumption, it has been

demonstrated [2] that the entropy of Yn conditioned to the unrestricted

or restricted regression vectors is, respectively, H(YnDV (u))~

0:5( log s(u)z2pe) and H(YnDV (r))~0:5( log s(r)z2pe), from

which follows immediately that:

TE X?Y DZ~
1

2
log

s(r)

s(u)
ð5Þ

In this study, the unrestricted and restricted regression models in

(3) and (4) were estimated by the least-squares method. In the UE

implementation, the order p of the regressions was selected by the

Bayesian information criterion [15]; in the NUE implementation,

the order resulted implicitly from the selection procedure. In

NUE, maximization of the mutual information between the

component Ŵn selected at the step k and the target variable Yn

(step 2d) was obtained in terms of minimization of the CE

H(YnDŴn,Vk{1
n )~0:5( log s(k)z2pe), where s(k) denotes the

variance of the residuals of the linear regression of Yn on

½Ŵn,Vk{1
n �. Here, the randomization procedure applied to test

candidate significance consisted time-shifting the points of ŴWn by a

randomly selected lag (of at least 20 lags, set to avoid

autocorrelation effects) [16].

The statistical significance of the TE estimated through the UE

approach is assessed by a parametric F-test for the null hypothesis

that the p coefficients of A(u) which weigh the past components of

the driving process, collected in VX
n , are all zero [17]. In this case,

the test statistic is F~((RSSr{RSSu)=p)=(RSSu=(N{Mp)),
where RSSr and RSSu are the residual sum of squares of the

restricted and the unrestricted model, and N is the time series

length. The TE is considered statistically significant if F is larger

than the value of the Fisher distribution with (p, N{p) degrees of

freedom at the significance level a~0:05.

Binning estimator (BIN). Here we describe the estimator

based on fixed state space partitioning. This approach consists of

an uniform quantization of the time series followed by estimation

of the entropy approximating probabilities with the frequency of

visitation of the quantized states [12]. This is the classical

approach adopted in the first definition of TE [1]. A time series

y, realization of the generic process Y, is first normalized to have

zero mean and unit variance, and then coarse grained spreading

its dynamics over j quantization levels of amplitude

r~(ymax{ymin)=j, where ymax and ymin represent minimum

and maximum values of the normalized series. Quantization

assigns to each sample the number of the level to which it belongs,

so that the quantized time series yj takes values within the

alphabet A~(0,1, . . . ,j{1). Uniform quantization of embedding

vectors of dimension d results in an uniform partition of the d-

dimensional state space into jd disjoint hypercubes of size r, such

that all vectors V falling within the same hypercube are associated

with the same quantized vector Vj, and are thus indistinguishable

within the tolerance r. The entropy is then estimated as:

H(Vj)~{
X

Vj[Ad

p(Vj)logp(Vj) ð6Þ

where the sum is extended over all vectors found in the available

realization of the quantized series, and the probabilities p(Vj) are

estimated for each hypercube simply as the fraction of quantized

vectors Vj falling into the hypercube (i.e., the frequency of

occurrence of Vj within Ad ). According to this approach, the

estimate of TE based on binning results from the application of (6)

to the four embedding vectors defined in (2) and determined either

by UE or by NUE.

In the NUE implementation, maximization of the mutual

information between the component ŴWn selected at the step k and

the target variable Yn (step 2d) was obtained in terms of

minimization of the CE H(YnDŴn,V (k{1)
n )~H(Yn,Ŵn,V (k{1)

n ){

H(Ŵn,V (k{1)
n ), with the two entropy terms estimated through the

application of (6). As for the LIN estimator, the randomization

procedure applied to test candidate significance consisted in time-

shifting the points of Ŵn by a randomly selected lag [16].

The statistical significance of the TE estimated through the BIN

UE approach exploited the method of surrogate data implemented

by the time-shift procedure proposed in [11,16,18]. Specifically,

the estimated TE is tested against its null distribution formed by

the values of TE computed on replications of the original series,

where in each replication the source series is time-shifted by a

randomly selected lag, set to exclude autocorrelation effects.

