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Abstract

Recent advances in big data and analytics research have provided a wealth of large data sets that are too big to be analyzed
in their entirety, due to restrictions on computer memory or storage size. New Bayesian methods have been developed for
data sets that are large only due to large sample sizes. These methods partition big data sets into subsets and perform
independent Bayesian Markov chain Monte Carlo analyses on the subsets. The methods then combine the independent
subset posterior samples to estimate a posterior density given the full data set. These approaches were shown to be
effective for Bayesian models including logistic regression models, Gaussian mixture models and hierarchical models. Here,
we introduce the R package parallelMCMCcombine which carries out four of these techniques for combining
independent subset posterior samples. We illustrate each of the methods using a Bayesian logistic regression model for
simulation data and a Bayesian Gamma model for real data; we also demonstrate features and capabilities of the R package.
The package assumes the user has carried out the Bayesian analysis and has produced the independent subposterior
samples outside of the package. The methods are primarily suited to models with unknown parameters of fixed dimension
that exist in continuous parameter spaces. We envision this tool will allow researchers to explore the various methods for
their specific applications and will assist future progress in this rapidly developing field.
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Introduction

In this age of big data and analytics, statisticians are facing new

challenges due to the exponential growth of information being

produced. Here, big data refers to data sets that are too large and

complex for classic analysis tools to be used. An extensive number

of application areas are affected by big data, including genomics,

healthcare, energy, finance, sustainability and meteorology. One

primary difficulty in analyzing these large data sets is the

restriction on file sizes that can be read into computer memory

(RAM); in addition, it may be necessary to store and process data

sets on more than one machine due to their large sizes. Several

recent Bayesian and Markov chain Monte Carlo (MCMC)

methods have been developed to address these issues, where data

sets are large only due to large sample sizes. One approach

partitions large data sets into smaller subsets, and parallelizes the

MCMC computation by analyzing the subsets on separate

machines (Langford et al. [1]; Newman et al. [2], Smola et al.

[3]); here, information is exchanged at each iteration of the

Markov chains, requiring communication between machines. Due

to the slow performance of these techniques, alternative methods

have been introduced that do not require communication between

machines (Neiswanger et al. [4], Scott et al. [5]). These recent

methods divide the data into subsets, perform Bayesian MCMC

computation on the subsets, and then combine the results back

together; the separate analyses are run independently, and are thus

parallel, communication-free methods. Specifically, Neiswanger

et al. [4] introduces several kernel density estimators that

approximate the posterior density for each data subset; the full

data posterior is then estimated by multiplying the subset posterior

densities together. Alternatively, Scott et al. [5] developed

methods that combine subset posteriors into the approximated

full data posterior using weighted averages over the subset MCMC

samples.

Previous research in communication-free parallel computing for

MCMC methods involved copying the full data set to each

machine and computing independent, parallel Markov chains on

each machine (Wilkinson [6], Laskey and Myers [7], Murray [8]).

However, these methods are not appropriate when the full data set

is too large to be read into computer memory. Several additional

methods for computation with large data sets in a Bayesian setting

have been introduced, but each has limitations. Rue et al. [9]

introduced Integrated Nested Laplace Approximation (INLA) for

big data, but this method has computational expense that increases

exponentially with the number of unknown model parameters.

Other approaches include importance resampling methods

(Huang and Gelman [10]), but these strategies have drawbacks

in that they can collapse to a single point in high dimensional

parameter spaces.

The subset-based parallel communication-free MCMC meth-

ods hold great promise for the future of Bayesian big data analysis

and analytics research. Here, we introduce the R package
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parallelMCMCcombine for implementing four of these methods,

including those of Neiswanger et al. [4] and Scott et al. [5]. Note

that the package assumes that the user has produced the

independent subposterior MCMC samples by carrying out the

Bayesian analysis outside of the R [11] package, either within R or

in a separate software package such as WinBUGS [12], JAGS

[13], or Stan [14,15]; the user then reads the results into our R

package. The methods are best suited to models with unknown

parameters of fixed dimension in continuous parameter spaces

(Neiswanger et al. [4], Scott et al. [5]). The parallelMCMCcom-

bine package is implemented in R (R Development Core Team

2014 [11]) and is available from the Comprehensive R Archive

Network at http://CRAN.R-project.org/. Our paper is organized

as follows. In the Methods section, we introduce each of the four

methods. In the following section, we describe the main functions

and features of the package; we also demonstrate the package

using both simulated and real data sets. We summarize our work

in the Discussion section.

Methods

For Bayesian models, the posterior distribution for unknown

model parameters h given the full data set is the following:

p hjyð Þ!p yjhð Þp hð Þ: Here, h is a d-dimensional vector, where d is

the number of unknown model parameters, p yjhð Þ is the likelihood

of the full data set given h, and p hð Þ is the prior distribution of h.

