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Abstract

Both habitat heterogeneity and species’ life-history traits play important roles in driving population dynamics, yet there is
little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a
spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the
scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental
tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the
responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of
spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a
substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase
was shaped by species’ movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the
resource share of individuals, but had little effect on the mean mortality rate of individuals. Species’ movement capacity also
determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing
competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource
share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial
autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource
share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more
sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination
with spatial autocorrelation may increase the population size, despite increased density effects.
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Introduction

Habitat heterogeneity is increasingly recognized as a significant

factor affecting the dynamics and persistence of populations [1–5].

For mobile species inhabiting complex landscapes, spatial hetero-

geneity can influence their behaviour, thereby affecting survival

and reproductive performance [6–8]. Most frequently, the effect of

spatial heterogeneity has been studied either under a so-called

binary ‘habitat-matrix’ framework [9–11] or under the assumption

of stochastic variability wherein local variation is random in space

[5,6]. However, defining a landscape as discrete habitat/matrix

patches overlooks the spatial pattern of continuously varying

habitat quality that might facilitate or constrain the performance

of individuals and therefore population dynamics [12,13]. In

addition, predictions of population dynamics are also influenced

by how the spatial variation in habitat quality within a landscape is

calculated [14]. In this sense, a continuous representation of

habitat quality is expected to more accurately reflect how a species

experiences a heterogeneous landscape [15].

One general property of landscape heterogeneity of particular

importance for ecological dynamics is its spatial autocorrelation

structure, which can be defined as the property of random

variables (e.g., habitat quality) taking values over distance that are

more (or less) similar than expected for randomly associated pairs

of observations due to geographic proximity [16–18]. The spatial

autocorrelation in habitat quality is known to affect species

persistence, for instance, increased spatial autocorrelation could

reduce the persistence of small populations [19–21]. Yet the effect

of habitat spatial structure on population dynamics has rarely been

tested for species in spatially structured landscapes. Bolker [4]

incorporated spatially correlated heterogeneity into simulation

models of sessile organisms and found that spatial autocorrelation

generally improves population viability. For mobile species,

however, the performance of a population may become different

if spatial autocorrelation occurs within the range of dispersal

[22,23]. From an ecological standpoint, the effects of habitat

spatial structure on mobile species depend not only on the scale of

spatial autocorrelation, but also on how this scale relates to the
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species movement capacity and habitat requirements [1,23]. If the

scale of spatial autocorrelation is low, the likelihood of an

individual encountering a different environment will increase

quickly as it moves away from its present location [22]. If the

movement range is large, the population becomes well-mixed and

hence spatially unstructured [24,25]. Moreover, species differ in

their environmental tolerance, thereby exhibiting differential

responses to habitat conditions [26–28]. Therefore, we anticipate

that habitat spatial structure will interact with species’ environ-

mental tolerance and movement capacity in determining species’

demographic performance as well as population dynamics [29,30].

For instance, spatial autocorrelation in habitat quality may lead to

spatial aggregation of individuals, thereby affecting local popula-

tion density or competitive pressure on individuals [31–33]. Under

such circumstances, individual-level variation can also provide

underlying mechanisms of population regulation [34]. However,

analytical models do not take into account the complexity of the

multiple concurrent interactions (e.g., competition between

individuals) which may influence population dynamics [35,36].

The key to improve understanding of the role of habitat spatial

structure in driving the population dynamics of mobile species is

therefore to link individual behaviours to population phenomena

in a spatially explicit modelling framework [12,37,38].

In this paper, we explored how habitat spatial structure interact

with species’ environmental tolerance and movement capacity to

affect the population dynamics of mobile species using a spatially

explicit agent-based modelling approach. We compared the

responses of four virtual species to four landscape scenarios

differing in the scale of spatial autocorrelation in habitat quality.

The ecological motivation for this simulation was to understand

the combined impacts of these factors on mobile species that are

dispersal limited and experience habitat heterogeneity (e.g.,

animals in mountainous forests). We hypothesized that for species

in landscapes with small-scale spatial autocorrelation, the move-

ment-distance does not have a strong effect on population

dynamics, whereas for species in landscapes with large-scale

spatial autocorrelation, short distance movement would increase

the viability of the population.