Nearest Neighbor estimator (NN). Since its first introduc-

tion in 1967 [19], the nearest neighbor method has been shown to

be a powerful non-parametric technique for classification, density

estimation, and regression estimation. This method can be used to

estimate the entropy of a d-dimensional random variable X, H(X ),
starting from a random sample (x1, . . . ,xn) of N realizations of X.

Following the reasoning in [13], if we consider the probability

distribution Pk(e) for the distance between xi and its k-th nearest

neighbor, the probability Pk(e)de is equal to the chance that there

is one point lying within a distance r[½e=2,e=2zde=2� from xi,

that there are k{1 other points at smaller distances from it, and

that N{k{1 points have larger distances from xk. Let pi be the

mass of the e-sphere centered at xi, pi(e)~
Ð
Ej{xiEve=2

m(j)dj,

where m(j) is the density of the variable j. Then, the expectation

value of log(pi(e)) is

E(log(pi))~

ðinf

0

Pk(e) log(pi(e))de~y(k){y(N) ð7Þ

where Pk(e) is evaluated through the trinomial formula and y(:) is

the digamma function. The expectation is taken here over the

positions of all other N{1 points, with xi kept fixed. An estimator

for log(m(x)) is then obtained by assuming that m(x) is constant in

the entire e-sphere. The latter gives

pi(e)&cdedm(xi) ð8Þ

MuTE: A MATLAB Toolbox for Multivariate Transfer Entropy
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where d is the dimension of x and cd is the volume of the d-

dimensional unit sphere. For the maximum norm one has simply

cd~1, while cd~pe=2=C(1zd=2)=2d for the Euclidean norm.

From (7) and (8) we can evaluate log(m(xi)) and finally:

H(X )~{y(k)zy(N)zlog(cd )z
d

N

XN

i~1

log(e(i)) ð9Þ

The NN estimator faces the issue of the bias in the estimation of

multiple entropies for vector variables of different dimensions by

computing entropy sums through a neighbor search in the space of

higher dimension, and range searches in the projected sub-spaces

of lower dimensions [13]. This approach can be fruitfully exploited

for the estimation of the TE, as previously done, e.g., in [3,4]. To

do this, we first rewrite the expression for TE in (2) in terms of the

components of the embedding vector V~½VY
n ,VX

n ,VZ
n � spanning

a space of dimension (dX zdY zdZ):

TEX?Y DZ ~H(Yn,VY
n ,VZ

n ){H(VY
n ,VZ

n ){H(Yn,V )zH(V )ð10Þ

The term H(Yn,V ) is estimated through neighbor search in the

(dX zdY zdZz1){dimensional space, while the three other

terms are estimated through range searches in the spaces of

dimension (dY zdZz1), (dY zdZ) and (dX zdY zdZ). Accord-

ingly, adaptation of (9) to the four terms in (10) yields the equation

for TE based on the nearest neighbor estimator:

TEX?Y DZ~

y(k)zSy(N
VY

n VZ
n

z1){y(N
YnVY

n VZ
n

z1){y(NVz1)T
ð11Þ

where N
VY

n VZ
n

,N
YnVY

n VZ
n

and NV are the number of points whose

distance from ½VY
n ,VZ

n �, ½Yn,VY
n ,VZ

n � and V, respectively, is strictly

less than the distance from ½Yn,V � to its k-th neighbor, and v
:
w

denotes average over all n.

In the NUE implementation of the NN estimator, maximization

of the mutual information between the component Ŵn selected at

the step k and the target variable Yn (step 2d) was obtained in

terms of maximization of the conditional mutual information

I(Yn;ŴnDV (k{1)
n ), which was computed as described above by

estimating the four relevant entropies through a neighbor search in

the complete space, and range searches in the projected sub-spaces

of lower dimensions. Moreover, the randomization procedure

applied to test candidate significance consisted in shuffling

randomly and independently both the points of Ŵn and those of

Yn. These techniques have been recently shown to be optimal for

the selection of candidates in a non-uniform embedding approach

using nearest neighbor entropy estimators [8]. As for the BIN UE

method, the statistical significance of the TE estimated through the

NN UE approach exploited the method of surrogate data

implemented by the time-shift procedure proposed in [11,16,18].

Toolbox structure
This section describes how the three TE estimators presented

above are implemented in the toolbox, exploiting either the UE or

the NUE approach for system state reconstruction.