Here, y is a set of n data points that are conditionally independent

given h; we assume y is too large to analyze directly, and we thus

partition y into non-overlapping subsets ym,m~1,:::,M. Here, the

partition of y is by the samples n, such that if y is dimension n|y,

then the partition is by the following:

y~

y1

y2

..

.

ym

0
BBBB@

1
CCCCA, ð1Þ

where each ym,m~1,:::,M has y columns. In order to estimate

p hjyð Þ, we sample from each posterior distribution of h given the

data subset ym,m~1,:::,M; these samples are labeled subposterior

samples. The subposterior samples are then combined to

approximate the full data posterior distribution. Specifically, the

steps are as follow:

1) Partition the data y into disjoint subsets ym,m~1,:::,M as

described earlier.

2) For m~1,:::,M, sample from the subposterior density pm,

where

2)

pm hð Þ~pm hjymð Þ!p ymjhð Þp hð Þ1=M ð2Þ

3) The samples from the subposterior densities are combined,

assuming independence, to produce samples from an estimate

of the subposterior density product p1p2 � � � pM ; this is

proportional to the posterior distribution using the full data

set, as follows:

p hjyð Þ!p1p2 � � � pM hð Þ!P
M

m~1
p ymjhð Þp hð Þ1=M ð3Þ

Note that the subsets of data ym are assumed to be conditionally

independent across subsets, given the unknown model parameters.

Note also that the prior distribution p hð Þ~P
M

m~1
Mp hð Þ1=M

, so that

the total amount of prior information is equivalent in the

independent product model and the full-data model. In the

following sections, we assume that subposterior draws of

hm
t ~ hm

t1,hm
t2,:::,hm

td

� �
, for machine m, m~1,:::,M, and MCMC

iteration t, t = 1,…,T, have been sampled from each of the

subposterior densities pm hð Þ!p ymjhð Þp hð Þ1=M
, m~1,:::,M, out-

side of our R package. We describe each method for combining the

independent subposterior samples across the machines, as well as

the R package implementation of each of the methods.

Average of subposterior samples method
For subposterior sample hm

t , for machine m, m~1,:::,M, and

MCMC iteration t, t~1,:::,T , we combine the independent

subposterior samples into the pooled posterior samples

ht,t~1,:::,T , by averaging the subposterior samples across

machines within each iteration t, as follows:

ht~
1

M

XM
m~1

hm
t : ð4Þ

Here, the covariance between individual model parameters is

assumed to be zero.

Consensus Monte Carlo method, assuming
independence of individual model parameters

Consensus Monte Carlo methods were developed by Scott et al.

[5]. The first Consensus Monte Carlo method assumes the

unknown model parameters are independent, and combines the

independent subposterior samples across machines within each

iteration into the pooled posterior samples

ht~ ht1,ht2,:::,htdð Þ,t~1,:::,T , using a weighted average, as

follows:

hti~

PM
m~1

Wmih
m
ti

� �
PM

m~1

Wmi

� � , i~1,:::,d: ð5Þ

Here, Wmi are the weights defined by Wmi~ Sm
i

� �{1
, where the

quantity Sm
i ~Var hijymð Þ is estimated by the sample variance of

the T MCMC samples hm
1i,h

m
2i,:::,h

m
Ti of the i-th component on the

m-th machine. Scott et al. [5] state that for models with a large

number of unknowns, the user may prefer to ignore the

covariances between the model parameters and use this indepen-

dence method; the alternative is to use the method that takes into

account the covariances between model parameters, which is

described next.
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Consensus Monte Carlo method, assuming covariance
among model parameters

The second Consensus Monte Carlo method introduced by

Scott et al. [5] assumes that the model parameters are correlated.

This method combines the independent subposterior samples

across machines within an iteration into the pooled posterior

samples ht,t~1,:::,T , using weighted averages, as follows:

ht~
XM
m~1

Wm

 !{1 XM
m~1

Wmhm
t

 !
: ð6Þ

Here, Wm~S{1
m for each machine m, m~1,:::,M, where

Sm~Var(hjym) is the variance-covariance matrix for the d
unknown model parameters and has dimension d|d; Sm is

estimated by the sample variance-covariance matrix of the T
MCMC subposterior samples: hm

1 ,hm
2 ,:::,hm

T .

