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Abstract

Cell navigation is directed by inhomogeneous distributions of extracellular cues. It is well known that noise plays a key role
in biology and is present in naturally occurring gradients at the micro- and nanoscale, yet it has not been studied with
gradients in vitro. Here, we introduce novel algorithms to produce ordered and random gradients of discrete nanodots –
called digital nanodot gradients (DNGs) – according to monotonic and non-monotonic density functions. The algorithms
generate continuous DNGs, with dot spacing changing in two dimensions along the gradient direction according to
arbitrary mathematical functions, with densities ranging from 0.02% to 44.44%. The random gradient algorithm
compensates for random nanodot overlap, and the randomness and spatial homogeneity of the DNGs were confirmed with
Ripley’s K function. An array of 100 DNGs, each 4006400 mm2, comprising a total of 57 million 2006200 nm2 dots was
designed and patterned into silicon using electron-beam lithography, then patterned as fluorescently labeled IgGs on glass
using lift-off nanocontact printing. DNGs will facilitate the study of the effects of noise and randomness at the micro- and
nanoscales on cell migration and growth.
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Introduction

Gradients are fundamental to many phenomena of biology,

from directing axonal navigation during neural development to

the differentiation of stem cells in response to an injury [1,2].

Gradients may occur as either (i) free diffusion gradients, (ii)

substrate-bound gradients, or (iii) a combination of both [3]. Free

diffusion gradients can be generated by cell-excreted proteins that

diffuse in the extracellular space. Substrate-bound gradients arise

when proteins are bound to the extracellular matrix or cell

membranes [4–6]. To better understand cellular haptotaxis – the

directed movement of a cell or axonal growth cone along a

gradient of a substrate-bound guidance cue – many techniques to

generate surface-bound gradients in vitro have been developed

[7]. Two classes of concentration gradients exist, namely

continuous and digital gradients. Continuous gradients have

protein concentration changing in a constant manner, and are

typically produced by adsorbing molecules from a diffusible

gradient. Several parameters of these gradients have been

modulated, including the range and slope, which was linear,

exponential or non-monotonic [8]. For example, linear gradients

of the protein BDNF have been shown to modulate neuron

polarization and growth [9] and linear laminin gradients have

been shown to orient rat hippocampal axon specification based on

slope [10]. Secondly, digital gradients which have been recently

introduced, are formed by patterning small dots of protein and

varying the density of the dots by changing their size [11], the

spacing between them [12], or both [13]. The advantage of digital

gradients is that they are deterministic, and that the local

concentration can be precisely predicted since it does not rely

on fluorescence measurements which may be prone to error.

Digital gradients have been used to study how retinal ganglion

cells identify the stop zone within graded distributions of repulsive

EphrinA5 ligands [13]. However, digital gradients rarely extend

over 1–2 orders of magnitude (OM), whereas it is believed that the

dynamic range of gradients in vivo is between 3–4 OM. To

overcome these limitations, we previously developed digital

nanodot gradients (DNGs), where the spacing between nanodots

(200 nm in diameter) was changed in two dimensions to produce a

dynamic range exceeding 3 OM. These designs were implemented

using a low-cost, lift-off nanocontact printing method to pattern

substrate-bound gradients of proteins and peptides. We employed

these patterns for adhesion and migration studies of C2C12

myoblasts on RGD peptide and netrin-1 gradients, respectively

[14]. For these experiments, gradients of 4006400 mm2 were
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divided into 53 rectangular boxes of fixed size and density. With

this approach, gradients were non-continuous and had stepwise

changes in density. This is most pronounced in low-density regions

where the spacing between nanodots exceeded the dimensions of

the box, requiring larger box sizes and thus creating large ‘‘steps’’

at the bottom of the gradient. This may prove problematic as cells

may fail to sense a discontinuous gradient if they fall into a region

of constant density.

Noise is ubiquitous in biology [15], and modern patterning

technologies can be exploited to introduce defined amounts of

noise and randomness into otherwise regular patterns. The effect

of randomness was evaluated in ordered arrays and repetitive

patterns with a constant average density. In one study, disorder

was introduced in arrays of 120 nm dots spaced 300 nm apart by

randomly displacing the dot by up to 50% of the spacing to avoid

overlap [16]. While this approach introduced a controlled amount

of noise by restricting the maximum displacement, it was not

random since dots were each contained within the original grid.

Nonetheless, cellular adhesion and stem cell differentiation of

osteoblasts were markedly altered as a result of increasing disorder.