Methods

The Agent-Based Model
The present spatially explicit, agent-based model simulates the

population dynamics of a single virtual species in a spatially

structured landscape. The description of the model follows the

ODD protocol (overview, design concepts, and details) for

describing individual- and agent-based models proposed by

Grimm et al. [39,40]. The model was implemented in the R

environment [41] with the package ‘gstat’ [42].

Purpose. The purpose of this model is (i) to understand how

habitat spatial structure (depicted by the scale of spatial

autocorrelation in habitat quality) influences the population

dynamics of mobile species, and (ii) to explore how species’ life-

history traits shape the population responses in relation to habitat

spatial structure. Since this is a purely theoretical study, the model

simulates population performance of four hypothetical species that

differ in aspects of life-history traits (low-tolerance vs. high-

tolerance; low-mobility vs. high-mobility), rather than predict the

population dynamics of any specific species. In other words, the

model’s formulation tends to increase generality in a trade-off for

realism and precision.

Entities, state variables, and scales. The model contains

two types of entities: individuals and landscape. The landscape is a

grid of 30630 habitat cells, in which each cell represents a discrete

space of the environment, and is characterised by spatial

coordinates and habitat quality (Q; range 0–1), where habitat

quality simply reflects resource conditions essential for an

individual’s performance. Cell size is not spatially specified, but

is assumed to fulfil the space requirement of an individual. The

simulated landscape is, therefore, a continuous representation of

habitat quality rather than a binary mosaic of habitat and matrix.

The individuals are characterized by the following state variables:

identity number, age, spatial location (cell coordinates), resource

share, reproduction rate, mortality rate, and moving distance per

time step. Only females are simulated in the model, a strategy

common to many population models [11,12]. No age-structure is

included in the model. Values of the demographic parameters (see

Table 1) are selected in order to meet reasonable assumptions

about the hypothetical species (i.e. long-lived animals which

generally have low mortality rate and high probability of

reproductive success), thereby ensuring this generic model to

generate plausible projections. Time runs in discrete steps and the

simulation lasts 100 time-steps. The length of a time step is not

explicitly specified, but is assumed to be long enough for each

individual to accomplish all demographic processes (i.e., move-

ment, reproduction, and mortality).

Process overview and scheduling. Individuals may move,

reproduce, and/or die at each time step. The order of individuals

is randomized per time step, and the order of the three events (i.e.

move, reproduce, and/or die) is randomized for each individual

per time step. Probabilities of mortality, reproduction, and

movement of an individual per time step depend on its resource

share, which is updated before each event to take into account

changes in the cell’s density due to mortality and movement of

other individuals within the time step. Only individuals with a

resource share beyond 0.5 are capable of reproducing. The newly

produced offspring join the population only at the end of the time

step, and become adults upon commencement of the following

time-step. The model is illustrated in Figures 1 and 2.

Design concepts. Population dynamics emerge from indi-

vidual and species traits. Individuals’ life cycles and movements

are imposed by stochastic rules.

Individuals within the same cell affect each other through the

‘‘scramble competition’’ [43] that the resource share (F) per

individual declines with an increasing number of individuals

within a cell. Therefore, an individual’s resource share is

determined by habitat quality of the inhabited cell and crowding

in that cell, i.e., F~Q=n, where Q is the habitat quality of the cell,

and n is the number of individuals in the cell. Direct interaction

between individuals of different cells is not considered in the

model.

All modelled processes are implemented stochastically via a

random order of individuals in the main routine, a random order

of events, and moving in a random direction. Movement,

reproduction, and mortality events are implemented based on

probabilities.

Population dynamics are quantified by recording the following

variables throughout the last 30 time steps of each run: 1)

population size; 2) mean resource share of individuals; 3) mean

mortality rate of individuals; 4) proportion of individuals in high-

quality cells (Q$0.5); and 5) proportion of individuals experiencing

competition. By using the proportion of individuals under different

conditions (e.g., residing in high-quality cells and/or experiencing

competition), the absolute number of individuals are transformed

to a range 0–1, allowing direct comparison between population

dynamics of different species, and thereby correcting for differ-

ences in their population sizes. For model analysis, each response

variable is averaged over the last 30 time steps of each run.