Examples of data sets for the consensus Monte Carlo method

that assumes covariance among model parameters would be

multiple regression models where the predictors are correlated

with each other. In this type of data set, the model parameters are

the multiple regression coefficients, which we do not assume to be

independent. The consensus Monte Carlo methods assume that

the subsets of data ym are conditionally independent across

subsets, given parameters, but it is possible to have dependence

structure between the elements within each subset ym. For this,

Scott et al. [5] gives an example of a model with data that has a

nested structure, and where the consensus Monte Carlo method

can be applied to the hyperparameters; this is given in Scott et al.

in Section 3.4.1, entitled ‘‘Nested hierarchical models’’. For this

example, the data needs to be partitioned so that no specific group

is split across subsets ym. An example of this type of data is in

statistical genomics, for analysis of gene expression data from

different laboratories. Here, the laboratories represent groups, and

data from a specific laboratory needs to be kept within a single

data subset ym and not split across multiple subsets. Another

example would be medical clinics, where a health outcome for

patients is being measured. The model would keep the data for an

individual clinic within a single data subset ym and not split the

data across multiple subsets.

Note that Consensus Monte Carlo methods are exact only for

Gaussian posterior distributions. However, the methods are also

applicable for non-Gaussian posterior distributions, based on the

Bayesian central limit theorem (Bernstein von-Mises theorem; see

Van der Vaart [16], Le Cam and Yang [17]). This theorem states

that posterior distributions tend toward Gaussian limits for large

samples under standard regularity conditions in asymptotics. Scott

et al. [5] demonstrated that their methods work well for specific

Bayesian models with Gaussian posteriors as well as some Bayesian

models with non-Gaussian posteriors, for both simulation and real

data sets. See the Discussion section for further applicability of the

consensus Monte Carlo methods.

Semiparametric density product estimator method
The next method involves kernel density estimators, and was

developed by Neiswanger et al. [4]. Here, subposterior densities

for each data subset are estimated using kernel smoothing

techniques; the subposterior densities are then multiplied together

to approximate the posterior density based on the full data set. For

the semiparametric density product estimator method, the

subposterior density pm(h) is viewed as a product

pm(h)~rm(h)f̂fm(h). For this, h is again a d-dimensional vector,

where d is the number of unknown model parameters. Here, f̂fm(h)

is a parametric estimator, and rm(h)~pm(h)=f̂fm(h) is a correction

function whose nonparametric estimator r̂rm(h) is defined as

follows:

r̂rm(h)~
1

T

XT

i~1

1

hd
K

h{hm
t

h

� �
1

f̂f (hm
t )
: ð7Þ

For this, K(:) is the kernel function, d is the dimension of h, i.e.

the number of unknown model parameters, and h .0 is the

bandwidth, which is a smoothing parameter (for details see Hjort

and Glad [18] and Neiswanger et al. [4]).

Figure 1. Results for the simulation data of the Bayesian logistic regression model, for the marginal of the b1 parameter. (a) full data
posterior density and 10 subposterior densities for the 10 data subsets; (b)-(f): full data and estimated combined posterior densities for: (b) sample
average method; (c) consensus Monte Carlo independence method; (d) consensus Monte Carlo covariance method; (e) semiparametric density
product estimator method, with default settings of the function; (f) semiparametric density product estimator method with the same settings as (e)
except the argument anneal=FALSE. The consensus Monte Carlo covariance method produces the smallest L2 distance (see Table 1).
doi:10.1371/journal.pone.0108425.g001

Table 1. Estimated relative L2 distances.

Subposterior Samples Combining Method Bayesian Model

Logistic Regression, b1 parameter Gamma, a parameter

Sample Average 0.034 0.024

Consensus MC Independence 0.024 0.020

Consensus MC Covariance 0.015 0.016

Semiparametric DPE, anneal =TRUE 0.046 0.022

Semiparametric DPE, anneal =FALSE 0.020 0.021

Estimated relative L2 distances for each of the methods of combining subposterior samples to estimate posterior densities given the full data set. Results are included
for the Bayesian logistic regression model with the simulated data set for the marginal densities of the b1 parameter, and the Bayesian Gamma model with the real
airlines data set for the marginal densities of the a parameter.
doi:10.1371/journal.pone.0108425.t001
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For the semiparametric density estimator of Neiswanger et al.

[4], the estimated subposterior density p̂pm(h) is defined as the

product of the corrected nonparametric estimator r̂rm(h) and the

parametric estimator f̂fm(h): For this, r̂rm(h) is defined as above,

using the Gaussian kernel K(:) with bandwidth hw0, and

f̂fm(h)~Nd hjm̂mm,ŜSm

� �
, where m̂mm and ŜSm are the sample means

and sample covariances, respectively, of the subposterior samples

hm
1 ,hm

2 ,:::,hm
T . The values of m̂mm and ŜSm are defined below in

Equation (17). The formula for the estimator is then

p̂pm(h)~r̂rm(h)f̂fm(h) ð8Þ

~
1

T

XT

t~1

1

hd

Nd hjhm
t ,h2Id

� �
Nd hm

t jm̂mm,ŜSm

� �
 !