In another study, whole proteome analysis of cells grown on the

same disordered patterns resulted in differential expression of

certain proteins in the extracellular signal-regulated kinase

(ERK1/2) pathway [17]. Similarly, controlled amounts of

topographical noise on nanogratings of 500 nm ridges and

grooves has shown to effect PC12 neuronal cell alignment to the

gratings, focal adhesion maturation and directionality [18].

Randomness and noise are also highly relevant to directed cell

migration. The stochasticity of chemo- and haptotaxis has been

well studied, and is apparent from the random-walk like traces of

migrating cells [19]. It is well understood that biological gradients,

which appear continuous, are in fact quantized since they are

comprised of individual molecules adsorbed to a surface. The

distribution of these molecules is not deterministic, but stochastic

at the nanoscale. The engagement of receptors from migrating

cells with these guidance cues has been modeled within a

stochastic framework [19,20]. Random variations in the gradient

also occur at the microscale in vivo from the local accumulation of

chemo- and haptotactic molecules that form concentration puncta

[21]. Gradients formed by the expression of receptors from cells

embedded in a tissue may become non-monotonic as particular

cells over- and under- express a receptor relative to their position

in the gradient [22]. Cells navigating through such a patchwork of

microscale deviations must discriminate against local maxima and

minima to sense the overarching gradient slope. It has been

suggested that cells alternate between periods of sensitization and

desensitization and are thereby capable of maintaining an overall

response to long-range gradients [23].

Random pattern generation is well established, however many

patterns are not random in the mathematical sense, and often

implement only an approximation of randomness to varying

degrees depending on the needs of the application. Firstly,

computers typically generate ‘pseudo-random’ numbers that

statistically approximate the properties of true random numbers

using an algorithm based on an initial ‘random seed’ – generally a

random bit. If this random seed is known, the set of pseudo-

random numbers can be replicated. However, for most applica-

tions, pseudo-random numbers are indistinguishable from a true

random number.

So-called random dot patterns are widely used in the

reproduction of images and patterns using displays or printers

that impose digitization and pixelation. Pixelation implies that

pixels are positioned on a regular grid. Adjusting grayscale images

to binary (black and white pixels) through half-toning is achieved

by adjusting the ratio of black and white pixels in a local area, but

if pixels are turned on and off according to an ordered pattern,

rendering artifacts (such as Moiré patterns) arise. By locally

randomizing the pixels turned on or off while matching the overall

desired grayscale, it is possible to avoid such rendering artifacts.

These ‘random-grid’ patterns can be generated using an array of

pseudo-random values and a threshold dictated by the local grey

value used to determine which pixels are black or white (Figure S1)

[24]. With this approach, the value of each pixel is random, while

the pixel position is fixed to an ordered grid. These random-grids

have found application in the half-toning of images for display or

printing [25] and the generation of random-dot stereograms for

depth perception studies [26].

Random dot patterns also comprise dot patterns where the

position of the dots is not constrained to a grid as described

previously, but is instead randomized within a given space.

However, pseudo-random distributions of the dots, when seen

from afar, can appear noisy and inhomogeneous to the eye.

Therefore, algorithms involving so-called quasi random numbers

(also called low discrepancy sequences) are used to create patterns

with a more uniform distribution that appears visually smooth

[27]. ‘‘Quasi-random’’ is a broad term that encompasses numbers

with a disordered distribution that lie between a (pseudo-)random

distribution and a regular distribution [28]; a quasi-random

distribution may more closely resemble an ordered distribution

than a random distribution upon closer examination. Many

different algorithms have been developed to produce quasi-

random numbers. As an example, for liquid crystal displays, quasi-

random dot patterns without overlap are generated by mimicking

molecular dynamics in which two ‘‘molecules’’ cannot occupy the

same space [29] or by iteratively repositioning overlapping dots

until overlap is minimized [27].

Both random-grid and quasi-random patterns have been

optimized to produce a pleasing (macroscopic) image to the eye

by introducing a controlled amount of microscale disorder,

avoiding both the viewing artifacts of regular arrays and the

inhomogeneity of pseudo-random dot patterns. Cells however are

microscopic and sense their environment at the micro- and

nanoscale. At these scales, random grid or quasi-random

distributions can be significantly different from a random one,

and may not adequately reproduce the effect of a random pattern

on cells. It is therefore necessary to establish an approach to

produce random dot patterns that preserves randomness at the

micro- and nanoscale to study the effect of random vs. ordered dot

patterns on cell navigation.

