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Abstract

MicroRNA (miRNA) expression profiling has proven useful in diagnosing and understanding the development and
progression of several diseases. Microarray is the standard method for analyzing miRNA expression profiles; however, it has
several disadvantages, including its limited detection of miRNAs. In recent years, advances in genome sequencing have led
to the development of next-generation sequencing (NGS) technologies, which significantly advance genome sequencing
speed and discovery. In this study, we compared the expression profiles obtained by next generation sequencing (NGS)
with the profiles created using microarray to assess if NGS could produce a more accurate and complete miRNA profile.
Total RNA from 14 hepatocellular carcinoma tumors (HCC) and 6 matched non-tumor control tissues were sequenced with
Illumina MiSeq 50-bp single-end reads. Micro RNA expression profiles were estimated using miRDeep2 software. As a
comparison, miRNA expression profiles for 11 out of 14 HCCs were also established by microarray (Agilent human microRNA
microarray). The average total sequencing exceeded 2.2 million reads per sample and of those reads, approximately 57%
mapped to the human genome. The average correlation for miRNA expression between microarray and NGS and
subtraction were 0.613 and 0.587, respectively, while miRNA expression between technical replicates was 0.976. The
diagnostic accuracy of HCC, p-value, and AUC were 90.0%, 7.2261024, and 0.92, respectively. In summary, NGS created an
miRNA expression profile that was reproducible and comparable to that produced by microarray. Moreover, NGS discovered
novel miRNAs that were otherwise undetectable by microarray. We believe that miRNA expression profiling by NGS can be a
useful diagnostic tool applicable to multiple fields of medicine.
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Introduction

MicroRNAs (miRNAs) are an abundant class of small (19–

24 nt) and highly conserved, non-coding RNA. They act as post-

transcriptional regulators of gene expression, altering mRNA

transcription and translation by hybridizing to the untranslated

regions (UTRs) of certain subsets of mRNAs [1] [2]. Since their

initial discovery in Caenorhabditis elegans in 1993 [3], researchers

have gained much insight into the prevalence of miRNAs in other

species. The latest miRBase database (release 20) contains 1827

precursor miRNAs and 2578 mature miRNA products in Homo
sapiens (http://www.mirbase.org/index.shtml).

Hepatocellular carcinoma (HCC) is a common cause of cancer-

related deaths worldwide. There are more than 250,000 new

HCC cases and an estimated 500,000–600,000 HCC deaths

annually [4] [5]. The most frequent etiology of HCC is chronic

hepatitis B and C (CHB, CHC), or alcoholic liver disease.

Although recent advances in functional genomics provide a deeper

understanding of viral associated hepatocarcinogenesis (review in

[6]), the molecular pathogenesis of HCC remains unclear.

Altered miRNA expression has been observed in a large variety

of HCC and a correlation has been found between miRNA

expression and histological differentiation [7] [8]. For example,

the expression level of miR-26 has been associated with

hepatocarcinogenesis and response to interferon therapy [9].

Moreover recently, miR-122 expression was associated with

hepatocarcinogenesis, liver homeostasis, and essential liver me-

tabolism [10] [11]. miR-18 has also been highly associated with

the occurrence and progression of different types of cancer [12]

[13]. In other research, miRNA expression profiles were

associated with vascular invasion, the levels of alpha-fetoprotein,

and large tumor size [14].

To date, studies exploring the role of miRNAs in hepatocar-

cinogenesis have relied on microarrays to assay miRNA expres-

sion. Deep sequencing, a set of technologies that produce large

amounts of sequence data from nucleic acid specimens, is rapidly

replacing microarrays as the technology of choice for quantifying

and annotating miRNAs [15] [16]. Deep sequencing has the

superior ability to capture the scale and complexity of whole

transcriptomes [17]. In particular, short read deep sequencing
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(e.g., the Illumina MiSeq platform) is appropriate for miRNAs

because a complete miRNA can be sequenced with a single read.