Nd hjm̂mm,ŜSm

� �� �
: ð9Þ

Here, in Equation (9), we have substituted the expression

Nd hjhm
t ,h2Id

� �
for K

h{hm
t

h

� �
when the Gaussian kernel is used

for K(:) from Equation (7). In Equation (9), we have also

substituted the expression Nd hm
t jm̂mm,ŜSm

� �
for f̂f (hm

t ) from Equation

(7). The M subposteriors are then multiplied together, assuming

independence, to form the semiparametic density product

estimator:

p1p2
:::pM hð Þ~p̂p1p̂p2

:::p̂pM hð Þ ð10Þ

!
XT

t1~1

XT

t2~1

� � �
XT

tM ~1

Wt:Nd hjmt:,St:
� �

, ð11Þ

where t:~ t1,t2,:::,tMð Þ is a vector of indices and

Wt:~
wt:Nd

�hht:jm̂mM ,ŜSMz h2

M
Id

� �

P
M

m~1
MNd hm

t jm̂mm,ŜSm

� � , ð12Þ

ht:~
1

M

XM
m~1

hm
tm

, ð13Þ

Figure 2. Results for the real airlines data of the Bayesian Gamma model, for the marginal of the a parameter. (a) full data posterior
density and 5 subposterior densities for the 5 data subsets; (b)-(f): full data and estimated combined posterior densities for (b) sample average
method; (c) consensus Monte Carlo independence method; (d) consensus Monte Carlo covariance method; (e) semiparametric density product
estimator method, with default settings of the function; (f) semiparametric density product estimator method with the same settings as (e) except the
argument anneal=FALSE. The consensus Monte Carlo covariance method produces the smallest L2 distance (see Table 1).
doi:10.1371/journal.pone.0108425.g002

Table 2. Computational time (in seconds) for the four combining methods.

Number of Subsets M Combining Method Number of Model Parameters d

2 5 10 50

5 Sample Average 0.06 (0.04) 0.09 0.13 0.48

Consensus Indep 2 (2) 2 2 3

Consensus Cov 2 (2) 2 3 23

SemiparamDPE 401 (402) 432 464 1136

10 Sample Average 0.06 0.10 (0.12) 0.20 0.89

Consensus Indep 2 2 (2) 2 4

Consensus Cov 4 4 (4) 5 36

SemiparamDPE 795 816 (820) 880 2119

20 Sample Average 0.08 0.16 0.31 1

Consensus Indep 2 2 2 7

Consensus Cov 6 7 10 70

SemiparamDPE 1540 1602 1729 4102

100 Sample Average 0.34 0.72 1 7

Consensus Indep 3 4 5 27

Consensus Cov 29 35 47 343

SemiparamDPE 7522 8015 8675 22540

Computational times, in seconds (rounded unless less than 1 second), for the four methods of the R package parallelMCMCcombine, using simulation data and
T = 50,000 MCMC samples. The values in parentheses are for our example data sets; d = 2, M = 5 is for the Gamma model, and d = 5, M = 10 is for the logistic model. The
results are based on a computer with operating system Windows 7 and an Intel Celeron 1007U CPU 1.5 GHz Processor.
doi:10.1371/journal.pone.0108425.t002
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wt:~P
M

m~1
MNd hm

t j�hht:,h2Id

� �
, ð14Þ

St:~
M

h2
IdzŜS{1

M

� �{1

, ð15Þ

mt:~St:
M

h2
Id

�hht:zŜS{1
M m̂mM

� �
, ð16Þ

and

m̂mM~ŜSM

XM
m~1

ŜS{1
m m̂mm

 !
, ŜSM~

XM
m~1

ŜS{1
m

 !{1

: ð17Þ

The semiparametric density product estimator can be viewed as

a mixture of TM Gaussian densities, with mixture weights Wt:.

Neiswanger et al. [4] outline an algorithm for generating samples

from probability density function (10) by first sampling a particular

mixture component and then sampling from the selected mixture

component. The sampling is carried out using an independent

Metropolis within Gibbs (IMG) sampler, which is a type of

MCMC sampler. For the IMG sampler, at each iteration, a new

mixture component is proposed by uniformly sampling one of the

M indices tm [ t:~ t1,t2,:::,tMð Þ. This proposed component is

then either accepted or rejected based on its mixture weight. This

method uses a procedure that changes the bandwidth h for each

iteration t; specifically, h~t({1=(4zd)), t~1,:::,T , so that h
decreases at each iteration t in the algorithm. This procedure is

referred to as annealing by Neiswanger et al. [4]. Annealing is

used for the bandwidth h since it typically allows for a more

extensive search of the sample space compared to fixed values of

the bandwidth. With annealing, by design, the algorithm begins

with a large probability of accepting many low-probability

solutions; this probability of acceptance decreases as h decreases,

resulting in fewer low-probability solutions being accepted as h

decreases. The algorithm for the semiparametric density product

estimator creates the combined posterior samples ht,t~1,:::,T :
Neiswanger et al. [4] demonstrated the semiparametric density

product estimator for several models with simulation data,

including a Bayesian logistic regression model, a Bayesian

Gaussian mixture model and a Bayesian hierarchical Poisson-

Gamma model. The methods are also implemented using real-

world data for a Bayesian logistic regression model. The

theoretical results for the semiparametric density product estima-

tor are also applicable to Bayesian generalized linear models such

as Bayesian linear regression and Bayesian Poisson regression, and

Bayesian finite-dimensional graphical models with no constraints

on the parameters. See the Discussion section below for further

applicability of the semiparametric density product estimator

method.

