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Abstract

Hepatitis C virus (HCV) is an infectious virus that can cause serious illnesses. Only a few drugs have been reported to
effectively treat hepatitis C. To have greater diversity in drug choice and better treatment options, it is necessary to develop
more drugs to treat the infection. However, it is time-consuming and expensive to discover candidate drugs using
experimental methods, and computational methods may complement experimental approaches as a preliminary filtering
process. This type of approach was proposed by using known chemical-chemical interactions to extract interactive
compounds with three known drug compounds of HCV, and the probabilities of these drug compounds being able to treat
hepatitis C were calculated using chemical-protein interactions between the interactive compounds and HCV target genes.
Moreover, the randomization test and expectation-maximization (EM) algorithm were both employed to exclude false
discoveries. Analysis of the selected compounds, including acyclovir and ganciclovir, indicated that some of these
compounds had potential to treat the HCV. Hopefully, this proposed method could provide new insights into the discovery
of candidate drugs for the treatment of HCV and other diseases.
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Introduction

Hepatitis C virus (HCV) infection is a major cause of certain

chronic liver-related diseases, including cirrhosis, liver failure, and

hepatocellular carcinoma, and it affects 170 million people

worldwide [1]. A classic and widely used treatment for HCV is

ribavirin combined with pegylated interferon alpha (PegIFN-a).

The efficacy of this combination is limited for the genotype 1 virus,

which is the most common type in humans. In 2011, two direct-

acting antiviral drugs (DAAs), telaprevir and boceprevir, were

approved by the FDA for the treatment of HCV [2,3]. In addition,

the combination of DAAs, ribavirin, and PegIFN-a showed high

sustained virological response rates in genotype 1 HCV patients

and thus became a standard care of regimen for such patients [4].

It is well known that the research and development of a drug

requires comprehensive experimental testing, which often costs

millions of dollars, involves several thousand animals, and takes

many years to complete. In contrast, only a handful of chemicals

have met the regulatory requirements for drug approval. Thus, it

is very attractive to develop quick, reliable, and in silico methods,

e.g., using structure-activity relationships (SARs), to predict the

anti-HCV activities of chemicals [5,6,7].

Most previous SAR models of HCV inhibitors are developed

based on molecular descriptors and machine learning methods.

Weidlich et al. developed a model using random forest and k
nearest neighbor simulated annealing as machine learning

classifiers and 2048-bit Morgan fingerprints of radius 2 as features

to measure the genotype 1b HCV inhibition activity of 679

compounds [8]. Wang et al. built models using multi-linear

regression, support vector machine and molecular descriptors for

HCV NS5B inhibitors [9]. Speck-Planche et al. summarized some

of the anti-HCV prediction models using structure- and ligand-

based computational-aided drug design methods. Moreover, an

anti-HCV model was introduced using atom-centered fragments,

functional group counts, and spectral moments of the bond

adjacency matrix as features [10]. The above-mentioned models

were generated using the structures of chemicals and proteins. In

our study, we attempted to employ the information of chemical-

chemical and chemical-protein interactions, including information

concerning not only structures, complex network and molecular

activities that can be categorized as ‘‘direct interaction’’ [11] but

also biology pathways and proteins/chemicals function relation-

ships that are referred to as ‘‘indirect interaction’’ [11], to discover

candidate drugs for HCV. It has been reported that interactive
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compounds often share similar functions [12,13,14,15,16], thus

implicating that interactive compounds of known drugs for HCV

may also have the capability to treat hepatitis C. The potential

compounds were further evaluated and filtered based on various

scores for the interactions observed between them and the target

genes of HCV or three approved HCV drugs. An analysis of the

final obtained compounds suggested that some of these com-

pounds have the potential to treat HCV.