Here, we introduce continuous DNGs eliminating the stepwise

density changes of the previously reported ‘‘step’’ design [14] with

(i) ordered and (ii) pseudo-random positioning of nanodots, as well

as (iii) non-monotonic DNGs that can be implemented using either

(i) or (ii). We discuss various strategies to create noisy DNGs and

outline the challenges in forming random DNGs with accurate

slopes, and describe a novel algorithm with pseudo-random

positioning of the dots and compensating for random, but

predictable, dot overlap to achieve the desired coverage. The

slope of random DNGs was measured and compared to the

programmed density function, and their randomness verified using

Ripley’s K-function. We generated an array of 100 ordered and

random 4006400 mm2 large DNGs made of 2006200 nm2

nanodots, including monotonic and non-monotonic density

curves, with a dynamic ranges spanning from 2.14 to 3.86 OM.

Non-monotonic gradients produced here aim to introduce in a

quantitative and repeatable manner ‘‘microscale noise’’ into

surface-bound in vitro gradients. The entire array of 100 DNGs

covers a 35 mm2 area and is comprised of more than 57 million
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nanodots. The DNG array was patterned onto a silicon (Si) wafer

by electron-beam (e-beam) lithography, and was transferred onto

glass slides by lift-off nanocontact printing of fluorescently labeled

IgGs [14]. The fidelity of the replication process was evaluated by

overlaying the DNG design with fluorescence microscopy images

of the printed IgG proteins.

Materials and Methods

Software and Computers
Algorithms were developed in Matlab R2013a (Natick, MA,

USA). Scripts of the ordered and random gradient algorithms are

available upon request. A spreadsheet template (Microsoft Excel

2010) of gradient parameters was imported into Matlab for

processing. The output for each gradient was a text file of

coordinates formatted as a Caltech Intermediate Format (CIF) file,

which is a vector graphic format and minimizes file size. CIFs were

imported into CleWin Version 4.1 (WieWeb, MESA Research

Institute at the University of Twente and Deltamask, Netherlands).

Gradients were exported from CleWin as Bitmap (BMP) image

files for verification of density using ImageJ 1.47 64-bit (National

Institutes of Health, USA) and Matlab. The 100-gradient array

was designed in L-edit (Tanner EDA, Monrovia, CA, USA). All

software was run on a 2013 iMac computer with a 3.4 GHz Intel

Core i7 processor with 32 GB 1600 MHz DDR3 memory

running Windows 7 through a bootcamp partition.

Electron-Beam Lithography
A 4’’ Si wafer was coated with PMMA resist and the 100-

gradient array was patterned by e-beam lithography (VB6 UHR

EWF, Vistec, Montreal, QC, Canada), followed by reactive-ion

etching (System100 ICP380, Plasmalab, Everett, WA, USA)

100 nm deep into the Si wafer.

Stamp Fabrication
After cleaning, the Si wafer was coated with perfluorooctyl-

triethoxysilane (Sigma-Aldrich, Oakville, ON, Canada) by vapor

phase deposition. An accurate polymer copy of the wafer was

obtained after double replication using polydimethylsiloxane

(PDMS) and a UV-sensitive polyurethane as described in [14].

First, a 6 mm layer of 1:10 PDMS (Dow Corning, Corning, NY,

USA) was poured on the wafer inside a Petri dish, followed by

degassing under vacuum in a desiccator for 10 min. Next, the

PDMS was cured in an oven for 24 h at 60uC (VWR, Montreal,

QC, Canada), then peeled from the wafer. To remove uncured

monomers and other extractables, the PDMS replica was

submersed in 70% ethanol for 24 h then baked at 60uC for 4 h.

Next, a drop of UV sensitive polyurethane (Norland Optical

Adhesive 63 (NOA 63), Norland Products, Cranbury, NJ) was

applied to the PDMS replica and cured by 600 W of UV light

(Uvitron International, Inc., West Springfield, MA) for 45 s. The

PDMS was then removed yielding an NOA replica of the original

Si wafer pattern with 200 nm holes [14].

Nanocontact Printing
A flat PDMS stamp was cured against a flat-bottomed petri

dish. Following removal of the extractables as mentioned above,

the flat PDMS stamp was inked with a 10 mL drop of phosphate

buffered saline solution (PBS) containing 25 mg/mL of chicken

immunoglobulin G (IgG) conjugated to Alexa Fluor 488 (Invitro-

gen, Burlington, ON, Canada). A plasma activated hydrophilic

coverslip was then placed on the drop to spread the solution evenly

across the surface of the hydrophobic PDMS stamp during a

5 min incubation period. After rinsing with PBS and double

distilled water for 15 s each, the inked stamps were briefly dried

under a stream of N2 and immediately brought into contact with a

plasma activated (PlasmaEtch PE-50, PlasmaEtch, Carson City,

NV, USA) NOA master for 5 s. The PDMS and NOA were

separated and proteins in the contact regions were transferred to

the NOA. The remaining proteins on the PDMS were transferred

to the final substrate by printing the PDMS stamp for 5 s onto a

plasma activated glass coverslip.