Joint Effects of Habitat Heterogeneity and Species Life-History Traits
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There are no external environmental variables that drive the

internal dynamics of the model.

Initialisation. At the beginning of each run, a two-dimen-

sional landscape with 30630 grid cells is generated using an

unconditional Gaussian variogram model (sill= 0.025, nugget= 0,

and range= S), where the range parameter defines the scale of

spatial autocorrelation in habitat quality. The mean habitat

quality of the landscape is fixed at 0.5. After generating a

landscape, one hundred individuals are distributed at random

through the landscape. The resource share of each individual is

calculated based on the habitat quality and crowdedness of the

occupied cell. Individuals’ ages are independently drawn from the

uniform distribution in the interval (0, lifespan), because prelim-

inary tests based on different distributions (e.g., Poisson distribu-

tion) revealed that different initial age structure of individuals had

no effect on population dynamics after the first 30 time-steps (see

Text S1).
Mortality submodel. Probabilities of mortality are individ-

ual-specific and depend on their resource share per time step. An

individual’s mortality rate is calculated as:

M~M0| 1z exp { F|Cenvirð Þ2
� �� �

, where M0 is the basic

mortality rate, F is the resource share of the individual, and Cenvir

is the level of environmental tolerance. In biological terms, Cenvir

regulates the sensitivity of individual mortality rate to environ-

mental variability (Figure 3a). Individuals that reach the maximal

lifespan are ‘‘killed’’ from the population.

Reproduction submodel. Only adult individuals with a high

resource share (i.e., F$0.5) can reproduce, giving birth to one

offspring with a constant probability of B. More complex relations,

e.g., making reproduction probability and number of offspring

function of habitat quality, would by virtue of Jensen’s inequality

prohibit comparison between landscapes [15,44]. The newly

produced offspring are attached to their mothers (i.e., in the same

cells), and join the population at the end of the current time step.

They become adults able to move and reproduce at the following

time step.
Movement submodel. Individual movement is a conditional

response to local habitat quality and crowdedness, i.e., the

condition-dependent dispersal [25,45], and the probability of

movement per time step is calculated as: Pmove~1{Q=n, where

Q is the habitat quality of the cell, and n is the number of

individuals in the cell. Ecologically, it means that individuals

residing in cells of low habitat quality and/or high density tend to

depart the cell, while those residing in cells of high quality and/or

low density are more likely to stay in the current cell. The

Table 1. Variables, parameters, and initial conditions used in the model.

Parameter Symbol Values

Landscape size - 30630 cells

Habitat quality of cells Q 0–1

Mean habitat quality of landscape - 0.5

Scale of spatial autocorrelation in habitat quality S 0.01, 2, 4, 8

Individual’s resource share F 0–1

Birth probability B 0.7

Basic mortality rate M0 0.15

Level of environmental tolerance Cenvir 2, 3

Mean moving distance Dmean 1, 4 cells

Litter size - 1

Max. lifespan - 10 time steps

Initial population size - 100

Length of simulation period - 100 time steps

doi:10.1371/journal.pone.0107742.t001

Figure 1. Flow diagram of the main routine used in the
simulation model.
doi:10.1371/journal.pone.0107742.g001

Joint Effects of Habitat Heterogeneity and Species Life-History Traits

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107742



movement direction per time step is randomly determined, and

the movement distance per time step is drawn from a Poisson

distribution with mean l~Dmean (Figure 3b). The assumption of

random walk seems to be unrealistic for species that may actively

search the landscape, but is conservative in the sense that effects of

spatial heterogeneity are easy to detect [46]. From the moving

individuals’ perspective, the landscape is ‘‘wrapped’’, meaning that

an individual that crosses the edge of the landscape continues in

the same direction on the opposite edge [47].