To predict the anti-HCV activity of chemicals, another aim of a

potential prediction model is to provide useful information for

drug repositioning. Our previous studies verified that some drugs

were effective to the ‘wrong’ indications, which subsequently

helped reposition drugs to their new indications [12]. Thus, in this

study, according to the assumption that interactive drugs are more

likely to share the same properties, we investigated the possibility

of repositioning the interactive compounds of the three approved

drugs by retrieving the related references and thereby attempted to

propose treatments as alternatives to the three drugs.

Materials and Methods

Drugs and target genes of HCV
Three approved drugs, ribavirin (Pubchem ID:

CID000037542), telaprevir (Pubchem ID: CID003010818), and

boceprevir (Pubchem ID: CID010324367), were reported as anti-

HCV drugs in Drugbank (http://www.drugbank.ca/) [17,18], a

well-known bioinformatics and cheminformatics resource that

combines detailed drug information with comprehensive drug

targets. In addition, 421 target genes were retrieved from De

Chassey et al.’s study [19], which was also used in Huang et al.’s
study [20]. The names of these genes are listed in Table S1.

Chemical-chemical and chemical-protein interactions
Recently, interactive compounds were reported to possibly

share more highly similar functions than non-interactive ones

[12,13,14,15,16]. It can be inferred that the interactive com-

pounds of the three drugs mentioned in Section ‘‘Drugs and target

genes of HCV’’ may be more closely related to HCV. To define

the interactivity of compounds, we downloaded the information

detailing chemical-chemical interactions from STITCH (Search

Tool for Interactions of Chemicals) [11] (http://stitch.embl.de/

,chemical_chemical.links.detailed.v3.1.tsv.gz), a well-known data-

base containing both the known and predicted interactions of

chemicals and proteins. In the obtained file, each chemical-

chemical interaction consists of two compounds and five scores: (1)

Similarity; (2) Experimental; (3) Database; (4) Textmining; (5)

Combined_score. In detail, the scores of Similarity, Experimental

and Database were obtained according to chemical structures,

activities and reactions, respectively; the score of Textmining was

calculated based on chemical co-occurrence in literatures, and the

score of Combined_score was obtained by integrating the

aforementioned four scores [11]. To note the interactivity of

compounds, we adopted the Combined_score to define interactive

compounds, i.e., two compounds were interactive if and only if

their Combined_score was greater than zero. Interactive com-

pounds may have similar structures, activities, or reactions,

thereby suggesting that they have the potential to be in the same

pathways. Thus, the interactive compounds of the three HCV

drugs may be involved in pathways that are related to HCV.

Therefore, it is reasonable to investigate the anti-HCV activity of

the interactive compounds of the three approved drugs. In

addition, these five scores were also used to cluster the interactive

compounds of the three approved drugs (see Section ‘‘Further

selection of candidate compounds using a clustering algorithm’’),

thereby assisting in the discovery of candidate drug compounds for

HCV. For the latter formulation, the score of Similarity,

Experimental, Database, Textmining and Combined_score of

the interaction between compounds c1 and c2 are denoted as

follows: Icc
S (c1,c2), Icc

E (c1,c2), Icc
D (c1,c2), Icc

T (c1,c2) and Icc
C (c1,c2),

respectively.

A general way to discover candidate drugs for the treatment of

HCV is to analyze the relationship between the candidate drugs

and the targeted HCV genes. Thus, the information detailing

chemical-protein interactions was employed to evaluate the

candidate drugs extracted by chemical-chemical interactions. This

information was also retrieved from STITCH (protein_chemi-

cal.links.detailed.v3.1.tsv.gz) [11]. Similarly, each interaction in

the obtained file contains one compound, one protein, and four

scores: (1) Experimental; (2) Database; (3) Textmining; (4)

Combined_score. Because Combined_score integrates the other

three scores, we used the Combined_score to indicate the strength

of the interaction between one compound and one protein. Similar

to the five scores for the chemical-chemical interactions, all four

scores were used to cluster the interactive compounds of the three

approved drugs (see Section ‘‘Further selection of candidate

compounds using a clustering algorithm’’). Thus, the scores for

Experimental, Database, Textmining and Combined_score of the

interaction between compound c and protein p were denoted as

I
cp
E (c,p), I

cp
D (c,p), I

cp
T (c,p) and I

cp
C (c,p), respectively.