Imaging and Analysis
Images of the original Si master were collected using scanning

electron microscopy (SEM, JEOL, Japan). DNGs of fluorescent

IgGs were imaged by fluorescence microscopy (TE2000 micro-

scope, Nikon, Canada and CoolSNAP HQ2 camera, Photo-

metrics, USA). Images of the Si wafer were captured with a

Panasonic Lumix GH3 DSLR equipped with an Olympus M.

Zuiko Digital ED 60 mm macro lens. Dark field images were

captured with an inspection microscope (LV150A microscope and

Digital Sight DS-Fi1 camera, Nikon, Canada).

Results and Discussion

Ordered Gradient Algorithm
Ordered DNGs with continuously changing density were

programmed by forming columns of nanodots with equal vertical

spacing while varying the spacing between columns horizontally

(Figure 1A). The density of the gradient at any point along the

length l is dictated by an input density function D, and is realized

by placing a single nanodot into a virtual box to form a unit cell.

The dimensions di of the unit cell at the ith column of nanodots are

given by the square root of the nanodot area Adot divided by the

density value at the given position (Eq. 1). In this algorithm, the

size of the nanodot remains constant while the dimensions of the

unit cell vary for each column of nanodots along the length.

di~

ffiffiffiffiffiffiffiffiffi
Adot

D(l)

s
ð1Þ

The unit cell is largest at low densities and decreases at higher

densities, matching the dimensions of the nanodot at a density

equal to one. The unit cell dimensions for each column are

calculated using an iterative approach, starting from the first

column of nanodots at length zero. The position along the length

for the next column of nanodots is given by the cumulative sum of

unit cell dimensions (Figure 1B).

The width of the gradient is divided by di to estimate the

number of nanodots in the column. The value of di is then

recalculated to equally space the integer number of nanodots

along the width, ensuring that the distribution of nanodots is

symmetrical. The unit cells are concatenated to form a column of

points in the y direction with constant spacing as multiples of di.

The x coordinate for each column is the position l at which the

unit cell dimensions are calculated. Thus, using this algorithm it is

easy to form a gradient with any slope as the size of the unit cell is

directly derived from the value of the density function at a specific

position. Figure 2 shows a linear density curve spanning from a

minimum density Dmin = 0.01 to a maximum density Dmax = 0.30
(Eq. 2) with corresponding unit cell dimensions along the length of

the gradient. Eq. 2 is normalized to span the dynamic range over

the total length L = 100 mm of the gradient.
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Figure 1. Ordered gradient algorithm for continuously changing density in Digital Nanodot Gradients (DNGs) using a unit cell
approach. (A) Schematic of a linear DNG and unit cell parameters for the ith column of nanodots. (B) Calculation of unit cell dimensions at each
position through an iterative process using the cumulative sum of unit cell dimensions to determine position along the length.
doi:10.1371/journal.pone.0106541.g001

Figure 2. Programmed and measured density for an ordered linear DNG. A 1006100 mm2 linear DNG comprised of 0.04 mm2 nanodots and
spanning from 0.01 to 0.30 density. The measured density (left axis) precisely matches the programmed density (R2 = 0.9998). The unit cell dimensions
(right axis) change with the inverse square root of the density. Top insets show various spacing of nanodots at positions along the DNG.
doi:10.1371/journal.pone.0106541.g002
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D(l)~(Dmax{Dmin)
l

L
zDmin ð2Þ

To verify that ordered gradients matched the programmed

density functions, gradients were exported as bitmap images and

the ratio of black to white pixels, averaged over several columns of

nanodots, was used to measure density. The resulting gradients

were found to match the programmed density functions with high

fidelity (R2 = 0.9998). A high fidelity match with the programmed

density function was also demonstrated over a broad range of

density values (0.01–0.99), and can be seen in Figure S2. Using this

algorithm, a density of zero cannot be reached, as it would require

an infinitely large unit cell. Consequently, when designing

gradients of fixed length, the lowest density that is accessible

may be limited since large unit cells are required at very low

density.