A metric for comparing densities
Results for the four methods described above can be compared

in R using an estimate of the L2 distance, d2(p,p̂p), between the full

data posterior p and the combined estimated posterior p̂p (as

introduced in Neiswanger et al. [4]), where

d2(p,p̂p)~ p{p̂pk kL2
~

ð
Rd

p hð Þ{p̂p hð Þð Þ2dh

0
B@

1
CA

1=2

: ð18Þ

We use MCMC samples and kernel density estimation for each

posterior, as described in Neiswanger et al. [4] and Oliva et al.

[19]. The estimated relative L2 distance, relative to the full data

posterior, is reported for each of the four methods in the data

examples in the following section.

Using Package parallelMCMCcombine

Package overview
The R package parallelMCMCcombine assumes the user has

run the Bayesian models for the subset data either within R [11] or

in a separate software package such as WinBUGS [12], JAGS

[13], or Stan [14,15]. The user then reads the MCMC results into

an array in R, with dimension specified below. The paral-

lelMCMCcombine package has four major functions, based on the

four methods described above in the Methods section, respectively:

sampleAvg(), consensusMCindep(), consensusMCcov() and

semiparamDPE(). The arguments used in a to call to the function

sampleAvg() are the following; the same arguments are used for

Table 3. Computational time (in minutes) for producing the MCMC samples.

Number of subsets M Bayesian Logistic Regression Model, d = 5 model parameters Bayesian Gamma Model, d = 2 model parameters

Data Points Per Subset Time Per Subset Total Time Data Points Per Subset Time Per Subset Total Time

M = 5 20,000 174 870 65,981 256 1,280

M = 10 10,000 85 850 32,991 139 1,390

M = 20 5,000 41 820 16,496 65 1,300

full, (M = 1) 100,000 954 954 329,905 1,397 1,397

Average computational times per subset, in minutes (rounded), for producing T = 52,000 samples (including burnin) for the data examples, and total computational times.
The results are based on the WinBUGS software program and a computer with operating system Windows 7 and an Intel Core i7-4600U CPU 2.1 GHz Processor. Note that
the R package parallelMCMCcombine is not used to create these samples; the MCMC samples are used as input to the parallelMCMCcombine package.
doi:10.1371/journal.pone.0108425.t003
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consensusMCindep(), consensusMCcov():

sampleAvg(subchain=NULL, shuff=FALSE)

The descriptions of the available arguments are:

subchain An array with dimensions = (d, T, M), where

d = number of unknown model parameters, T = number of

MCMC samples, M = number of subsets of the full data. This is

the input data that is input by the user; these are the Bayesian

MCMC subposterior samples produced outside of our R package.

shuff a logical value indicating whether the d-dimensional

samples within a machine should be randomly permuted. The

purpose of this option is to remove potential correlations between

MCMC samples from different machines.

The arguments used in a to call to the function semipar-

amDPE() are the following:

semiparamDPE(subchain=NULL, bandw=rep(1.0, dim

(subchain) [1]), anneal=TRUE, shuff=FALSE)

The subchain and shuff arguments are the same as above;

the descriptions of the remaining arguments are:

bandw the vector of bandwidths h of length d to be specified by

the user, where d = number of unknown model parameters. Here,

bandwidths are the tuning parameters used in kernel density

approximation employed by the semiparametric density product

estimator method. The default value is a vector of 1’s of length d
(see Appendix S1 for more detail).

anneal a logical value. If TRUE, the bandwidth bandw (instead

of being fixed) is decreased for each iteration of the algorithm

(referred to as annealing) as hi = bandw

*t({1=(4zd)),i~1,:::,d; t~1,:::,T ; d = number of unknown model

parameters, as described above in the Methods section and in

Algorithm 1 of Neiswanger et al. [4]. If FALSE, the bandwidth

vector h is fixed as h = bandw (see Appendix S1 for more detail).

Note that the default values for the bandw and anneal

arguments are equivalent to the algorithm of Neiswanger et al.

[4] described above in the Methods section, which again specifies

that h~t({1=(4zd)),t~1,:::,T (see Appendix S1 for more details).