Method used to find candidate compounds
The main idea behind this method is based on the fact that the

interactive compounds often share similar functions

[12,13,14,15,16]. Therefore, we focused on investigating the

interactive compounds of the three reported drugs for HCV. The

detailed procedures of the method were described as follows:

(1) The information detailing chemical-chemical interactions and

retrieved from STITCH was used to extract the interactive

compounds of three drugs for HCV. These compounds and

the three drugs comprised a compound set denoted by DIC.

(2) Extract the chemical-protein interactions such that the

compounds were in DIC and the proteins were the target

genes of HCV.

(3) For each compound c in DIC, let p1,p2, . . . ,pl be the target

genes of HCV such that I
cp
C (c,pi)w0 for i~1,2, . . . ,l.

Calculate its determination value, defined as the mean value

of I
cp
C (c,p1),I

cp
C (c,p2), . . . ,I

cp
C (c,pl).

Higher determination values for a compound indicate that it has

a strong association with the target genes of HCV, further

suggesting that it is more likely to be able to treat HCV. However,

a drug compound with a determination value of 0 is least likely to

have the ability to treat HCV. Accordingly, we selected drug

compounds with a determination value greater than 0 as candidate

compounds.

Randomization test
As mentioned in Section ‘‘Method used to find candidate

compounds’’, by using this approach, a set of candidate drug

compounds can be obtained. However, some of these drug

compounds may have a special relationship with human genes,

which may result in high determination value, even if we randomly

select some human genes. To avoid these false discoveries and

encourage future studies on discovering novel genes for some

diseases [21,22], the following randomization test was conducted

to further evaluate the candidate drug compounds:
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(1) Randomly selected 1,000 gene sets, e.g., S1,S2, . . . ,S1000, with

the same size of known target genes of HCV;

(2) For each Si, execute the method described in Section

‘‘Method used to find candidate compounds’’ by replacing

the target genes of HCV with genes in Si;

(3) For each candidate compound c obtained in Section ‘‘Method

used to find candidate compounds’’, calculate its p-value using

p-value(c)~

P1000

i~1

di

1000
ð1Þ

where di was set to be 1 if the determination value of c on Si

was greater than that of c on the set containing target HCV

genes.

It is straightforward to conclude that a smaller p-value for a

candidate drug compound suggests that the drug is more likely to

have anti-HCV ability. To exclude false discoveries, the p-values

of the approved HCV drugs were also computed. Additionally, we

selected the p-value of one approved drug as the threshold to filter

candidate compounds, i.e., candidate compounds with p-values no

more than the threshold were retained for further selection.

Further selection of candidate compounds using a
clustering algorithm

Based on the above two steps, a set of candidate compounds was

obtained. However, some of these may still be false discoveries,

particularly in cases when many candidate compounds remain.

Thus, it is necessary to continue further selection.

According to Sections ‘‘Method used to find candidate

compounds’’ and ‘‘Randomization test’’, we used only the

Combined_score for both chemical-chemical and chemical-

protein interactions. Although the Combined_score for chemi-

cal-chemical interactions includes the Similarity, Experimental,

Database, Textmining scores and the Combined_score for

chemical-protein interactions includes the Experimental, Data-

base, Textmining scores, i.e., these scores were indirectly used in

the above two steps, the direct application of all of these scores

may help us more effectively exclude false discoveries. Thus, the

five scores of chemical-chemical interactions and the four scores of

chemical-protein interactions were used to extract features for

each of the candidate compounds remaining after the randomi-

zation test, and the EM (expectation maximization) algorithm was

employed to cluster these candidate compounds.