Random Gradient Algorithm
Naturally occurring gradients appear continuous at the micro-

scale, but are in fact digital at the scale of molecules and proteins.

The diffusion of biomolecules is subject to Brownian motion, and

is therefore expected to be random. In an effort to mimic the

nanoscale noise present in vivo, we present an approach to

produce DNGs with fully randomized nanodot positions. Similar

to ordered DNGs, random gradients have increasing density along

the length and constant density along the width.

Several strategies were considered to produce randomized

DNGs. The first was akin to the one proposed by Dalby, et al. [16]

and consisted of starting with a regular distribution of dots, and

randomly displacing the nanodots within their ‘‘unit cell’’ to avoid

overlap with neighboring dots. However because this approach

only produces a quasi-random distribution, it was not pursued. A

second approach that was considered was to start with a pseudo-

random dot pattern, and then compensate for the overlap by

locally moving dots. This parallels a strategy used in back-lit

displays [29], however these patterns are unsuitable for our

application due to the dependence on or optimization for quasi-

random distributions. Whereas we don’t see fundamental obstacles

in developing an algorithm to randomly redistribute overlapping

dots, such algorithms tend to be computationally intensive as the

position of each dot needs to be tested against each other dot, and

require multiple iterations to achieve the final distribution [27].

We thus devised a novel algorithm to create pseudo-random

nanodot patterns for cell navigation that could translate arbitrary

density functions into random nanodot patterns, and that was

computationally economical.

The algorithm we developed compensates for the random

overlap of dots by adding an excess of dots to achieve the

programmed density. The algorithm first defines equally sized

boxes to smoothly replicate the programmed density function

without visible steps. The number of nanodots within each box

was calculated based on the density function with predicted

overlap at the box’s position, and random x and y coordinates

were generated for each nanodot. Only the nanodot coordinates

were stored; the shape of the nanodots can be defined

subsequently as the exported CIF file allows drawing shapes such

as circles, polygons, etc. at the stored coordinates, thus making this

approach flexible while reducing the file size and computation

time. A consequence of the random nanodot position is that

overlap between nanodots is possible. The frequency of overlap

increases with density, which in turn results in a lower density than

expected based on the surface area of all nanodots. However,

because the distribution of the nanodots is random and the density

known, the overlap is predictable, and can be compensated for so

that the designed DNG matches the density function with high

fidelity. For each box with area Abox, we first compute the

probability Pcov that any given point in the box is covered by a

nanodot of area Adot (Eq. 3).

Pcov~
Adot

Abox

ð3Þ

The probability Pnot cov that this point will not be covered by the

nanodot is simply 1 – Pcov (Eq. 4).

Pnot cov~ 1{
Adot

Abox

� �
~

Abox{Adot

Abox

ð4Þ

The probability that this point will not be covered by N
nanodots simultaneously can then be found (Eq. 5).

Pnot cov~
Abox{Adot

Abox

� �N

ð5Þ

To determine the total area of the box covered by nanodots

(Acov), the probability that a point will be covered is integrated

over the area of the box (Eq. 6).

Acov~

ðAbox

0

(1{Pnot cov)dA ð6Þ

Acov~Abox{
(Abox{Adot)

N

AN{1
box

ð7Þ

Eq. 7 can then be solved for N to determine the number of

nanodots required for a given Acov in each box.

N~
log (1{Acov=Abox)

log (1{Adot=Abox)
ð8Þ

Using Eq. 8 it is possible to obtain the number of nanodots

required for any given density by substituting D for Acov/Abox. As

the area occupied approaches the area of the box, the number of

nanodots required increases rapidly, and is infinite for a density of

1. The maximum density for a DNG was thus set to 0.9999.

Without compensation, at density of 0.9999 would require 9,999

nanodots of 2006200 nm2 to be seeded into a 40061 mm2 box to

reach this density. When accounting for the overlap, 92,099

nanodots are required, roughly a tenfold increase. Thus,

producing a typical linear gradient, ranging in density from

0.0002 to 0.4444 requires 1,061,307 nanodots and a computation

time of 4.56 min (including CIF file generation). The ordered

algorithm for the same linear gradient requires 885,737 nanodots

and a computation time of 3.88 min. Therefore, the random

gradient algorithm overall required a 19.8% increase in nanodots

and a 17.5% increase in computation time using our workstation.

It is expected that the time will increase for random DNGs that

reach a higher density.