Simulation Experiments
To investigate how spatial autocorrelation of habitat quality

interacts with species traits to affect population dynamics, we

defined four landscape scenarios that reflect different levels of

Figure 2. Flow diagrams of the submodels in the simulation model that determine mortality (a), reproduction (b), and (c)
movement for a single individual within a time step.
doi:10.1371/journal.pone.0107742.g002

Figure 3. Movement distance distributions (a) and mortality rate functions (b) used to define hypothetical species in the model.
Cenvir = 2 and Cenvir = 3 represent low-tolerant and high-tolerant species, respectively. Dmean = 1 and Dmean = 4 represent low-mobility and high-
mobility species, respectively.
doi:10.1371/journal.pone.0107742.g003
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spatial autocorrelation in habitat quality: apparently uncorrelated

(S= 0.01), small-scale (S= 2), intermediate-scale (S= 4), and large-

scale (S= 8) spatial autocorrelation in habitat quality (Figure 4).

For each landscape scenario, we compared the population

dynamics of four virtual species differing in the level of

environmental tolerance (Cenvir = 2 or 3; Figure 3a) and mean

movement distance (Dmean = 1 or 4 cells; Figure 3b). The

combination of landscape scenarios and species classes resulted

in a total of 16 treatments (464 = 16) in the experiments. For each

treatment, we conducted 50 replicates, each lasting for 100 time

steps. This is based on preliminary runs using 200 time-steps, in

which we found that any population reached a state of dynamic

equilibrium within the first 50 time-steps.

The flexibility of agent-based models means that they typically

have a large number of parameters. Ideally, parameter values

would be estimated from empirical data. Unfortunately, such data

are scarce, and the number of parameters is so large that it is not

possible to investigate every combination of parameter values.

Therefore, following a previous sensitivity analysis (data not

shown), parameter values were chosen arbitrarily to yield an

overall rate of population increase of ,1 over the first 50 time

steps for the species with Cenvir = 2 and Dmean = 1 in landscapes

with apparently uncorrelated habitat quality (i.e., landscape

scenario S= 0.01). Real-world species would experience life-

history trade-offs in demographic and movement rates which

influence population growth [48]. To permit a more direct

comparison of the combined impacts of changing life-history traits

and habitat spatial structure, we assumed that all virtual species

had the same basic mortality rate (M0) and birth probability (B).

Since we were interested in combining landscape spatial autocor-

relation with species traits, these assumptions were considered

acceptable. The detailed parameter values are given in Table 1.

Statistical Analysis
We first performed a Shapiro-Wilks normality test to examine

data normality and found that data were normally distributed. To

assess the main effects and interactions among the three

experimental factors (i.e., scale of spatial autocorrelation in habitat

quality S, species’ environmental tolerance Cenvir, and mean

moving distance Dmean), we estimated the magnitude of effects of

the variance sources using a three-way analysis of variance

(ANOVA), as suggested by White et al. [49]. We performed three-

way ANOVA for each of the five response variables (cf.

Observation section). The three experimental factors were treated

as categorical variables in accordance with the experimental

design. The effect sizes of the factors and interactions were

measured by percentage of variance explained [50] and general-

ized eta-squared [51,52] (see Text S2 for the calculation). For each

treatment, we also investigated Spearman correlations of the mean

resource share of individuals with the proportion of individuals in

high-quality cells and with the proportion of individuals experi-

encing competition. By doing so, we aimed at increasing our

understanding of the mechanisms behind observed population

dynamics in different landscape scenarios. All data analyses were

conducted in the R environment with the ‘ez’ package [53].

Results

All hypothetical species exhibited a constant increase in

population size as the scale of spatial autocorrelation in habitat

quality increased (Figure 5a). However, the pattern of the increase

in population size varied greatly between the species with different

movement capacities. Low-mobility species (Dmean~1) displayed a

logarithmic-like increase in response to increased spatial autocor-

relation, contrasting with the exponential-like increase of high-

mobility species (Dmean~4i). Under the same level of species’

environmental tolerance, low-mobility species showed greater

population size than high-mobility species in all landscape

scenarios except for the scenario of S= 0.01 (Figure 5a).

The analysis of variance revealed that both species’ environ-

mental tolerance and the scale of spatial autocorrelation in habitat

quality had strong effects on population size, accounting for ,47%

and ,33%, respectively, of the variation in population size

(Table 2, also see Table S1). Their interaction also had a

significant effect (S|Dmean F7,792 = 487.96, p,0.001), but

accounted only for ,1% of the variation in population size

(Table 2). Species’ movement capacity and its interaction with

scale of spatial autocorrelation in habitat quality also had

appreciable effects and explained ,10% of the variation in

population size (Dmean F1,798 = 23.04, p,0.001; S|Dmean

F7,792 = 85.29, p,0.001; Table 2).