While array design relies on prior knowledge of the miRNAs being

investigated, deep sequencing allows for the discovery of novel

miRNAs. Furthermore, microarray methods lack the dynamic

range to detect and quantify low abundance transcripts, but deep

sequencing can identify miRNAs that are expressed at levels that

fall below microarray’s detectable threshold. In addition, deep

sequencing eliminates background problems that result from cross-

hybridization in microarrays, thus facilitating interpretation of the

signal and obviating the non-linear data manipulation steps

required by microarrays. Therefore, the application of deep

sequencing to miRNA profiling has the potential to uncover novel

miRNAs and to detect expression of rare but functionally

significant miRNAs. Recently, deep sequencing was used to

analyze non-coding RNAs in HCC, by which miRNAs, PIWI-

interacting RNA, and small nucleolar RNAs were identified [18].

In this study, we created miRNA expression profiles for HCC

and non-tumorous tissue using NGS. We then compared the

miRNA expression profiles obtained by NGA and microarray.

Unlike previous studies, we sequenced un-pooled miRNA libraries

to a previously unprecedented sequencing depth from multiple

replicates and controls across multiple time-points, allowing us to

explore the statistically significant temporal changes in miRNA

expression in hepatocarcinogenesis.

Materials and Methods

Sample preparation
We isolated total RNA from 14 surgically resected HCC tumors

and 6 matched adjacent non-tumor control tissues (Table 1). We

confirmed that the 14 samples were accurately diagnosed as HCC

by image diagnosis by CT and USTG and pathological findings.

All patients or their guardians provided written informed consent,

and Osaka City University and Ogaki Municipal Hospital

approved all aspects of this study in accordance with the Helsinki

Declaration.

RNA preparation, and miRNA deep sequencing and
microarray

Total RNA from surgical resection was prepared using mirVana

miRNA Isolation kit (Invitrogen), according to the manufacturer’s

instruction.

Total RNA, containing the small RNA fraction, was reverse

transcribed into a cDNA library using the TruSeq Small RNA

Sample Prep Kit (Illumina). Briefly, total RNA (1 mg per sample)

was ligated overnight with adapters, reverse transcribed, RNase-

treated, and PCR-amplified with unique barcode-labeled ampli-

fication primers. Then, size-selection was conducted on 6% native

polyacrylamide gels. cDNA fragments between 145 and 160 bp

corresponding to the miRNA populations were excised from the

gel, then eluted and precipitated. The final cDNA pellet was air

dried and resuspended in 10 ml of nuclease-free water. The

quantity of cDNA in each final miRNA libraries was verified using

Qubit fluorometer (Invitrogen). Equimoloar amounts for each

final library were pooled at a final concentration of 2 nM cDNA.

Barcoded templates were sequenced on a single flowcell of the

Illumina MiSeq with 50-bp single-end reads. Eleven of 14 total

HCC RNA samples were also assayed by microarray (Agilent

human microRNA microarray release 14.0) (Table 1). Hybridiza-

tion signals were detected with a DNA microarray scanner

G2505B (Agilent Technologies) and the scanned images were

analyzed using Agilent feature extraction software (v9.5.3.1). Raw

data (gProcessedSignal) was normalized so that each expression

had a mean of zero and a sample variance of one. The above

processes were conducted with various packages and functions

implemented in R {http://www.r-project.org}.

The sequence reads obtained in this study have been deposited

in the DNA Data Bank of Japan Sequence Read Archive (http://

www.ddbj.nig.ac.jp/index-e.html) under accession number

DRA001067. All microarray data were deposited in NCBI’s Gene

Expression Omnibus and are accessible through GEO Series

accession number GSE31164.