Feature construction. For each candidate compound c, the

five chemical-chemical interaction scores induced five features.

Because these features were extracted in a similar process, we

here only describe how to extract features using Similarity. Let

c1,c2, . . . ,ck be the approved drugs for HCV such that

Icc
S (c,ci)w0 for i~1,2, . . . ,k (In fact, k#3 in this study). Take

the mean value of Icc
S (c,c1),Icc

S (c,c2), . . . ,Icc
S (c,ck) as the feature

for Similarity. In particular, this feature was set to be zero if k = 0.

Similarly, the four chemical-protein interaction scores induced

four features for each candidate compound c. Here, we only

provide a description of how to extract features using Experi-

mental; the other features can be extracted in a similar process.

Let p1,p2, . . . ,pk be the target genes of HCV such that

I
cp
E (c,pi)w0 for i~1,2, . . . ,k. Take the mean value of

I
cp
E (c,p1),I

cp
E (c,p2), . . . ,I

cp
E (c,pk) as the feature for Experimental.

This feature was set to be zero if k = 0. Finally, based on both sets

of scores, each candidate compound was represented by nine

features.

EM algorithm. The Expectation-maximization (EM) algo-

rithm was first proposed by Dempster et al. [23]. It is an iterative

method for finding the maximum likelihood of parameters in

statistical models, where the model depends on unobserved latent

variables. The EM iteration alternates between performing an

expectation (E) step and a maximization (M) step. The EM

algorithm can be defined as follows:

Input: an observed data set Y, an unobserved latent data set Z,

the joint distribution P(Y ,Zjh) and the conditional distribution

P(ZjY ,h)

Output: parameter h�

(I) Select an initial parameter h(0)and set i = 0, begin

iteration

(II) E-step: Suppose that h(i) is the current estimated value of

parameter h; compute the following objective function:

Q(h,h(i))~E
ZDY ,h(i) ½logP(Y ,Zjh)�~

X

Z

logP(Y ,Zjh)P(ZjY ,h(i)) ð2Þ

(III) M-step: Find the new estimated value of parameter h (i.e.,

h(iz1)) by maximizing Q(h,h(i)):

h(iz1)~arg max
h

Q(h,h(i)) ð3Þ

(IV) Check the convergence condition hiz1{hi
�� ��

2
v". If the

convergence condition is not met, i = i+1, go to (II); else

h�~h(iz1).

If we suppose that the data set is drawn from a distribution that

can be approximated using a mixture of Gaussian distributions,

the EM algorithm can be applied to clustering. Now, the

unobserved data set Z represents which Gaussian the datum in

observed data set Y comes from. By utilizing the EM algorithm, we

are able to estimate the parameters of each Gaussian and assign

each datum to a particular one.

Weka (Waikato Environment for Knowledge Analysis) [24],

developed by the University of Waikato in New Zealand, is a

popular suit of machine learning software. Many state-of-the-art

machine learning algorithms and data preprocessing tools are

integrated in this software. A tool termed ‘EM’ in Weka

implements the EM algorithm. Thus, it was employed in this

study to cluster the candidate compounds that remained following

the randomization test. For convenience, this program was run

with its default configuration. In this configuration, it can

automatically select the class number of clustering via cross-

validation.

Results

Results of the method
Based on the information detailing chemical-chemical interac-

tions that was retrieved from STITCH, we obtained 623

compounds that contained three drugs and their interactive

compounds, i.e., DIC contained 623 compounds. These com-

pounds and the 421 target genes were used to obtain 955

chemical-protein interactions, which are available in Table S2.