The user is given the option to change both the bandw and

anneal arguments, so that the bandwidth values hi,i~1,:::,d can

be either fixed at a different value or can decrease with each

iteration t (i.e. annealed) with a different starting value. See the

Appendix S1 for further detail on kernels and bandwidth selection

(and Silverman [20], Wand and Jones [21,22] and Duong and

Hazelton [23]).

The returned value of each of the four functions described

above is a matrix with dimension = (d,T), where d = number of

unknown model parameters, T = number of input MCMC

samples. The values within the matrix are the combined posterior

samples based on the selected function.

Example: Bayesian logistic regression model for
simulation data

Logistic regression is an extensively used method in many

application areas for the analysis of categorical data, and is also

used for classification purposes. Here, we generate simulation data

for logistic regression and carry out a Bayesian logistic regression

analysis in order to demonstrate the implementation of our R

package.

Simulation data for logistic regression. We simulated

100,000 observations from a logistic regression model with five

covariates; the sample size of 100,000 was chosen so that a full

data analysis was still feasible. The covariates X and model

parameters b were simulated from standard normal distributions.

The resulting simulated values of b were: b = (0.47, 21.70, 0.54,

20.90, 0.86)’, which are the parameters estimated in our analysis.

The outcome values yi, i~1,:::,100,000, were then simulated from

the following:

yi*Bernoulli pið Þ, ð19Þ

pi~
exp Xibð Þ

1z exp Xibð Þ , ð20Þ

Where Xi denotes the ith row of X (see also Neiswanger et al. [4]

and Scott et al. [5]).

Our Bayesian logistic regression model with five covariates is the

following:

yijpi*Bernoulli pið Þ,i~1,:::,n, ð21Þ

logit pið Þ~b1xi1zb2xi2zb3xi3zb4xi4zb5xi5, ð22Þ

where

logit pið Þ~ log
pi

1{pi

� �
: ð23Þ

We assigned uninformative priors to the b parameters (see Carlin

and Louis [24], Gelman et al. [25], Liu [26]) as follows:

p bið Þ!1,i~1,:::,5: ð24Þ

The full data set was divided into 10 subsets of size 10,000 each.

The WinBUGS [12] software package was implemented for

MCMC sampling of the bi model parameters for each of the data

subsets; we sampled 50,000 iterations after burnin of 2,000

iterations for each. We also implemented the Bayesian model for

the full data set for the bi model parameters for comparison, again

for 50,000 iterations each after burnin of 2,000 iterations. Results

are described in the following sections. Note that for the subset

analyses and the full data analysis, the same uninformative prior

distributions are used for the bi model parameters. No prior

adjustment is necessary, taking into account the number of subsets,

since the subset and full data sample sizes are large and the prior

distributions are uninformative (see Scott et al. [5]).

Illustration of R package for Bayesian logistic

regression. For the logistic regression model of the previous

section, the MCMC output from the separate machine analyses is

read into an array named logistic.MCMC in R and has array

dimension = (5,50000,10), for 5 unknown model parameters,

50,000 MCMC samples and 10 data subsets. At the R prompt,

the user enters the following command for the method of

averaging subposterior samples; here, we permute the d-dimen-

sional samples within each machine:

parallelMCMCcombine: An R Package for Bayes and Big Data
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. logistic.sampleavg.combine ,- sampleAvg(logis-

tic.MCMC, shuff=TRUE)

The output logistic.sampleavg.combine is a matrix with

dimensions = (5,50000) for 5 unknown model parameters and

50,000 combined posterior samples ht, t~1,:::,T ( = input

number of samples). We plot the estimated combined posterior

density and full data posterior density in Figure 1 for the marginal

of the first unknown model parameter b1; we also plot the 10

marginal subposterior densities. In this figure, the combined

estimated posterior density is similar to the full data posterior

density, with estimated relative L2 distance of 0.034 (see Table 1).

Similar results were found for the marginal densities of the

remaining four parameters b2,:::,b5 (not shown). Note that the

MCMC output file for the full data posterior density is not used

within the R package.

The procedure for carrying out the two combining methods

consensusMCindep() and consensusMCcov() is similar to the

procedure shown above for sampleAvg(). For each of these

methods, we show results similar to those described above in

Figure 1. These methods showed improvement versus the sample

average method, with estimated relative L2 distance values of

0.024 for the consensus Monte Carlo independence method, and

0.015 for the consensus Monte Carlo covariance method (see

Table 1). Similar results were found for the marginals for b2,:::,b5

(not shown).

For the semiparametric density product estimator method, the

command is similar to that shown above, but with additional

arguments. Here, we use the default values for the arguments

bandw and anneal that are equivalent to the algorithm in

Neiswanger et al. [4] described above; we also permute the d-

dimensional samples within each machine:

. logistic.semiparamDPE.combine ,- semiparamDPE

(logistic.MCMC, bandw=rep(1.0, dim(subchain) [1]),

anneal=TRUE, shuff=TRUE).

