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Abstract

Light signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral
repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1) and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7
(SbGHD7, Ma6). SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through
coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R)
genotype, flowered ,60 days earlier than 100 M (PHYB, Ma3) in long days and ,11 days earlier in short days. Populations
derived from 58 M (Ma1, ma3R, Ma5, ma6) and R.07007 (Ma1, Ma3, ma5, Ma6) varied in flowering time due to QTL aligned to
PHYB/phyB-1 (Ma3), Ma5, and GHD7/ghd7-1 (Ma6). PHYC was proposed as a candidate gene for Ma5 based on alignment and
allelic variation. PHYB and Ma5 (PHYC) were epistatic to Ma1 and Ma6 and progeny recessive for either gene flowered early
in long days. Light signaling mediated by PhyB was required for high expression of the floral repressors SbPRR37 and
SbGHD7 during the evening of long days. In 100 M (PHYB) the floral activators SbEHD1, SbCN8 and SbCN12 were repressed in
long days and de-repressed in short days. In 58 M (phyB-1) these genes were highly expressed in long and short days.
Furthermore, SbCN15, the ortholog of rice Hd3a (FT), is expressed at low levels in 100 M but at high levels in 58 M (phyB-1)
regardless of day length, indicating that PhyB regulation of SbCN15 expression may modify flowering time in a photoperiod-
insensitive manner.
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Introduction

Flowering time has a significant impact on plant adaptation to

agro-ecological environments, biomass accumulation and grain

yield [1]. Floral initiation is regulated by plant development,

photoperiod, shading, temperature, nutrient status, and many

other factors [2–5]. Signals from many input pathways are

integrated in the shoot apical meristem (SAM) through regulation

of the meristem identity genes LEAFY (LFY) and APETALA1
(AP1), which are activated during transition of the SAM from a

vegetative meristem to a floral meristem. Long day (LD) plants,

such as Arabidopsis, flower earlier in LD compared to short days

(SD). In contrast, SD plants, such as rice and sorghum, show

delayed floral initiation under LD conditions. Photoperiod

regulated flowering is mediated by light signaling from photore-

ceptors and output from the endogenous circadian clock consistent

with external coincidence models of flowering time regulation [6].

Photoperiod sensitive Sorghum bicolor genotypes delay floral

initiation when grown under LD conditions. Sorghum genotypes

with reduced photoperiod sensitivity have been identified and used

by breeders because they flower early and at similar times in both

long and short days, enhancing grain production [7]. In contrast,

bioenergy sorghum is highly photoperiod sensitive, flowering in

long day environments only after an extended phase of vegetative

growth, thereby increasing biomass accumulation and nitrogen use

efficiency [1,8].

Photoperiod regulated flowering requires perception of light

and signaling by plant photoreceptors such as the red/far-red light

sensing phytochromes (Phy), blue light/ultraviolet wavelength

sensing cryptochromes (Cry), phototropins, and Zeitlupes [9,10].

Phytochromes play an important role in flowering time regulation

in most plants including rice [11], barley [12], and sorghum [13].

The sorghum genome encodes three phytochrome genes, PHYA,
PHYB and PHYC. Quail et al. (1994) established a standard
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nomenclature for phytochrome where PHY corresponds to

phytochrome apoproteins, while phytochrome or phy indicates

presence of the holoprotein, the fully assembled chromoprotein

with chromophore covalently attached to the apoprotein [14].

Since all phytochrome proteins referred in this study are presumed

to be holoproteins, Phy is used to represent wild type holoprotein,

while phy is used to represent mutant versions of the holoprotein.

Inactivation of PhyB results in early flowering in long days [13].

Phytochromes are soluble chromoproteins that contain an N-

terminal photosensory domain and a C-terminal dimerization

moiety. There are three sub-domains in the N-terminal moiety:

PAS (PER, ARNT and SIM), GAF (cGMP phosphodiesterase,

adenylate cyclase, Fh1A) and PHY (phytochrome-specific GAF-

related), which form a unique structure, the ‘‘light-sensing knot’’

[15]. The PAS/GAF domains transduce light signals and the C-

terminal domain, consisting of two PAS and HKRD (histidine-

kinase-related domain), is responsible for dimerization and nuclear

localization.