Bioinformatics
In order to extract the adaptor sequence from each short read

obtained by NGS, fastx_clipper from the fastx toolkit {http://

hannonlab.cshl.edu/fastx_toolkit/} was used. The adaptor

trimmed short reads were then mapped to the human reference

genome sequence hg19 by mapper.pl script included in

miRDeep2 [19] {http://genomewiki.ucsc.edu/index.php/Hg19_

Genome_size_statistics}. miRNA mature and hairpin sequences

were obtained from miRBase release 18 {http://www.mirbase.

org}. Finally, the resulting fastq files were processed by

miRDeep2.pl script. miRNA read counts were extracted from

the ‘‘read_count’’ column of the file named‘‘miRNAs_expresse-

d_all_samples_sample_id.csv’’ file; while sample_id was given

automatically by scripts (for sample scripts see Text S1 and for

extracted read counts for each miRNA see Table S1). When

drawing boxplots, the read count in each sample was normalized

such that it had a zero mean and a variance of one. For

microarray processing, gProcessedSignal values were extracted

from raw data files. gProcessedSignal values were also normalized

so that they had a zero mean and a variance of one. Average

gProcessedSignal values over probes assigned to common mature

miRNA were used to compute the correlation coefficient for NGS

and microarray results. The correlation coefficients of logarithmic

expression and subtracted expression were computed using only

miRNAs with non-negative signals in both NGS and average

microarray expression. P-values associated with boxplots were

computed using Wilcoxon rank sum test. All bioinformatics

computation was performed using functions implemented in R.

To discriminate HCC from non-tumorous tissue when miRNA

expression was quantified by NGS, we combined principal

components analysis (PCA)-based feature extraction and PCA-

based linear discriminant analysis (LDA) [20] [21]. When PCA-

based feature extraction was applied, each miRNA was embedded

into a two-dimensional space by PCA and M miRNAs located far

from the origin (outliers) were selected. Using these selected

miRNA, each sample was embedded into a low dimensional space

with dimension (M–M’). Samples were then discriminated by LDA

using the M’ dimensional PC scores. For more details, see Text 2.

Novel miRNA candidates were selected from the total set if they

satisfied the following criteria: 1) among the novel miRNAs

identified by miRDeep2, those with a .80% probability of being a

true positive, and 2) the miRNA was reproducibly detected in

more than three samples.

Results

Analysis of miRNA sequence reads and reproducibility of
NGS analysis

The average number of sequencing reads per sample exceeded

2.2 million, of which approximately 57% mapped to the human

reference genome (for more details, see Table S2). A scatter plot of

logarithmic miRNA expression measured by NGS and microarray

using the first technical replicate of K-177 (K-177_1) is shown in

Fig 1.

NGS Analysis in HCC
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Although the microarray and NGS expression levels are not

perfectly correlated, they are approximately proportional to each

other with a positive proportional coefficient. The corresponding

scatter plots for the remaining 9 HCC samples are shown in

Fig. S1. The similarity in the NGS and microarray miRNA

profiling results was relatively independent of the samples

considered. The correlation coefficient of logarithmic miRNA

expression from 11 HCC miRNA expression profiles as measured

by both NGS and microarray was 0.613. This demonstrates that

NGS and microarray measurements give similar results.

We next validated the reproducibility of miRNA differential

expression across the 11 samples. In general, miRNA expression

profiles are not individually evaluated; instead, profiles for distinct

samples are analyzed in pairs e.g., compared between tumor and

adjacent non-tumorous tissue. Thus, reproducibility between NGS

and microarray is more important in differential expression than

in any single expression measurement by itself. Fig. 2 shows a

scatter plot of differential (K-177 vs. CU-087) logarithmic miRNA

expression obtained by NGS and microarray (Fig. S2 shows the

full set of scatter plots). Again, we observed that the coincidence

between NGS and microarray miRNA profiles was relatively

strong irrespective of the sample pair that was considered. The

correlation coefficient of differential logarithmic miRNA expres-

sion averaged over all pairs of 11 HCC is 0.587. This demonstrates

a reasonable level of congruency between miRNA profiling results

from NGS and microarray when considering differential logarith-

mic miRNA expression.