The output logistic.semiparamDPE.combine is a matrix

with dimensions = (5,50000) for 5 unknown model parameters and

50,000 combined posterior samples ht, t~1,:::,T ( = input

number of samples). We again plot the estimated combined

posterior density and the full data posterior density in Figure 1 for

the marginal for b1. The estimated relative L2 distance of 0.046 is

larger than the previous three methods (see Table 1). We note that

the semiparametric density product estimator method is sensitive

to the choice of bandwidth. We found that changing the anneal

argument from TRUE to FALSE, leaving all other previous

arguments the same, improved the estimated relative L2 distance

for this model and data set. This option of anneal=FALSE is

equivalent to setting the bandwidth h = 1 in the algorithm of

Neiswanger et al. [4]. Figure 1 shows improved results, with the

estimated relative L2 distance decreasing from 0.046 to 0.020 (see

also Table 1). We found similar results for the marginal densities of

the remaining four parameters b2,:::,b5 (not shown). In summary,

of the four methods, for this model and simulation data set, the

consensus Monte Carlo covariance method produced the smallest

estimated relative L2 distance, followed by the semiparametric

density product estimator method, the consensus Monte Carlo

independence method and the sample average method.

Example: Bayesian Gamma model for real data
Here, we analyze real data for all commercial flights within the

United States for the three-month period November 2013 through

January 2014, obtained from the U.S. Department of Transpor-

tation [27]. The random variable of interest is the arrival delay in

minutes for each flight; this is defined as the difference between the

scheduled and actual arrival time. Values of fifteen minutes and

lower are considered on-time arrivals (following guidelines of [27]),

with 329,905 remaining data values for the arrival delays. We

applied a square root transformation to the data set; the resulting

transformed data values followed an approximate Gamma

distribution. Our model for the transformed data values yi is then

as follows:

yija,b*Gamma a,bð Þ,i~1,:::,n: ð25Þ

We estimate the a and b parameters using a Bayesian Gamma

model; for this, we reparameterize the Gamma distribution in

terms of the mean and variance in order to remove correlation

between the a and b parameters (see Kruschke [28]). Here, we use

the following:

a~
l2

d2
, ð26Þ

b~
l

d2
, ð27Þ

where

l~
a

b
~mean of Gamma distribution, ð28Þ

d2~
a

b2
~variance of Gamma distribution: ð29Þ

We assigned uninformative prior distributions to l and d, as

follows:

l*Uniform 0:0001, 10000ð Þ, ð30Þ

d*Uniform 0:0001, 10000ð Þ: ð31Þ

The full data set was divided into five subsets of size 65,981

each. Using WinBUGS, we sampled the posterior distributions of

the a and b parameters for each of the data subsets as well as the

full data set, for 50,000 iterations after burnin of 2,000 iterations.

Results are described in the following sections. Note again that the

same uninformative prior distributions are used for the subset

analyses and the full data analysis. Prior adjustment is not

necessary, accounting for the number of subsets, since the subset

and full data sample sizes are large and the prior distributions are

uninformative (see Scott et al. [5]).

Results of R package for real data. The WinBUGS output

for the Bayesian Gamma model for the airlines data is read into R

parallelMCMCcombine: An R Package for Bayes and Big Data
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as an array named ‘‘airlines.MCMC’’ with dimen-

sion = (2,50000,5), for 2 model parameters, 50,000 MCMC

samples and 5 data subsets. We repeat the commands shown for

the R package for the logistic regression model of the previous

sections, including analyzing the two possible values TRUE and

FALSE of the anneal argument for the semiparametric density

product estimator function semiparamDPE(). Figure 2 shows

results for each of the four methods for the parameter a; plots are

also displayed for the full data posterior density and five

subposterior densities. For this model and data set, all four

methods create combined estimated posterior densities that are

similar to the full data posterior density, with estimated relative L2

distances ranging from 0.016 to 0.024 (Table 1). For the

semiparametric density product estimator method, we again

found improved performance when setting anneal=FALSE so

that the bandwidth value is fixed with h = 1 in the algorithm of

Neiswanger et al. [4]; however, the improvement was not large

(see Figure 1 and Table 1). To summarize, the consensus Monte

Carlo covariance method generated the smallest estimated relative

L2 distance, followed by the consensus Monte Carlo independence

method, the semiparametric density product estimator method

and the sample average method. Similar results were found for the

b model parameter (not shown).