The central oscillators of the plant circadian clock are encoded

by TIMING OF CAB EXPRESSION 1 (TOC1), CIRCADIAN
CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED
HYPOCOTYL (LHY) [16]. Rhythmic expression of these central

oscillators modulates the expression of GIGANTEA (GI), an

output gene of the circadian clock. GI, in concert with other

factors, activates expression of CONSTANS (CO), a zinc-finger

transcription factor that plays an essential role in photoperiod

regulation of flowering time in Arabidopsis [17], rice [18] and

sorghum [19]. In Arabidopsis, CO is stabilized and accumulates

during the evening of long days through the action of Cry1, Cry2

and PhyA, where it activates expression of FT and flowering. In

SD, CO is not stabilized during the evening because CO
expression occurs in darkness [20]. FT is produced in leaves and

translocated to the SAM where it binds to FD. In Arabidopsis, FT

together with SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS (SOC1), promotes expression of meristem identity

gene LFY and AP1, leading to floral transition [20].

The core of photoperiod regulatory pathway GI-CO-FT is

present in Arabidopsis, a LD plant, and the SD plants rice and

sorghum. In rice, OsGI, HEADING DATE 1 (Hd1), and

HEADING DATE 3a (Hd3a) are orthologs of GI, CO, and FT,
respectively [21]. Hd1 (OsCO) delays flowering time in LD in rice

and activates flowering in SD. In addition, Itoh et al. [22]

identified a pair of genes in rice, EARLY HEADING DATE 1
(EHD1) and GRAIN NUMBER, PLANT HEIGHT AND
HEADING DATE 7 (GHD7) that regulate flowering in response

to day length by modifying expression of Hd3a (florigen). EHD1
activates Hd3a expression and induces floral transition. In

contrast, GHD7, a homolog of wheat VRN2 [23], represses

flowering in LD by down-regulating EHD1 and Hd3a. In maize,

25 FT-like homologs were identified and designated as Zea mays
CENTRORADIALIS (ZCN) genes. ZCN8 was identified as a

source of florigen [24]. SbCN8 (ortholog of ZCN8) and SbCN12
(ortholog of ZCN12) have been proposed to encode florigens in

sorghum [19,25,26]. In sorghum, CO activates flowering in SD by

inducing expression of SbEHD1, SbCN8 and SbCN12, whereas in
LD, CO activity is inhibited by SbPRR37 [19].

More than 40 flowering time QTL have been identified in

sorghum [27] and maturity loci Ma1–Ma6, modify photoperiod

sensitivity [7,28,29]. Dominance at Ma1–Ma6 delays floral

initiation in long days. Ma3 encodes phytochrome B, indicating

that light signaling through this photoreceptor is required for

photoperiod sensitive variation in flowering time [13]. Ma6 was

identified as SbGHD7, a repressor of flowering in long days [26].

In LD, SbGhd7 increases photoperiod sensitivity by inhibiting

expression of the floral activators SbEHD1, SbCN12 and SbCN8.
Ma1 was identified as SbPRR37, a floral repressor that acts in LD

[25]. The orthologs of SbPRR37 in wheat and barley, PHOTO-
PERIOD 1 (Ppd1, Ppd-H1, Ppd-D1a) [30,31] and rice OsPRR37
[32], also modulate flowering time in response to photoperiod. In

LD, SbPRR37 inhibits expression of SbEHD1, SbCN12, and

SbCN8, resulting in repression of flowering [25]. Moreover,

SbPRR37 modulates photoperiod sensitivity and floral repression

in an additive fashion together with SbGHD7 [26]. Expression of

SbPRR37 and SbGHD7 is regulated by the circadian clock and

light, suggesting common upstream regulation [26].