Ordered, Random, Monotonic and Non-Monotonic Digital Nanodot Gradients

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e106541



Figure 3. Ordered and random DNGs superposed with their programmed exponential density function and actual, measured
density. A 1006100 mm2 exponential (k = 3) DNG spanning from a density of 0.01 to 0.30 is shown in ordered (top half) and random (bottom half)
form. The random DNG was programmed by subdividing it into 1 mm wide boxes with random seeding of nanodots and compensating for overlap.

The measured density follows the programmed exponential curve with high fidelity for both ordered (R2 = 0.99996) and random (R2 = 0.99986) DNGs.
doi:10.1371/journal.pone.0106541.g003

Figure 4. Ripley’s K analysis for randomness and spatial homogeneity of a sample box produced with the ordered and random
DNG algorithms. K(s) for ordered and random gradients for a 106400 mm2 box at 0.20 density are shown. A 95% confidence interval was calculated
as 1.96 times the standard deviation of K(s) from 10 simulations of randomly distributed points at 0.20 density. The inset shows a magnified portion of
the graph indicated by the box.
doi:10.1371/journal.pone.0106541.g004
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We compared the programmed density with the measured

density of a monotonic exponential curve with decay constant k
(Eq. 9) using both the ordered and random gradient generation

approaches. Eq. 9 is normalized to span the dynamic range over

the length of the gradient. The random gradients produced with

this algorithm were found to follow the programmed curve with

high fidelity (R2 = 0.99986), and accurately match the measured

density of ordered gradients produced with the same input

function (Figure 3).

D(l)~(Dmax{Dmin)
ek l

L{1

ek{1
zDmin ð9Þ

The distribution of neighboring nanodots can be parsed to

verify whether it satisfies the conditions of randomness. Since

density changes along the length of the DNG, randomness can

only be assessed in the direction of constant density, perpendicular

to the gradient. The randomness along each box was verified using

Ripley’s K function based on the number of nanodots Npi within a

distance s from the ith point pi taken over the sum of all points n
and normalized by the area l (Eq. 10).

K(s)~
1

n

Xn

i~1

Npi
(s)=l ð10Þ

For a homogenous, random Poisson distribution, the expected

value of Eq. 10 is ps2. Deviations from ps2 indicate regions of

clustering or dispersion [30]. Using the coordinates of nanodots

from the DNGs, K(s) was found to lie within a 95% confidence

interval obtained from 10 simulations of randomly distributed

coordinates at the same density. This suggests the nanodots are

spatially homogenous and randomly distributed compared to

ordered gradients, which lie outside the confidence interval

(Figure 4).

Non-monotonic gradients
We have shown that linear and exponential gradients can be

produced using either the ordered or random algorithms. These

curves are monotonic, meaning they only ever increase or

decrease. Given the approaches outlined here, more complex

gradients can be easily generated from any input density function,

specifically non-monotonic curves. To study the ability of cells to

Figure 5. Non-monotonic random DNG superposed with its density function and actual, measured density. A 100 x 100 mm2 non-
monotonic DNG. The programmed density function (line) is a sinusoid (A = 0.10, B = 20) with an average exponential trend (k1 = 3) and exponentially
increasing amplitude (k2 = 3). Measured density from bitmap (circles) accurately follows the programmed function (R2 = 0.9988). Insets show close-up
views of nanodots and reveal increasing overlap of nanodots at higher densities.
doi:10.1371/journal.pone.0106541.g005
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recognize an average gradient in a non-monotonic environment,

we propose linear and exponential gradients that are superposed

with sinusoidal functions with either constant amplitude, or with

linear or exponentially changing amplitude. In the anticipation of

future cell experiments, we also programmed a series of sinusoids

with varying frequency and amplitude, while having an average

slope of zero to act as negative controls.

Here, we demonstrate the flexibility of the algorithms with the

production of non-monotonic gradients. One such gradient

produced is a sinusoid with exponentially increasing amplitude

superposed with an exponential gradient (Figure 5). Eq. 11 gives

Figure 6. Density functions of the array of 100 DNGs. Each box shows the density function of one gradient. Functions 1–20 were produced
with the ordered gradient algorithm (red), and functions 21–100 were produced with the random gradient algorithm (blue). Functions 1–10 and 81–
90 are linear. Functions 11–20 and 91–100 are exponential. Functions 21–34 are sinusoidal with no slope (controls), where 21–30 have linearly
increasing amplitude and 31–34 have constant amplitude. Functions 35–36 feature a linear slope superposed with a sinusoid that has linearly
increasing amplitude. Functions 37–40 feature an exponential slope superposed with a sinusoid that has exponentially increasing amplitude.
Functions 41–60 have a constant slope superposed with a sinusoid of constant amplitude. Functions 61–80 are exponential slopes superposed with
sinusoids of constant amplitude.
doi:10.1371/journal.pone.0106541.g006