The same main structure, consisting of the following steps, is

common to all methods:

1. normalize the data and perform quantization when needed;

2. evaluate the probability density function (PDF);

3. evaluate CE2 (the second conditional entropy in (2)). This

term, accounting for the present state of the target series

conditioned to the past of the remaining series including the

driver, is evaluated first since it is needed to obtain the

complete set of conditional terms including all the series;

4. evaluate CE1 (the first conditional entropy in (2)): this term

accounts for the present state of the target series conditioned

to a vector including the past of the target series and of the

all other series except the driver; such a vector is obtained

subtracting the candidates belonging to the driver series

from the set of candidates evaluated in the previous step.

Keeping this general scheme in mind, specific steps will be

performed for any method of choice. For instance, when using the

NUE with the BIN estimator, the steps to be performed are:

1. data quantization;

2. estimation of the PDF, as described in Binning estimator
section;

3. evaluation of the first and second transfer entropy terms

according to Non-uniform embedding section.

Given the modularity of the structure shown previously it has

been possible to build a user friendly toolbox that allows one to

compare all the methods at the same time. The toolbox is available

at this link http://dx.doi.org/10.6084/m9.figshare.1005245. The

package also contains two existing MATLAB toolboxes which are

used in some of the calculations: ARFIT [20], a collection of

modules for modeling and analyzing multivariate time series with

autoregressive models, used for choosing the model order in LIN

UE, and OPENTSTOOL [21], a software package for signal

processing with emphasis on nonlinear time-series analysis, and

used in searching for neighbor in NN. In order to optimize the

toolbox for speed, the routine evaluateEntropy, that estimates the

entropy among variables according to entropy~{
P

plog(p),
has been converted in a.cpp executable substantially reducing the

computation time.

In the following we provide guidelines for the use of the toolbox.

Let’s start from a hypothetical main function and let’s explore how

a user should set the parameters to chose which methods to use

and, possibly, how to build a new method to be inserted within the

toolbox.

In the exampleMain file, included in the folder /MuTE/
exampleToolbox, some commented lines remind the method order

that has to be kept in mind when setting the parameters, and the

parameters available for each method. A first part then follows,

devoted to setting the name of the folder that contains data as, for

instance, mat files. Each file should contain a matrix with the time

series as the rows. Then the folders in which all the output files will

be stored are defined. In the second part the function para-
metersAndMethods is called.

The function parametersAndMethods requires the following

inputs, as reported in table 1.

N the number of data realizations;

N the sampling rate;

N the subset of interest;

N a value to cut the series length if necessary

N a vector specifying whether each method will take into account

all the pairwise combinations of chosen variables. By default

the instantaneous effects won’t be considered;
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N a vector specifying whether the user will set by hand all the

pairwise combinations of the chosen variables. This vector will

also be used for visualizing the output. It is worth noting that in

this case the user should provide as input also the sequence of

the destination series and the driver series;

N the folder in which results can be stored, previously defined;

N the folder in which data are stored, previously defined;

N the folder in which results can be eventually copied;

N the number of processors if the code can be run in parallel on

several nodes;

N the name of the method chosen and all the relevant parameters

as shown in the comments. Here attention should be paid in

setting four parameters if the instantaneous effects have to be

considered. First of all the function choosing the candidate

terms should be set and consequently the variable usePresent:
generateConditionalTerm, and usePresent ~0 if the instanta-

neous effects do not have to be taken into account,

generateCondTermLagZero and usePresent ~1 otherwise.

Then, if one is interested in the action of more than one

driver on a target series, for each driver it can be specified

whether its instantaneous effect should be considered by

writing twice in a row the number of the driver series. One can

also choose which variables belonging to the Z set can be

considered with their instantaneous effects, filling the vector

idOtherLagZero, table 2, third column.

For an example of how these parameters should be set, let’s

consider 5 variables; a conditioned analysis and a vector idTargets
~½1 2 3 4 5� would result in the situation shown in table 2, second

column, in which no instantaneous effect are set and the variable

idDrivers contains on the columns the id of the driver series only

once and the variable idOtherLagZero is the null vector. An

example considering instantaneous effects is reported in table 2,

third column, when looking at how drivers 1 and 4 influence the

target 2 and how drivers 5 and 2 influence the target 3, with series

5 and 2 as conditoning variables.