All virtual species also showed an exponential increase in mean

resource share as the scale of spatial autocorrelation in habitat

quality increased (Figure 5b), and low-tolerant species had

appreciably higher mean resource shares than high-tolerant

populations (Mann–Whitney test, p,0.01). Species’ environmen-

tal tolerance had the greatest effect on individual resource share,

explaining ,62% of the variation in mean resource share

(Table 2, also see Table S1). Scale of spatial autocorrelation in

habitat quality accounted for ,15% of the variation in mean

resource share of individuals (Table 2). In addition, the effect of

movement capacity on mean resource share was appreciably

greater when habitat quality was spatially autocorrelated at a

broad scale (S|Dmean F7,792 = 21.18, p,0.001).

For the mean mortality rate of individuals, species’ environ-

mental tolerance had a dominant effect and accounted for ,99%

of the variation (Table 2, also see Table S1). In contrast, the scale

of spatial autocorrelation in habitat quality and species’ movement

capacity had little effect on the mean mortality rate of individuals,

Figure 4. Examples of artificial landscapes differing in the scale of spatial autocorrelation in habitat quality S. (a) nearly random,
S= 0.01; (b) small-scale, S=2; (c) intermediate-scale, S= 4; and (d) large-scale, S=8. The mean habitat quality of the landscapes is fixed at 0.5.
doi:10.1371/journal.pone.0107742.g004
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due to the dominant effect of species’ environmental tolerance

(Figure5c and Table 2).

The proportion of individuals residing in high-quality cells and

the proportion of individuals experiencing competition reflect the

spatial distribution of individuals in response to the spatial

structure of habitat quality (Figure 6, also see Figures S1 and

S2). Increasing the scale of spatial autocorrelation in habitat

quality increased the proportion of individuals residing in high-

quality cells, especially for low-mobility species (Figure 5d, also see

Figure S1). Species’ movement capacity and the scale of spatial

autocorrelation in habitat quality both had strong effects,

accounting for ,45 and 41%, respectively, of the variation in

the proportion of individuals in high-quality cells (Table 2, also see

Table S1). Their interaction also had a significant effect and

Figure 5. Population responses of four hypothetical species to the scale of spatial autocorrelation in habitat quality S. (a) population
size; (b) mean resource share of individuals; (c) mean mortality rate of individuals; (d) proportion of individuals in high-quality cells (Q$0.5); (e)
proportion of individuals experiencing competition. The figure shows mean61 SD for 50 replicates for each variable.
doi:10.1371/journal.pone.0107742.g005

Table 2. Summary of the percentages of the variation in response variables explained by factors scale of spatial autocorrelation in
habitat quality (S), species environmental tolerance (Cenvir), and mean moving distance (Dmean). Detailed ANOVAs for each response
variable are presented in Table S1.

Source Explained variation (%) in response variable

Population
size

Mean resource
share of individuals

Mean mortality
rate of individuals

Prop. of individuals
in high-quality cells

Prop. of individuals
experiencing competition

S 33.16 15.35 0.05 41.18 38.57

Cenvir 46.92 62.41 98.96 0.67 13.37

Dmean 2.81 0.16 0.01 44.60 34.13

S6Cenvir 1.09 0.01 0.05 0.04 0.44

S6Dmean 7.01 0.26 0.04 9.48 7.88

Cenvir6Dmean 0.03 0.01 0.01 0.04 0.29

S6Cenvir6Dmean 0.02 0.01 0.00 0.02 0.05

Total variation explained
by the full model (R2)

0.91 0.78 0.99 0.96 0.95

doi:10.1371/journal.pone.0107742.t002

Joint Effects of Habitat Heterogeneity and Species Life-History Traits
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explained ,9% of the variation (S|Dmean F7,792 = 2273.5, p,
0.001).