Figure 7. Optical images of the 100-gradient-array. The 100 DNGs were patterned into a Si wafer using e-beam lithography. (A) Image of all
gradients; scale bar is 1 mm. (B) Dark-field image of DNG 67 which is a random sinusoid with exponentially increasing average density; scale bar is
100 mm.
doi:10.1371/journal.pone.0106541.g007
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the input density function for such a curve, where A is the

amplitude, B is the number of oscillations, and k1 and k2 are the

decay constants for the average gradient and amplitude of the

sinusoid, respectively.

D(l)~(Dmax{Dmin)
ek1

l
L{1

ek1{1
zA sin 2pB

l

L

� �
ek2

l
L{1

ek2{1

zDmin

ð11Þ

One-Hundred-Gradient Array. The flexibility of the gradi-

ent algorithms and the fabrication method discussed below was

leveraged by producing an array of 100 distinct gradients within a

35 mm2 area (Figure 6, Table S1). The array is comprised of 20

ordered and 80 random gradients, with densities ranging from

0.0002 to 0.4444 for a maximum dynamic range of 3.85 OM. For

ordered gradients, this corresponds to a maximum pitch of

14.8 mm at low density, and 100 nm at high density. The

minimum density is limited by the size of the cell and its capacity

to sense the gradient, i.e. the cell will not sense the gradient if dot

spacing exceeds one third the size of the cell, which we previously

assessed using the migratory response of C2C12 myoblasts [14].

The maximum density is defined by the resolution of e-beam

lithography, which limits the minimum pitch to 100 nm. To

address how randomness affects cell navigation, 20 gradients (10

linear and 10 exponential) were produced as both ordered (#1–20)

and random (#81–100) gradients. This portion of the array will

serve to address gradient sensing mechanics for cell migration that

may arise from either (i) the absolute concentration of the gradient

at a given location or (ii) the concentration ratio between the cell’s

leading and trailing edges.

The other 60 gradients are non-monotonic and random. These

consist of 14 sinusoids with no average slope (#21–34) that serve

Figure 8. Nanodot distribution in ordered and random DNGs. SEMs of ordered (A–D) and random (E–H) exponential gradients at low (A,B,E,F)
and high (C,D,G,H) densities. (H) highlights the random overlap between nanodots that is compensated for by the random DNG algorithm. Scale bars
are 10 mm (top row) and 500 nm (bottom row).
doi:10.1371/journal.pone.0106541.g008

Figure 9. The printed nanodot pattern accurately replicates the design. Bitmap image of the programmed design colored in red (A, D)
compared with a fluorescent image of nanocontact printed IgG by lift-off (B, E, green) and merged (C, F). In the inset (E), out of ,1000 spots, 21 are
missing, indicating that the replication works well. Scale bars A–C are 10 mm, scale bars D–F are 2 mm.
doi:10.1371/journal.pone.0106541.g009
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as controls. These vary in frequency and amplitude, and may have

constant or increasing amplitude along their length. Controls for

ordered gradients were designed in our prior work. The remaining

46 gradients (#35–80) have sinusoidal curves with various levels of

complexity. These include sinusoids with linearly (#41–60) and

exponentially (#61–80) increasing average density, and non-

monotonic functions with linearly increasing amplitude and

average density (#35–36) and exponentially increasing amplitude

and average density (#37–40) to demonstrate the flexibility of this

new approach in gradient generation. As discussed, the sinusoidal

curves with different amplitude and frequency may introduce

obstacles for cells trying to sense the overarching gradient, and

replicate effects that may occur due to cell ‘‘mosaicism’’ in a

controlled manner.

Gradient Array Fabrication
The hundred-gradient array was etched 100 nm deep into a Si

wafer by e-beam lithography (Figure 7). The integrity of individual

dots for ordered and random gradients was confirmed by scanning

electron microscopy (SEM) (Figure 8).

To translate the etched Si wafer into substrate-bound protein

gradients, we employed lift-off nanocontact printing [14]. First, a

PDMS intermediate replica was produced, followed by a second

replication into low-cost Norland Optical Adhesive. A flat PDMS

stamp was inked with a protein solution, and through contact with

the plasma-activated NOA lift-off stamp, a monolayer of protein

was selectively removed from the surface of the flat stamp leaving

behind the digital nanodot protein pattern. Next, the flat PDMS

stamp was brought into contact with a plasma-activated glass slide

to transfer the DNG pattern. To confirm the accuracy of the

replication and printing process, images of the design and the

printed protein DNG were digitally overlapped and compared

(Figure 9), revealing a high fidelity between the two patterns.