The input parameters, including the methods of choice,

specified in the function createNameMethodParams are stored in

a structure called params by the function parametersAndMethods.
This function then computes TE according to the chosen methods,

via the function callingMethods, and stores the significant results

through the function storingOutput. In case of multiple realiza-

tions/data sets to analyze, the computation can be performed in

parallel on separate pools.

The description of the toolbox structure should take into

account the structure of the function callingMethods that receives

in input the data matrix with the time series points in row and the

structure params. The function reads the names of the methods

stored in the params structure and computes the TE with all the

chosen methods (in parallel if the hardware architecture allows it).

This function will return a cell array containing the output of each

method.

The open structure of the toolbox allows users to integrate in it

their own method. The main function should in this case be

modified with some comments showing which parameters should

be passed as an input to parametersAndMethods, and in which

order. Each new method should then be implemented following

the steps described above using all the necessary parameters

conveniently grouped via the function createNameNewMethod-
Params. The new method will be called by setting the appropriate

name in callingMethods.
The execution time for a single run of the system 14 ranged

from 0.4 s for the LIN UE to 90.4 s for NN NUE on a Dell Mini

Tower Computer, OptiPlex 990 with four Intel Core i5-

2400 CPU at 3.10 GHz, 16 GB of RAM.

One of the purposes of this toolbox is to provide a common

framework for all the researchers interested in the application of

Transfer Entropy to their data. As part of this effort, MuTE will

soon be interfaced with the toolbox TRENTOOL [22]. Readers

and users are invited to check periodically the webpages of both

toolboxes, that will announce when this interface has been set up.

Simulated data
The first set of simulated data, implemented to validate the

simplest approach to TE, BIN UE, consists of two coupled chaotic

maps:

X1,n ~1{bb2
1zd en

X2,n ~(1{C1)(1{bb2
2)zC1 (1{bb2

1)zd en

ð12Þ

where C1~0:2 is the coupling coefficient according to which X1 is

influencing X2, b1~Dmean(x1,n{1)D, b2~Dmean(x2,n{1)D, b~1:8,

d~0:03 is the coefficient that regulates the noise and e is a

Gaussian noise [23]. The function generating these data is

multichaoticmap available in the folder /MuTE/commonFunctions.

Table 1. How to set the input parameters: an example.

Name Parameter Description

dataDir folder containing data to be analysed

numProcessors number of processors used for the parallel session

dataType filename extension

iresDirGenTS folder in which results will be stored

dataFileName data filename

channels vector containing the series id, among the available series, chosen for the analysis

samplingRate variable used to resample data

endPoint value to cut the series length if necessary

autoPairwiseTarDriv vector containing a 1 or a 0 for each chosen method, reflecting whether TE has to be computed among all the pairs or not. In
this latter case, the desired drivers and targets will be specified by idTargets and idDrivers. By default the instantaneous effects
of the drivers are not considered. This can be changed in parametersAndMethods, by setting params_nameMethod.idDrivers =
[tarDrivRows(2,:); tarDrivRows(2,:)].

doi:10.1371/journal.pone.0109462.t001
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In the second experiment we simulated five time series in two

cases: linear time series, for which we can assume a normal

distribution of the variables, and non-linear ones, both generated

by an autoregressive (AR) model, equations (13), (14) [24]. The

following equations are for the linear Gaussian autoregressive

model:

X1,n ~0:95
ffiffiffi
2
p

X1,n{1{0:9025X1,n{2zw1,n

X2,n ~0:5X1,n{2zw2,n

X3,n ~{0:4X1,n{3zw3,n

X4,n ~{0:5X1,n{2z0:25
ffiffiffi
2
p

X4,n{1z0:25
ffiffiffi
2
p

X5,n{1zw4,n

X5,n ~{0:25
ffiffiffi
2
p

X4,n{1z0:25
ffiffiffi
2
p

X5,n{1zw5,n

ð13Þ

where w1,n,w2,n,w3,n,w4,n,w5,n are drawn from Gaussian noise with

zero mean and unit variance. The following are the equations for

the non-linear model:

X1,n ~0:95
ffiffiffi
2
p

X1,n{1{0:9025X1,n{2zz1,n

X2,n ~0:5X 2
1,n{2zz2,n

X3,n ~{0:4X1,n{3zz3,n

X4,n ~{0:5X 2
1,n{2z0:25

ffiffiffi
2
p

X4,n{1z0:25
ffiffiffi
2
p

X5,n{1zz4,n

X5,n ~{0:25
ffiffiffi
2
p

X4,n{1z0:25
ffiffiffi
2
p

X5,n{1zz5,n

ð14Þ

where z1,n,z2,n,z3,n,z4,n,z5,n are drawn from Gaussian noise with

zero mean and unit variance. A schematic representation of the

simulated couplings, valid for both systems, is reproduced in

figure 1. The function generating these data is generateTS
available in the folder /MuTE/commonFunctions.

Electroencephalogram in epilepsy
The second experiment is performed on intracranial electroen-

cephalography (EEG) measurements recorded from a patient with

refractory epilepsy. The dataset consists of time series from 76

contacts. The first sixty-four of these contacts were placed on a

868 grid at the cortical level, while the other 12 were along two

six-electrode strips that were implanted in deeper brain structures.

Eight sets of measurements were taken on this patient,

corresponding to eight different epileptic seizures. An epileptolo-

gist, examining the data for each seizure, identified two key

periods relating to the seizure i.e., a pre-ictal period, just before the

clinical onset, and an ictal one, corresponding to the seizure spread

and to the clinical symptoms. Each epoch contained 10 seconds of

data recorded at 400 Hz. The data are available at http://math.

bu.edu/people/kolaczyk/datasets.html and described in [25]. In

order to reduce overfitting, in this application data were down-

sampled to 100 Hz.

Cardiovascular and Cardiorespiratory time series
We considered cardiorespiratory time series measured from 15

young healthy subjects (25:7+2:7 years old) undergoing a

standard head-up tilt testing protocol [26]. The acquired signals

were the surface electrocardiogram (ECG), the finger arterial

blood pressure, and the respiratory nasal flow, measured at 1 kHz

sampling rate for 15 minutes in the resting supine position, and 15

further minutes in the 600 position after passive head-up tilting of

the bed table. From these signals, the beat-to-beat variability series

of heart period (RR interval), RR(n), systolic arterial pressure

(SAP), Sap(n), and respiratory activity, Resp(n), were offline

measured respectively as the temporal interval occurring between

the n-th and the (nz1)-th R waves of the ECG, as the local

maximum of the systolic arterial pressure signal inside the n-th

heartbeat, and as the nasal flow taken at the onset of the n-th

heartbeat. The time series are available in the folder /MuTE/
cardiovascular_data. This measurement convention allows instan-

taneous effects from Sap(n) to RR(n), as well as from Resp(n) to

Sap(n) and to RR(n), which were implemented using the relevant

Table 2. Example of the parameters required to define the methods for an experiment on 5 variables.

Without Instantaneous Effects With Instantaneous Effects

Name Parameter Parameter Value Parameter Value

genCondTermFun generateConditionalTerm.m generateCondTermLagZero.m

usePresent 0 1

idTargets 1 2 3 4 5 1 2 3 4 5

idDrivers 2 3 1 1 3

5 1 0 2 0
0 4 0 0 0

2 3 1 1 3

2 1 0 1 0
5 1 0 2 0

0 4 0 0 0

0 4 0 0 0

idOtherLagZero 0 0 0 0 0 3 0 5 3 1

0 0 2 0 0

In the second column the instantaneous effects are neglected both for targets and conditioning. In the third column we set instantaneous effects for some drivers and
the respective targets. For example, when the target is 1, instantaneous effects are taken into account for driver 2 (first two rows, right column, parameter idDrivers) and
conditioning variable 3 (first row, right column, parameter idOtherLagZero).
doi:10.1371/journal.pone.0109462.t002

Figure 1. Simulated system. Interactions between the variables of
the simulated system.
doi:10.1371/journal.pone.0109462.g001
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feature of the toolbox. The subsequent data analysis was

performed on stationary windows of 300 beats taken in supine

and upright body positions; inside these windows, the series were

normalized to zero mean and unit variance, obtaining the

dimensionless series resp(n), sap(n), rr(n).