miRNA expression measured by NGS can be applied to
diagnosing HCC

In order to discriminate between HCC and non-tumorous

tissue, 11 miRNAs quantified by NGS (miR-10a-5p, miR-122-5p,

miR-146b-5p, miR-148a-3p, miR-192-5p, miR-22-3p, miR-26a-

5p, and miR-27b-3p, miR-10b-5p, miR-143-3p, and miR-21-5p)

were chosen by PCA-based feature extraction. The miRNA

expression levels in HCC and non-tumorous tissue is shown in

Fig 3. The expression level of miR-10a-5p (p,2.5661022), miR-

122-5p (p , 1.5561023), and miR-22-3 (p,4.6461023) among

the 11 miRNAs differed significantly in the HCC and non-

tumorous tissue. miRNA profiling allowed the accurate prediction

of HCC with an overall cross-validation accuracy of 90.0% (18/

20) by PCA-based feature extraction (Table 2). The p-value and

AUC value for diagnostic ability were ,7.2261024 and 0.92

respectively.

Reproducibility of NGS measurement among technical
replicates

We have demonstrated that quantifying miRNA using NGS

gives results similar to those obtained by microarray, and that

miRNA expression measured by NGS can discriminate HCC

from non-tumorous tissue. However, we have found that miRNA

profiling using NGS is more accurate in cases where NGS

measurement does not vary within multiple technical replicates.

For those HCC samples in this study that had more than one

technical replicate we validated the reproducibility of NGS

miRNA expression between technical replicates. Fig. 4 shows

examples of technical replicates (other scatter plots are available in

Fig. S3). Among three technical replicates, the correlation

coefficients of logarithmic miRNA expression are greater than

0.98. Additionally, the dynamic range is almost 5 digits. This

means that technical replicates obtained from NGS measurements

are highly reproducible.

Discovery of novel miRNAs in our analysis
NGS detected several miRNA candidates that are not registered

in the present miRBase (Rel. 18) (see Materials and Methods for

detection criteria, and see Supporting Information for more details

about detected miRNAs). We speculate that four precursor

miRNAs, hsa-mir-9985, hsa-mir-1843, hsa-mir-548bc, and hsa-

mir-9986 and the corresponding four mature miRNAs, hsa-miR-

9985, hsa-miR-1843, hsa-miR-548bc, and hsa-miR-9986, were

not previously reported because they are not among the miRNAs

found at the corresponding genomic coordinates. Fig. 5 shows the

sequence of the new miRNA candidates, their alignment with their

closest homologous miRNA, and the hairpin structure predicted

by RNA-fold with default parameter settings (short reads mapped

to these candidate miRNAs are available in Table S3).

Figure 1. Comparison between logarithmic HCC miRNA
expression in NGS (horizontal axis) and microarray (vertical)
analysis (K-177_1 means the first technical replicates of code
No. K-177). One black circle showed one miRNA. Pearson’s correlation
coefficient is 0.6059.
doi:10.1371/journal.pone.0106314.g001

Figure 2. Comparison between differential (K-177 vs. CU-087)
logarithmic HCC miRNA expression in NGS (horizontal axis)
and microarray (vertical) analysis. Pearson’s correlation coefficient
is 0.5555.
doi:10.1371/journal.pone.0106314.g002

NGS Analysis in HCC
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Figure 3. Boxplots of the expression of 11 miRNAs in HCC and non-tumorous tissue obtained by NGS, which were used for the
differential analysis. P-values were computed using two-sided Wilcoxon Rank Sum test. Asterisk indicates a significant difference of p,0.05 (*).
doi:10.1371/journal.pone.0106314.g003

NGS Analysis in HCC
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Discussion

The clinical application of miRNA expression profiling, such as

its use as a disease biomarker, has been extensively developed in

recent years. This analysis demonstrates that miRNA profiling by

NGS has the potential to diagnose HCC with high accuracy.

Previous comprehensive analyses of miRNA expression have been

performed by microarray; however, the miRBase is currently

underdeveloped. An updated miRBase is required to create

accurate microarray profiles, and especially because microarray

experiments performed using previous version of miRBase are

incompatible with microarrays based on the current version. The

results from our miRNA expression analysis in HCC suggest that

NGS may allow us to overcome this problem. Law et al. has

previously reported small RNA transcriptome analysis in HCC by

using NGS [18]. However, pre-miRNAs are of a similar length as

other more numerous classes of ncRNA, including tRNA and

snoRNA, making deep profiling of pre-miRNA sequences difficult

[22]. Therefore, this study focused on the analysis on whole

miRNA instead of ncRNA.