Likewise, the proportion of individuals experiencing competi-

tion increased as the scale of spatial autocorrelation in habitat

quality increased, and low-mobility species had higher proportions

when habitat quality was spatially autocorrelated (Figure5e, also

see Figure S2). The scale of spatial autocorrelation in habitat

quality had the greatest effect on the proportion of individuals

experiencing competition, followed by species’ movement capacity

and environmental tolerance (Table 2, also see Table S1). The

interaction between the scale of spatial autocorrelation in habitat

quality and species’ movement capacity also had a significant

effect, accounting for ,8% of the variation in the proportion of

individuals experiencing competition (S|Dmean F7,792 = 469.54,

p,0.001).

In general, the mean resource share of individuals was positively

associated with the proportion of individuals in high-quality cells

when habitat quality was spatially autocorrelated at a broad scale

(Figure 7a). In contrast, the associations between mean resource

share of individuals and the proportion of individuals experiencing

competition were differential, depending on the spatial structure of

habitat quality. When the spatial structure of habitat quality

shifted from spatially random to autocorrelated at a broad scale,

the correlation changed from negative to positive (Figure 7b),

indicating that local movement in combination with spatial

autocorrelation can actually increase population size and resource

share despite of increased density effects.

Figure 6. Sample patterns of spatial distribution of individuals under different landscape scenarios. Hypothetical species are
parameterized by environmental tolerance Cenvir and mean moving distance Dmean. Black dots represent individuals residing in cells of Q$0.5 and
free of competition, while red dots are individuals residing in cells of Q,0.5 or experiencing competition. Greener colour indicates higher habitat
quality.
doi:10.1371/journal.pone.0107742.g006
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Discussion

In this study, we explored how habitat spatial autocorrelation

interacts with species’ life-history attributes to influence population

dynamics within spatially structured landscapes. We found that

increasing the scale of spatial autocorrelation in habitat quality can

greatly increase the population size as well as mean resource share

of virtual species and in line with common expectation, high-

tolerant species had an appreciably higher population size than

low-tolerant species. These results are generally consistent with

previous findings that more specialized species are more affected

by habitat spatial heterogeneity [4,8,14,54]. These observed

patterns may be partly explained by edge effects, which is one of

the factors influencing population dynamics [55]. As the scale of

spatial autocorrelation increases, habitat quality becomes less

rugged across space, forming fewer but larger suitable areas in the

landscape, and consequently reduces changes in abundance or

fitness of low-tolerant species with respect to low quality of ‘‘edge’’

areas. In contrast, the high-tolerant species, due to higher

tolerances to variation in habitat quality, may be insensitive to

such edge effects [48]. Moreover, our results are comparable to the

population dynamics in the ‘‘source-sink’’ context. Spatial

autocorrelation in habitat quality can result in neighbourhoods

of high-quality and low-quality areas, thereby creating source-sink

dynamics in relation to habitat heterogeneity [31,32]. If a

landscape is spatially autocorrelated (particularly at large extents),

individuals dispersing away from ‘‘source’’ habitats are more likely

to encounter higher quality habitats rather than disperse into a

demographic sink.

Species’ movement capacity can interact with habitat hetero-

geneity to influence population dynamics and distribution of

individuals [56,57]. Our simulation demonstrated that low-

mobility species had greater population sizes than high-mobility

species in the presence of spatial autocorrelation in habitat quality.

The findings also suggest that species’ movement capacity plays an

important role in shaping the increase in population size in

response to an increased spatial autocorrelation in habitat quality,

where low-mobility species had a logarithmic-like increase in

response to increased scale of spatial autocorrelation, contrasting

with the exponential-like increase for high-mobility species. This

may be because, under the assumption of random walk,

individuals with short-distance movement are likely to stay in

suitable habitats, while long-distance movement will increase the

risk of landing in an unsuitable habitat when habitat quality is

autocorrelated at fine scales [4,58,59]. Such contrasting patterns of

population increase in relation to movement capacity indicate that

the effect of distance-based movement capacity may function in

highly scale-dependent ways, and its relative strength is deter-

mined by interactions among movement distance, the scale of

spatial autocorrelation, and the effects of species competition

[56,57,60]. For instance, the logarithmic-like increase in popula-

tion size of low-mobility species in response to increased spatial

autocorrelation indicates that the benefit from short-distance

movement was buffered by increasing effects of population density,

whereas the exponential-like increase in population size for high-

mobility species may suggest that long-distance movement will

reduce competitive interactions between individuals, thereby

increasing the net population. Skelsey and Garrett [61] predicted

that the magnitude of dispersal (number of individuals) should be

maximized at intermediate scales of heterogeneity, i.e., when the

scale of spatial heterogeneity is neither too fine nor too coarse

relative to the movement capacity of a species. This potentially

provides an additional explanation for the observed patterns in

population dynamics in response to spatial autocorrelation in

habitat quality.