Results

Simulated data
The aim of testing the BIN UE approach on the coupled maps

of eq. 12 was to show a simple case of applicability for this method,

which constitutes the most basic approach to the model-free

evaluation of TE. We generated 100 realizations of eq. 12, each of

512 points, and performed the analysis setting 1 as maximum lag

for the candidates, 100 surrogates, a~0:05 and 6 quantization

levels. As we can see in figure 2, the method detected correctly the

information transfer returning 100 significant realizations for the

link X1?X2 and an average TE much higher than the average TE

for the link X2?X1 by means of the detection of only 2 significant

realizations over 100. We tested also the other methods, which

gave similar positive results as the BIN UE, thus demonstrating the

applicability of the toolbox for simulations of bivariate systems

with short memory.

Then we moved to a more challenging situation in terms of

number of interacting systems and lag of the interaction effects,

considering the time series simulated with equations 13 and 14,

which involve five systems and contain influences up to 3 points in

the past. The experiments were run on 100 realizations of eqs. 13

and 14, of length equal to 512 points. We investigated the TE

between each pair of variables conditioned to the other three. The

setup of the experiment was the following: for all estimators, used

either in the UE or in the NUE framework, the maximum lag for

the candidates was set as 5, the number of surrogates was fixed to

100 and a~0:05. We set 6 quantization levels for BIN and 10

nearest neighbor for NN estimator.

In order to check whether the methods were able to detect the

right information transfers, taking into account figure 1, we expect

the estimators to find a TE greater than zero with the highest

significance at the following matrix elements: (1,2), (1,3), (1,4),

(4,5), (5,4). Figures 3 and 4 report the analysis results obtained

respectively for the linear system and the non-linear system.

Looking at Figure 3 one can notice that LIN UE has very good

performances: this reflects the fact that this approach is, in this

case of a linear AR system, ‘‘by construction’’, the most likely to

correctly detect information transfer. Its NUE version can detect

the same links between the variables, though with a slightly higher

number of false positives. The LIN estimator, therefore, is able to

reveal the correct information flows for this simulation. On the

contrary, BIN UE suffers from the curse of dimensionality

mentioned in Entropy estimators section: evaluating the influences

up to the first 5 past points for all the series implies that the

uniform embedding procedure projects the data into a phase space

of M|5 dimensions, where M is the number of time series,

resulting in a phase space with 25 dimensions, with the points

spread enough to lose relevant information about the transfer

entropies in the system. As a consequence, no significant link is

retrieved with this approach. NN UE retrieves all the true links,

but also detects a number of false interactions. Its better

performance compared with BIN UE reflects the ability of the

nearest neighbor approach to achieve bias compensation in the

estimation of entropies of variables of different dimension. Still, the

performance of NN UE is not optimal due to the curse of

dimensionality. On the other hand, BIN and NN used in the NUE

framework are able to recover all the correct links, with only a few

false positives. Moving to Figure 4 depicting TE analysis for the

non-linear systems, one can notice that the LIN estimator cannot

detect all the correct information flows, returning in addition some

false positives. Again, BIN UE cannot detect any link because of

the curse of dimensionality; conversely BIN NUE, in which the

dimensionality of the space is considerably reduced, has high

specificity and sensitivity. NN NUE can achieve almost the same

performance as BIN NUE but its specificity is lower, especially

along the direction X2?X4. NN UE this time is not able to detect

all the correct information transfers (X5?X4 remains undetected)

and reveals some false positives (X2?X4, X2?X5).

To better clarify whether and how much the methods are able

to distinguish between the true information transfer links and the

false ones, in Figures 5 and 6 we plotted the average TE with

respect to the number of significant realizations found by the

methods. Each retrieved link is a point in this bidimensional space.

The true links should be in the upper right corner of the plot

corresponding to high TE and high number of significant

realizations, and they should be apart from the false links, whose

natural location would be around the origin of the plot (low TE

and low number of significant links). Looking at figure 5 one can

notice that for all the methods, except BIN UE and partly NN UE,

the two groups of links are well separated and the false links with

an averaged TE greater than zero in figure 3 can be neglected.

The opposite reasoning holds for BIN UE that is not able to

distinguish between false and true links. For the non-linear system

(figure 6) only BIN NUE can separate well true positive from false

positive links.