In order to determine if miRNA expression as measured by

NGS technology can discriminate HCC from non-tumorous

tissue, we adopted a recently proposed combination of PCA-based

feature extraction and PCA-based LDA [20] [21] (for details, see

Materials and Methods). Previously, we showed that miRNA

expression profiles detected by microarray can accurately

discriminate HCC from non-tumorous tissues [7] [23] [24] [25].

Therefore, because NGS produced results similar to those by

microarray, and was capable of differentiating HCC from non-

tumorous tissues, it is evident that miRNA expression quantified

by NGS is as informative as is miRNA expression assessed by

microarray. NGS’s ability to quantify miRNA expression suggests

Table 2. Performance of discrimination between 14 HCC samples and 6 normal tissue samples using miRNA expression obtained
by NGS analysis.

Result

Control Tumor

Prediction Control 12 0

Tumor 2 6

doi:10.1371/journal.pone.0106314.t002

Figure 4. Comparison between logarithmic miRNA expression in HCC and NGS technical replicates (K-177_1 means the first
technical replicates of code No. K-177). Pearson’s correlation coefficients are greater than 0.9861.
doi:10.1371/journal.pone.0106314.g004

NGS Analysis in HCC
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that the miRNA expression profile measured by NGS can be

clinically applicable as a diagnostic tool.

HCC was discriminated from non-tumorous tissues using a

linear combination of 11 miRNA expression profiles; however, it

may be useful to investigate the expression of individual miRNA in

order to understand their biological significance. Fig. 3 shows

boxplots of the 11 miRNAs that were used to discriminate between

HCC and non-tumorous tissue. Contrary to our expectations, only

three (miR-10a-5p, 122-5p and 22-3p) of the 11 miRNAs showed

significant differential expression (p,0.05) between HCC and

non-tumorous tissue. Among these three miRNAs, miR-122-5p

and miR-22-3p are well-known to be downregulated in HCC [10]

[10] [26] [27]. Among the three miRNAs with significant

differential expression between HCC and non-tumorous tissue,

miR-10a-5p showed the least difference, with a p-value of 0.03.

Recently, it has been reported that miR-10a-5p is involved in

HCC metastasis [28]. Thus, the selection of these three miRNAs

as potential biomarkers is biologically reasonable. Although the

remaining eight miRNAs did not have significant differential

expression between HCC and non-tumorous tissues, their

inclusion did not reduce the discriminatory performance. This

suggests that these eight miRNAs may contribute to diagnosing

hepatocarcinogenesis only when combined with other miRNAs.

Since controlling the expression of multiple miRNAs simulta-

neously is experimentally difficult, we were unable to confirm if

these miRNAs work together. This may be worth further study in

the future.

While investigating novel miRNA candidates, we found that

mature miRNAs from hsa-mir-9985 and hsa-miR-9985-5p are

almost identical to ptr-miR-27a-3p (Fig 5(a, f)). This may suggest

that hsa-mir-9985 has been transposed during its evolution from

chimpanzee to human. hsa-miR-1843 was homologous to miR-

1843a, which was previously detected in mouse, Chinese hamsters,

and brown rats. Near the genomic coordinate where hsa-mir-

1843 was detected, Ender reported finding snoRNA

(ENSR00000517097), therefore hsa-mir-1843 is likely to be a

small nuclear RNA-derived microRNA [29] (Fig, 5(b, g)). It is

possible that this explains why researchers have overlooked hsa-

mir-1843 despite reports of homologous miRNAs in other animals.

While hsa-mir-548bc appears homologous to hsa-mir-548h-1

(Fig. 5(c, h)), hsa-mir-548bc is detected at a distinct genomic

coordinate from the original location of hsa-548h-1. Thus, hsa-

miR-548bc seems to be a distinct microRNA from hsa-mir-

548h-1.