The current study focused on elucidating how phytochrome B

regulates flowering time in response to day-length in sorghum. We

report that PHYB is required for light activation of SbPRR37 and

SbGHD7 expression in the evening of long days, resulting in

repression of SbEHD1, SbCN12, SbCN8 and floral initiation.

Materials and Methods

Phenotypic analysis of sorghum flowering time
The maturity loci and flowering dates of all sorghum lines used

in this study are listed in Table S1. To characterize the difference

in flowering time between different genotypes and day-length,

100 M and 58 M were planted in Metro-Mix 200 (Sunshine

MVP; Sun Gro Horticulture) and grown in a greenhouse in LD

(14 h light/10 h dark) and SD (10 h light/14 h dark) conditions.

Days to mid-anthesis were recorded and plants were photo-

graphed. 100 M plants (n = 5) and 58 M plants (n = 9) were grown

in LD and phenotyped for days to anthesis (Figure 1A). The mean

days to flowering for 100 M was 126 days (64 days) and 62 days

(63 days) for 58 M, a significant difference in flowering times for

these genotypes (p-value,,0.001, Welch two sample t-test).

Under SD, 100 M plants (n = 7) and 58 M plants (n = 5) were used

for analysis of flowering time (Figure 1B). The mean days to

flowering for 100 M was 59 days (64 days) and for 58 M, 48 days

(61 days), a significant differences in days to flowering (p-

value,,0.001). To establish the interaction between PhyB and

photoperiod, factorial ANOVA was run with photoperiod and

PhyB alleles as factors. The significance of the effects of PhyB

alleles, day-length and PhyB:day-length interaction were detected

(p-value,,0.001). All statistics were run in R 3.1.0. The two-way

interaction graphs were plotted using the ‘‘HH’’ package in R.

Sequencing of PHYB alleles
To identify coding alleles in the PHYB gene, the full-length

genomic sorghum PHYB genes from historical sorghum cultivars

were amplified as three overlapping segments by PCR (Phusion

High-Fidelity DNA polymerase, New England BioLabs, Inc). The

amplified PCR products were cleaned and concentrated (QIA-

quick PCR Purification kit, QIAGEN). PCR products were

separated by electrophoresis on 1% agarose gels. Specific PCR

products were excised and purified (QIAquick Gel Extraction Kit,

QIAGEN). The purified PCR products were sequenced using the

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-

tems) and the Applied Biosystems 3130xl Genetic Analyzer. All

primers used for sequencing were designed using PrimerQuestSM

software (Integrated DNA Technologies, Inc) and are shown in

Table S2. Sequencher v4.8 (Gene Codes) was used for sequence

assembly and alignment with the BTx623 whole genome sequence

of Sorghum bicolor (version 1.4) downloaded from Phytozome v8.0

(http://www.phytozome.net/). The SIFT (sorting intolerant from

tolerant) program (http://sift.jcvi.org/) was utilized to predict

whether an amino acid substitution affects protein function, based
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on the degree of conservation of amino acid residues in sequence

alignments derived from closely related sequences.

QTL analysis of PHYB action
The sorghum cultivar 58 M (Ma1Ma2ma3RMa4Ma5ma6) was

crossed to R.07007 (Ma1ma2Ma3Ma4ma5Ma6) to generate a

population for QTL analysis. F1 generation plants were self-

pollinated to produce F2 populations from which F3 populations

were derived by self pollination. F2 and F3 populations were

planted in the greenhouse and grown under long day conditions

(14 h light/10 h dark). Days to mid-anthesis of panicles of plants

from the F2 and F3 populations were recorded. The median,

standard error, and range of Days to Flowering and the number of

plants of each genotype analyzed from the F2 and F3 populations

are shown in Table3. For analysis of epistatic interaction, three-

way ANOVA was run to detect the effect of allelic variation in

three maturity genes (Ma3, Ma5 and Ma6) and three two-way

interactions (Ma3:Ma5, Ma3:Ma6, Ma5:Ma6). The significance

of the effects of single genes and genetic interactions were detected

(p-value,,0.001). All statistics were run in R 3.1.0. The two-way

interaction graph was plotted using the ‘‘HH’’ package in R.