To understand how stable the performance of the methods is, in

terms of sensitivity and the specificity, with respect to the length of

the analyzed data set, we computed the analysis varying the series

length from 128 to 1024 points. Figures 7 and 8 depict,

respectively for the systems 13 and 14, the Receiver Operating

Characteristic (ROC) curves obtained for all methods as a function

of the series length. Evaluating the amount of TP (true positives),

TN (true negatives), FP (false positives) and FN (false negatives)

after grouping together all coupled directions (positives) and all

uncoupled directions (negatives), we computed sensitivity as

TP=(TPzFN) and specificity as TN=(TNzFP). In the case of

the linear system (Figure 7), all methods except the BIN UE

provide good performance, with the LIN estimator providing the

best sensitivity and specificity. All methods provided robust results

with respect to the series length, with only a limited decay in the

performance observed for 128 points. In the case of the non-linear

Figure 2. TE matrix representation for the BIN UE estimator
applied to the system 12. The color indicates the magnitude of the
TE averaged over 100 realizations of the simulation; a shading, inversely
proportional to the significance, is superposed to the matrix.
doi:10.1371/journal.pone.0109462.g002
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system (Figure 8), the performance was optimal for BIN NUE and

NN NUE (with a slightly lower specificity), while the methods

implementing either the LIN estimator or the UE approach were

considerably less sensitive.

Electroencephalogram in epilepsy
In such high dimensional and redundant data, a non-uniform

embedding approach is intuitively the most appropriate to identify

the patterns of information transfer specific to the onset and spread

of the epileptic seizure. The aim of the experiment was to use the

NUE approach in order to characterize the dynamical interactions

in the epileptic brain by looking at the information transfer

between the variables during the pre-ictal and ictal phases. The

embedding size in the embedding matrix (EM) was set to eight.

The results are reported in figure 9. The regions corresponding to

one of the depth strips (contacts 70 to 76) and the lower left corner

of the grid (contacts 1–4, 9–11 and 17) were resected during

anterior temporal lobectomy as they were identified by the

epileptologists as the seizure onset zone. The Binning approach to

NUE seems to be the one which best identifies these areas as those

most influential at the start of the seizure and in the early phases of

the spread, signature of a putative seizure onset zone. The Binning

Figure 3. TE matrix representation for all the methods with linear time series of 512 points. The color indicates the magnitude of the TE
averaged over 100 realizations of the simulation; a shading, inversely proportional to the significance, is superposed to the matrix.
doi:10.1371/journal.pone.0109462.g003

Figure 4. TE matrix representation for all the methods with non-linear time series of 512 points. The color indicates the magnitude of
the TE averaged over 100 realizations of the simulation; a shading, inversely proportional to the significance, is superposed to the matrix.
doi:10.1371/journal.pone.0109462.g004
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approach is more selective with respect to the target variables for

each driver and less sensitive to the confounding effect of volume

conduction resulting in the diagonal patterns observed with the

other methods and probably due to conduction effects on the grid.

Cardiovascular data
The analysis of the information transfer for cardiovascular and

cardiorespiratory time series was focused on the directions of

interaction that are more studied from a physiological point of

view: the link from SAP to RR which is related to the so-called

cardiac baroreflex, and the links originating from Resp and

directed either to RR or to SAP, related respectively to

cardiopulmonary or vasculo-pulmonary regulation mechanisms

[26]. The particular protocol considered allows to establish a sort

of verifiable ground truth. Indeed, in the studied protocol, the

transition from supine to upright is known to evoke an activation

of the sympathetic nervous system and a concurrent deactivation

of the parasympathetic nervous system [27]. Accordingly, the two

main physiological regulation mechanisms that are expected to be

solicited by this transition are: (i) a substantial increase of the

baroreflex regulation (direction sap?rr), reflecting the necessity of

the cardiovascular system to react with changes in the heart rate to

the higher fluctuations in the arterial pressure induced by the

sympathetic activation; and (ii) a substantial decrease of cardio-

pulmonary regulation (direction resp?rr), reflecting the dampen-

ing of respiratory sinus arrhythmia consequent to the parasym-

phatetic deactivation [28]. On the contrary, no known alterations

of the vasculo-pulmonary regulation (direction resp?sap) are

expected when moving from supine to upright [26]. In our analysis

all these trends are well reflected in terms of information transfer

Figure 5. TE values versus the number of significant realizations, linear system. For time series of 512 points simulated according to 13,
the links retrieved by the different methods are reported. The five simulated links are red; those who are not present in the model are blue.
doi:10.1371/journal.pone.0109462.g005