Software computational time
Here, we show the computational time for the four methods,

using the number of model parameters d = 2, 5, 10 and 50, and the

number of subsets M = 5, 10, 20 and 100, and number of MCMC

samples = 50,000 (see Table 2). For this, we created simulation

MCMC output, which is described below in ‘‘Simulation

procedure’’. We also show computational times for our data

examples, for the combinations d = 2, M = 5 (Gamma model) and

d = 5, M = 10 (logistic regression model). The semiparametric

density product estimator method has the longest computational

time, which is up to several hundred times longer than the

consensus Monte Carlo covariance method and up to several

thousand times longer than the fastest method, which is the sample

average method. Note that the computational time results for the

simulation data are within seconds of the computational times for

the two example data sets for the same values of d and M
(Table 2).

Users may also want to consider the computational time for

producing the MCMC samples, which we assume the user

produces outside of our R package using either R or Bayesian

software such as WinBUGS [12], JAGS [13] or Stan [14,15]. The

MCMC samples are then used as input to the parallelMCMC-

combine package. In Table 3, we include the computational times

for producing the 52,000 MCMC samples (including burnin) for

the full data sets and the data subsets for our two data examples,

which we produced using WinBUGS [12]. We also show

additional computational times for different numbers of subsets

of M = 5, 10 and 20. Note that the computational time for

individual subsets decreases as M increases, since the number of

samples is smaller in each subset, but there are more subsets to run

as M increases. The total computational time for the subset data

versus the full data set are comparable; in our two examples, the

full data set had longer total computational times than the subset

data, but the difference is not always large (see Table 3).

Simulation procedure. We simulated the MCMC samples to

determine computational time as follows. For each combination of

number of model parameters d and number of subsets M, we

randomly generated a mean for each unknown model parameter i,
i = 1,…,d by sampling uniformly in the range [2200,200]. We then

generated the 50,000 samples for each of the subset posteriors m,

m = 1,…,M for each unknown model parameter i by sampling from a

normal distribution with this sampled mean and variance = 2.

Discussion

Here, we introduce and demonstrate the R package paral-

lelMCMCcombine for Bayesian analysis of large-scale data sets,

which are only large due to large sample sizes. The package

includes four methods for combining independent subset posterior

samples into combined estimated posterior densities for unknown

Bayesian model parameters. The independent subset posterior

samples for each of the four methods are assumed to be generated

by parallel, communication-free MCMC sampling techniques

applied to the data subsets; these subset posterior samples are

assumed to be produced outside of our R package. For further

analysis beyond our R package, users can compare the four

methods using various metrics. We showed comparisons using

estimated relative L2 distances between the combined estimated

posterior densities and the full data posterior density, when a full

data analysis is possible. We found that the four methods

performed differently in terms of which produced the smallest

L2 distance, depending on the models and data sets. Further

research is needed to determine conditions under which each

method performs optimally, including the number of data subsets,

the types of models and the number of unknown model

parameters, and the number of MCMC samples, among other

variables. In addition, the semiparametric density product

estimator method is sensitive to the choice of bandwidth, and

more study is needed in the area of bandwidth selection. The

parallelMCMCcombine package is designed to help investigators

explore the various methods for their specific applications and to

assist in the development of further research for this rapidly

expanding field.

The four methods included in our R package are best suited to

models with unknown parameters with fixed dimension in

continuous parameter spaces (Neiswanger et al. [4], Scott et al.

[5]). Models with label switching, changing dimension numbers,

and model averaging with spike and slab priors are not well suited

to the methods included in our R package. The methods also do

not work well for discrete parameters. There are open questions

regarding the applicability of the methods that need further

exploration, as discussed in Scott et al. [5]; these include

hierarchical models with crossed random effects and Gaussian

processes that have covariance functions that are not trivial.

For the number of unknown model parameters d that is

appropriate for the above four methods, Neiswanger et al. [4]

illustrates the semiparametric density product estimator method

using a synthetic data set with d = 50, and a real-world data set

with d = 54 for logistic regression. They performed a simulation

study for logistic regression to show that the performance of the

semiparametric density product estimator method scales well with

dimension, with a maximum d = 130. They also use a Gaussian

mixture model where the data was sampled from a ten component

mixture of 2-dimensional Gaussians. Scott et al. [5] illustrate their

method using a multivariate normal model with unknown mean

and variance; here, the unknown mean is dimension 561, and the

unknown variance is dimension 565. They also illustrate their

method using a logistic regression model with d = 5. Similar to the

recommendations of Scott et al. [5], we recommend that the user

work with simulation data for their particular applications to

determine conditions under which the four methods perform well.

Note that there is virtually no limitation on the dimension d to be

used in the R package, except for the limits of the computer

memory of the user.
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The semiparametric density product estimator method has the

longest computational time of the four methods of our R package.

The direct use of d-dimensional multivariate Normal distributions

slows down computations considerably for this procedure. We are

currently working to optimize the algorithm to improve the speed;

this will be implemented in the next release of the package.

Supporting Information

Appendix S1 Remarks on kernels and bandwidth selection
for semiparametric density product estimator method.
(DOC)
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