The pattern overlay in Figure 9 was characterized by thresh-

olding the printed image with boundaries of 31 and 255 in ImageJ

and comparing it to the bitmap image (Figure S3). The total

number of nanodots is difficult to determine owing to the random

overlap, but we estimate that there are ,1000 spots, and using the

above threshold, 21 were lacking from the print. Overall, the

transfer process is thus accurate to ,98% in this example. Dust

particles on the Si wafer or on the intermediate PDMS replica, or

mechanical damage due to the replication process could account

for the absence of these protein dots. While the fidelity of the

replication and printing process is high, it might be improved

further by employing more durable polymers during the replica-

tion process as well as by working in a cleanroom environment

throughout.

Conclusion

Patterned substrate-bound protein gradients are a valuable tool

to study a number of biological processes such as neuronal

development or regeneration. The novel algorithms presented

here, providing pseudo-randomness at a scale commensurate to

the cellular level, can provide control over geometry and noise in

DNGs. Combined with high-throughput patterning, an array of

one hundred DNGs with linear, exponential, and non-monotonic

slopes featuring 57 million spots over an area of 35 mm2 can be

patterned at once in a matter of minutes. The diversity of DNGs

shown here will help study and quantify the mechanisms by which

cells sense and navigate through immobilized gradients. There are

many opportunities for refining digital nanodot patterns. Firstly, to

mimic the self-repellent nature of proteins adsorbing to surfaces, it

might be useful to develop an algorithm that prevents, or limits,

the overlap of nanodots. Secondly, whereas here two curves were

superposed in one direction, such curves might be generated in

two perpendicular directions to create a two-dimensional naviga-

tion landscape to better mimic the local accumulation of guidance

cues as puncta. Thirdly, it might be possible to program density

functions that introduce clusters of noise that more accurately

replicate the noise and mosaicism imposed by individual cells in
vivo which can extend over tens of micrometers. Fourthly, it

should be possible to pattern overlapping DNGs of different

proteins that run in the same, or different directions, as well as

produce any type of navigational landscapes that are found in vivo
simply by converting the recorded densities into digital nanodot

patterns, following the trend of rapid prototyping of replicas of

living tissues [31]. Before expanding the nanodot patterning, it will

be important to test and validate the current DNGs and establish

the optimal conditions along with the suitable non-patterned

reference surfaces for each study [32].

Supporting Information

Figure S1 Random gradients produced by a random
matrix threshold approach. A matrix of pseudo-random

numbers is generated. Values greater than or equal to the density

threshold are set to 0 (white), while values less than the threshold

are set to 1 (black). The binary array can then be exported directly

as a bitmap image file. Each nanodot is represented by one pixel.

Thus, for a 4006400 mm2 sized area with 2006200 nm2

nanodots, a 200062000 matrix with 4 million values is required.

This approach does not provide a fully random configuration since

nanodots are aligned to a grid. While these patterns appear

random to the eye, the underlying grid might be sensed at the

cellular scale. Theoretically, it is possible to further randomize the

position of dots by subdividing the area, e.g. using a 50 nm grid to

position and draw 2006200 nm2 pixels, but this would come at

the cost of increased computational requirements and the

possibility of overlap between adjacent dots.

(TIF)

Figure S2 Ordered and random measured density
matches programmed density over full range. Linear

gradients from densities of 0.01 to 0.99 were shown to match (dots)

the programed functions (line) with high fidelity for both ordered

(R2 = 0.9988) and random (R2 = 1.0000) gradients. Using either

approach, a high dynamic range can be achieved with near perfect

match to the programmed function.

(TIF)

Figure S3 Image processing procedure to assess align-
ment of the DNG design and print. The fluorescent image of

nanocontact printed IgG was first thresholded in ImageJ with

boundary values of 31 and 255. The image was then transformed

to binary and the binary values inverted to facilitate visualization.

The edited fluorescent image (green) was then merged with the

bitmap (red) and yellow dots, indicative of non-printed dots, were

counted to determine to what extent the print matched the design.

(TIF)

Table S1 Function type and parameters of the one-
hundred gradient array. Function type (i.e. linear, exponen-

tial, sinusoid with added trend), gradient type (ordered or random),

and minimum/maximum density values for each of the 100

gradients. Gradient number is matched to density functions found

in Figure 6.

(PDF)
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