The population dynamics of species inhabiting complex

landscapes generally involve two major components: the dispersal

of individuals and habitat-specific mortality rates [30]. The

interplay between spatial autocorrelation in habitat quality and

species life-history traits can lead to spatial aggregation of

individuals, creating variation in demographic performance

among individuals [31,32]. This is evident by our model, where

the proportions of individuals in high-quality cells and the

proportion of individuals experiencing competition increased

differentially in response to increased spatial autocorrelation

between species with different movement capacity (see Figure S1

and Figure S2). These results indicate that localized movement in

combination with habitat spatial structure may increase the

population size despite of increased density effects in the presence

of spatial autocorrelation in habitat quality. Furthermore, we

found that the mean resource share was positively correlated with

the proportion of individuals experiencing competition when

habitat quality was spatially autocorrelated. This may sound

contradictory, because an individual’s resource share would be, by

definition, reduced by increased local crowding. However,

increasing spatial autocorrelation in habitat quality could also

improve the quality of individuals by increasing the probability of

finding high-quality habitat within the range of movement, which

may buffer the density-dependent effects on the population [21].

Such complex relationships indicate how the interplay of

movement capacity and environmental autocorrelation can jointly

influence the outcome of competitive interactions [62].

The results of this simulation are contingent upon numerous

simplifying model assumptions, and it remains to be seen whether

the same or similar effects also occur for species living in real

Figure 7. Coefficients of Spearman correlations of the mean resource share of individuals with (a) the proportion of individuals in
high-quality cells and (b) the proportion of individuals experiencing competition for four hypothetical species under different
landscape scenarios. Bars marked with an asterisk (*) indicate the coefficients are statistically significant at P,0.05.
doi:10.1371/journal.pone.0107742.g007
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landscapes. For example, the model used a simplified landscape

with the edge being ‘‘wrapped’’ so that an individual crossing the

edge of the landscape continues in the same direction on the

opposite edge [47]. However, moving individuals would experi-

ence sharp discontinuities as they cross the edges if the simulated

landscape boundaries are not periodic. To avoid this, one can

generate landscapes with either periodic boundary conditions or

with a larger spatial extent, depending on the study of interest

[63]. Furthermore, we assumed individuals move in a random

manner. The random movement assumption seems to be

unrealistic for species that may actively search the landscape

within their home range (e.g. birds and mammals). However, if

individuals can perceive and orient new habitat location from

some distance, it may result in a reduced effect of habitat spatial

structure on population dynamics. Therefore, the random

movement assumption is conservative in the sense that effects of

landscape heterogeneity are easy-to-detect [46]. Moreover, male

individuals were not modelled based on the perspective that

females form the reproductive unit and thereby determine the

population dynamics [11,12]. We also excluded life-history trade-

offs in demographic and movement rates by assuming that only

mortality rate is associated with local habitat quality and density.

However, more complex relations, e.g., making both mortality and

reproduction functions of habitat quality, would increase the

unpredictability in model outputs and prohibit comparison

between landscapes due to the Jensen’s inequality [15,44].

Although the model incorporates numerous simplifying as-

sumptions, the general prediction that low-mobility species will

have greater sensitivity to changing scale of spatial autocorrelation

in habitat quality strongly suggests that mechanisms shaping

population dynamics are complex and depend on both habitat

spatial heterogeneity and species’ life history traits considered. We

have yet to confirm them in the field, but if the spatial

autocorrelation favouring species exists, we may expect a

nonlinear relationship between local population dynamics and

habitat heterogeneity in the sense that species movement

limitation represents a threshold [22]. Nevertheless, understanding

which mechanisms in spatially structured landscapes regulate a

population is important for explaining species abundances and

designing management plans for species conservation.
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