Figure 6. TE values versus the number of significant realizations, non-linear system. For time series of 512 points simulated according to
13, the links retrieved by the different methods are reported. The five simulated links are red; those who are not present in the model are blue.
doi:10.1371/journal.pone.0109462.g006
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when the multivariate TE is estimated using the BIN NUE and

NN NUE methods. Figure 10 reports the distribution of the

multivariate TE computed along these directions using all

methods, with subjects studied in the supine and upright body

positions. We observe in Figure 10 that BIN NUE and NN NUE

reveal, moving from supine to upright, a substantial increase of the

TE from Sap to RR, a substantial decrease of the TE from Resp to

RR, and an unchanged TE from resp to SAP. These trends were

also observed, though with less evident differences, computing the

TE according to the LIN estimator. These results suggest the

appropriateness of model free TE estimators based on NUE for

detecting the information transfer in physiological time series. On

the contrary, the BIN UE estimator shows different trends of

difficult physiological interpretation, thus suggesting also in

experimental data that the estimated TE may be unreliable due

to the curse of dimensionality.

Conclusions

In this work we have considered three entropy estimators able to

reveal the information transferred among variables represented by

time series. We implemented the estimators in two different ways

according to UE and NUE approaches, resulting in six methods,

two of which are novel, BIN NUE and NN NUE. We compared

all the methods validating them on simulated data first and then

on real data. We checked whether and how the methods were

affected by the number of variables and by the time lag at which

the series influenced each other. From the results obtained we can

conclude that the new methods introduced, not assuming any

Figure 7. ROC curves for all methods for the linear system. The curves are obtained reporting the results obtained gradually increasing the
time series length simulated according to 13 from 128 to 1024 points.
doi:10.1371/journal.pone.0109462.g007

Figure 8. ROC curves for all methods for the non-linear system. The curves are obtained reporting the results obtained gradually increasing
the time series length simulated according to 14 from 128 to 1024 points.
doi:10.1371/journal.pone.0109462.g008
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model to explain the data and exploiting the NUE strategy for

component selection, can detect the correct information flows and

are less affected by the number of involved processes and by their

interaction lags. The NUE approaches are indeed prone to work

in high dimensional spaces as well as in low dimensional spaces

because of their ability to reduce the effective dimension of the

phase space, choosing only the right variables at the specific time

lag that are better able to explain the destination series. On the

contrary, BIN UE and NN UE suffer from the curse of

dimensionality when several time series and longer interaction

delays are present. Finally, looking at LIN UE and LIN NUE

performances we can conclude that, even though the equivalence

Figure 9. TE matrices for human EEG recordings. Matrices of Transfer Entropy among the 76 intracranial contacts implanted in an epileptic
subject. Contacts 1 to 64 belong to a cortical grid, contacts 65 to 76 to two strips implanted in deeper structures. Transfer Entropy values are
obtained with three approaches to non-uniform embedding considering ten seconds of brain activity in the pre-ictal phase (top panels) and ictal
phase (bottom panels). The color scale reflects Transfer Entropy values, the shading is inversely proportional to the significance: brighter colors
correspond to more significant values.
doi:10.1371/journal.pone.0109462.g009

Figure 10. Transfer entropy for the links of interests in the cardiovascular example. In red the TE for the subjects in supine position, in
blue the TE for the subjects in upright position. The error bars represent the standard error.
doi:10.1371/journal.pone.0109462.g010
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between Granger causality and TE establishes a convenient joint

framework for these two measures, there are some drawbacks in

having a predefined model to explain the data when these are non-

linear. The better performances obtained by the new methods

appear when looking at the ROC curves: BIN NUE and NN NUE

have high sensitivity and specificity both for linear and non-linear

systems.

All the methods have been implemented in an organic toolbox

in MATLAB, allowing straightforward comparisons between the

methods, and flexible enough to allow other users to implement

their own methods.
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