These interactions involved 272 compounds and 235 proteins

(counted by Ensembl IDs). It is necessary to note that two of the

three drugs (CID000037542 and CID003010818) were members

of the 272 compounds, while the other drug (CID010324367) was

Finding Candidate Drugs for Hepatitis C
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not included in these interactions. According to the method, we

calculated the determination value for each compound in DIC. If

one compound in DIC was not involved in any chemical-protein

interaction, its determination value was set to be zero. Finally, we

obtained 272 compounds with determination values greater than

zero. These 272 compounds and their determination values are

provided in Table S3; the determination values of the drugs

CID000037542 and CID003010818 were 504.27 and 338,

respectively. Accordingly, we took 270 compounds, aside from

CID000037542 and CID003010818, as candidate drug com-

pounds for HCV.

Results of the randomization test
The randomization test was conducted to further evaluate the

270 candidate drug compounds. The p-values of these drug

compounds, CID000037542 and CID003010818 were obtained

and are listed in Table S3. The p-values of drugs CID000037542

and CID003010818 were 0.269 and 0.298, respectively. The p-

value of drug CID010324367 was not computed because its

determination value was zero. For a wide selection, the p-value of

drug CID003010818 was set as the threshold for filtering the 270

compounds obtained in Section ‘‘Results of the method’’, i.e.,
compounds with p-values equal to or less than 0.298 were selected

for further analysis, which resulted in 137 candidate drug

compounds, including the approved drugs CID000037542 and

CID003010818.

Results of the clustering algorithm
The remaining 137 candidate drug compounds, including the

approved drugs CID000037542 and CID003010818, were

represented by nine features according to Section ‘‘Further

selection of candidate compounds using a clustering algorithm’’.

We only used seven of these features to represent the drug

compounds because the values for the chemical-chemical interac-

tion features Experimental and Database were all zero. Next, ‘EM’

in Weka was used to cluster these drug compounds. The clustering

results are available in Table S4, where we can observe that these

137 drug compounds were clustered into four categories. The

approved drugs CID000037542 and CID003010818 were in the

same category ‘cluster0’. In this category, there were 20 other drug

compounds, suggesting that these 20 drug compounds have a

stronger association with the approved drugs than do other

candidate compounds. Thus, they were deemed to be significant

for HCV. The information of these 20 drug compounds are listed

in Table 1.

Discussion

Three small-molecule drugs, including ribavirin

(CID000037542), telaprevir (CID003010818) and boceprevir

(CID010324367), were previously reported in DrugBank for the

treatment of the hepatitis C virus [17,18]. Except boceprevir

without the interaction information concerning target genes of

HCV, the determination values of ribavirin and telaprevir were

504.27 and 338, respectively. As mentioned in Section ‘‘Results of

the method’’, 270 drug compounds were obtained as candidate

drugs for HCV. Then, according to the results of the random-

ization test, 135 drug compounds remained. To further filter false

discoveries, these drug compounds, together with the approved

drugs ribavirin (CID000037542) and telaprevir (CID003010818),

were clustered by the EM algorithm. The clustering result showed

that ribavirin and telaprevir were in the same category ‘cluster0’.

According to the theory that ‘‘structurally similar molecules are

likely to have similar properties’’ by Johnson et al. [25], we took

the 20 compounds that belonged to ‘cluster0’ as candidates for

further analysis and discussion. Detailed information about these

20 compounds is listed in Table 1.

Among these 20 compounds, half of them have been reported to

have anti-HCV activities, as subsequently detailed in the following

paragraphs.

Acyclovir and Ganciclovir: Acyclovir (CID000002022, see

row 2 of Table 1) is an antiviral agent for the treatment and

management of herpes zoster, genital herpes and chickenpox [26].

Ganciclovir (CID000003454, see row 3 of Table 1) is an analog

of acyclovir and is used to treat complications of AIDS-associated

cytomegalovirus infections [27]. These two drugs are also available

for the treatment of chronic hepatitis C and are generally accepted

by HCV medical specialists [28].

Sorafenib: Sorafenib (CID000216239, see row 4 of Table 1)

is used for the treatment of advanced renal cell carcinoma and

hepatocellular carcinoma [29]. Himmelsbach et al. reported that

sorafenib effectively blocked HCV replication by inhibiting c-raf

in vitro [30], so this drug cannot exert a synergetic effect with IFN-

a, which activates c-raf to show anti-HCV activity [31].