It is interesting to note that the novel miRNA

(EST00000584584) not included in the miRBase was reported to

be located near the genomic coordinate where hsa-mir-9986 was

detected. To our knowledge, this is the first experimental evidence

that these predicted novel miRNAs exist. Finally, no homologous

miRNA has been reported for hsa-mir-9986 (Fig. 5(d, i)), thus it is

possible that hsa-mir-9986 is completely new. In addition to these

four new miRNA candidates, hsa-mir-6715a was also detected in

our analysis (Fig. 5(e, j)). hsa-miR-6715a was not included in the

miRBase release 18, but was included in later releases, which lends

support to the reliability and accuracy of our strategy to identify

Figure 5. Comparison of novel miRNA candidates ((a) hsa-mir-9985, (b) hsa-mir-1843, (c) hsa-mir-548bc and (d) hsa-mir-9986) with
known miRNAs and transcripts. (e) hsa-mir-6715a novel miRNA was not included in miRBase release 18, but was present in later releases.
Nucleotides highlighted in red show hairpin constructs. F, g, h, i, and j are constructs of each miRNA and respectively correspond to a, b, c, d, and e.
doi:10.1371/journal.pone.0106314.g005
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novel miRNAs. It is interesting that although hsa-miR-6715a-5p

was not reported in the miRBase, it was detected in our analysis

although only 10 reads were assigned to the miRNA. The

biological significance of these candidate miRNAs requires future

examination.

Finally, we also investigated the reproducibility of technical

replicates for differential miRNA expression; a full list of scatter

plots and correlation coefficients is available in Fig. S4. Fig. 6

shows examples of technical replicates with good correlation. We

were unable to identify the specific conditions necessary to achieve

highly reproducible technical replicates. However, several of our

cross-replicate comparisons were of acceptable quality, leading us

to believe that our method has the potential to adequately

reproduce differential miRNA expression between technical

replicates.

Conclusions

We have shown in this study that miRNA expression profiles

obtained from NGS analysis are reproducible and are concordant

with that obtained by the standard microarray procedure.

Moreover, we have demonstrated that NGS can identify novel

miRNAs that are otherwise undetectable by microarray analysis.

HCC was distinguished from non-tumorous tissue with high

Figure 6. Comparison of differential (K-177 vs. CU-087) logarithmic miRNA expression in HCC among NGS technical replicates.
Pearson’s correlation coefficients range from 0.80 to 0.93.
doi:10.1371/journal.pone.0106314.g006
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diagnostic accuracy, supporting the clinical application of NGS-

based miRNA expression profiling.

Supporting Information

Figure S1 Full set of scatter plots of logarithmic miRNA

expression in HCC samples by NGS and microarray analysis.

Comparison between logarithmic HCC miRNA expression in

NGS (horizontal axis) and microarray (vertical) analysis. One

black circle showed one miRNA.

(PDF)

Figure S2 Full set of scatter plots of differential logarithmic

miRNA expression in HCC for NGS and microarray analysis.

Comparison between differential logarithmic HCC miRNA

expression in NGS (horizontal axis) and microarray (vertical)

analysis. One black circle showed one miRNA.

(PDF)

Figure S3 Comparison of logarithmic miRNA expression in

HCC for NGS technical replicates not included in Fig. 3.

Comparison between differential logarithmic HCC miRNA

expression in NGS (horizontal axis) and microarray (vertical)

analysis. One black circle showed one miRNA.

(PDF)

Figure S4 Comparison of differential logarithmic miRNA

expression in HCC for NGS technical replicates not included in

Fig. 4. Comparison between differential logarithmic HCC

miRNA expression in NGS (horizontal axis) and microarray

(vertical) analysis. One black circle showed one miRNA.

(PDF)

Table S1 Extracted read counts of each miRNA obtained by

NGS analysis.
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Table S2 Detailed NGS analysis of HCC and non-tumorous

tissue samples.
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Table S3 Detailed mapping of short reads for novel miRNA

candidates and hsa-mir-6715a.
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Text S1 Sample script that processed short reads using

fastx_clipper and miRDeep2.
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Text S2 Detailed description of feature extraction and discrim-

inant procedures.
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