Fluvastatin: Fluvastatin (CID000446155, see row 5 of

Table 1) is used for the treatment of cardiovascular diseases

and is also used as an adjunct to dietary therapy for preventing

cardiovascular events [32]. Moreover, fluvastatin monotherapy

was reported to modestly inhibit HCV replication in humans [33]

and achieved a higher sustained virological response when

combined with PegIFN-a and ribavirin compared with PegIFN-

a/rabavirin [34].

Celgosivir: Celgosivir (CID000060734, see row 6 of Table 1)

is an oral inhibitor of a-glucosidase I and interferes with HCV

assembly by altering the host-directed glycosylation of the

envelope proteins [35]. Durantel et al. reported that celgosivir

monotherapy was well tolerated with a modest antiviral effect on

HCV [36] and exerted a synergic effect with PegIFN-a/rabavirin

in a phase II clinical trial [37].

Miglustat: Miglustat (CID000051634, see row 7 of Table 1)

is used for the treatment of Gaucher’s disease and has been

approved for the treatment of progressive neurological symptoms

in Niemann-Pick disease type C patients [38]. Additionally, a

clinical trial using miglustat to treat HCV patients is ongoing

[39,40].

Dasatinib: Dasatinib (CID003062316, see row 8 of Table 1)

is an oral tyrosine kinase inhibitor that has been approved for

treating chronic myelogenous leukemia [41]. McCartney et al.
reported that dasatinib showed anti-HCV activity by inhibiting

HCV entry into hepatocytes but did not affect HCV RNA

replication [42]. The IC50 values observed for dasatinib to inhibit

HCVcc infection (infection with cell culture-derived HCV) and

HCVpp entry (entry of HCV pseudoparticles), as calculated by

Lupberger et al., were 0.5060.30 mM and 0.5360.02 mM,

respectively [43].

Atorvastain: Atorvastain (CID000060822, see row 9 of

Table 1) is a HMG-CoA reductase inhibitor and exhibited a

modest inhibitory effect on HCV RNA replication when

combined with PegIFN [44].

Zidovudine: Zidovudine (CID000035370, see row 10 of

Table 1) is a component of the antiretroviral combinations for

treating HIV infections [45]. Vento et al. reported that zidovudine

may remit HCV-induced chronic hepatitis in HIV-1-infected

patients by inhibiting HCV replication or by improving the host

immune response to HCV [46].

6-azauridine: 6-azaurindine (CID000005901, see row 11 of

Table 1) is used as an antineoplastic antimetabolite by interfering

with pyrimidine synthesis to inhibit the formation of nucleic acids
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[47]. Ueda et al. reported that 6-azauridine showed anti-HCV

activity in an HCV drug assay system (ORL8), and the selective

index from dividing the CC50 value by the EC50 value was 4.1

[48].

For the remaining 10 compounds listed in row 12–21 of

Table 1, although we have not found any literature reporting

their anti-HCV activities, the probability of these compounds

having anti-HCV ability cannot be excluded. In the future, we will

focus on expanding our knowledge of these compounds and

further report their anti-HCV activities, if possible.

Conclusions

This study proposed a new method to discover candidate drugs

for HCV. Chemical-chemical interactions and chemical-protein

interactions were used in this analysis, and the results showed that

certain small-molecule drugs may have the capability to treat

HCV. We hope that these findings may provide an alternative way

to filter drug compounds with a low probability, thereby obtaining

candidate drugs for the treatment of HCV and other diseases.
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Table S1 List of 421 target genes of hepatitis C virus.
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Table S2 List of chemical-protein interactions extracted in the
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candidate drug compounds.

(PDF)

Table S4 List of clustering results of the 137 drug compounds by

‘EM’ in Weka.

(PDF)
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