For genotyping, genomic DNA of 86 F2 individuals and 132 F3

individuals was extracted from leaf tissue using the FastDNA Spin

Kit (MP Biomedicals). Template for sequencing on an Illumina

GAIIx sequencer was generated following the standard Digital

Genotyping (DG) protocol [33]. Genotypes of all individuals from

both populations were identified. The genetic map was construct-

ed using the Kosambi mapping function in MAPMAKER v3.0

with 285 markers from the F2 population and 653 markers from

the F3 population. QTL were mapped using the genetic map and

the Composite Interval Mapping (CIM) function in WinQTL

Cartographer v2.5 [34]. Significant LOD thresholds for QTL

Figure 1. Photographs of the sorghum lines 100 M and 58 M for flowering time phenotype. (A) Photograph of 100 M (left) and 58 M
(right) grown for 109 days in LD (14 h light/10 h dark). 100 M and 58 M flowered after 126 days and 62 days respectively. (B) Photograph of 100 M
(left) and 58 M (right) grown in a greenhouse in SD for 53 days (10 h light/14 h dark). 100 M flowered after 59 days and 58 M flowered after 48 days.
LD: long days. SD: short days. DTF =number of days to flowering time. Scale bar is 8.6 cm.
doi:10.1371/journal.pone.0105352.g001

Table 1. Sequence analysis of PHYB coding alleles in different sorghum lines.

Exon 1 Exon 1 Exon 3 Exon 4 Sorghum Genotypes

Nucleotide Variation CAC.… A.G A.. C.G

Protein Modification His.… Asp.Gly Premature stop
codon

Leu.Val

Mutation Position (AA #) 31 308 1023 1113

Alignment with PHYB in
Arabidopsis (AA #)

32 293 1007 1096

Phytochrome Domain GAF(N)

PHYB (Ma3 or ma3) 2 2 2 2 BTx623, 100 M, 90 M, R.07007, Hegari, Tx7000, BTx642,
SC56, Shallu, BTx3197

phyB-1 (ma3R) 2 2 + 2 58 M

phyB-2 + + 2 + IS3620C

doi:10.1371/journal.pone.0105352.t001
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detection were calculated based on experiment specific permuta-

tions with 1000 permutations and a=0.05 [35].

Gene Expression Assays
Sorghum genotypes 100 M and 58 M were planted and grown

in a greenhouse under long day conditions (14 h light/10 h dark)

for 32 days and then transferred to growth chambers under either

LD (14 h light/10 h dark) or SD (10 h light/14 h dark) conditions

for seven days for entrainment prior to collection of leaf tissue. In

the growth chamber, daytime (lights on) temperature was set at

30uC with a light intensity of ,300 mmol?s21?m22 and night

(lights off) temperature was set at 23uC. Relative humidity was

,50% throughout the experiment. At day 39, leaf segments from

the top three expanded leaves from three individual plants of each

genotype and treatment were collected every 3 hours through one

24 h light-dark cycle and 48 h of continuous light. The leaf tissues

at each time point were subjected to total RNA extraction using

TRI Reagent (MRC) with the protocol for samples with high levels

of polysaccharides. RNA was further purified using the RNeasy

Mini kit (QIAGEN), including removal of DNA contamination by

on-column DNase I digestion before reverse transcription. RNA

integrity was examined on 1% MOPS gels. First-strand cDNA

synthesis was performed using the SuperScript III First-Strand

Synthesis System (Invitrogen) with oligo dT and random hexamer

primer mix. After first-strand cDNA synthesis, the reactions were

diluted to 10 ng/ml of the initial total RNA. Gene-specific qPCR

reactions were carried out using Power SYBR Green PCR Master

Mix (Applied Biosystems). 18S rRNA was selected as the internal

control reference and the reactions were performed using the

TaqMan Universal PCR Master Mix Protocol with rRNA Probe

(VIC Probe) and rRNA Forward/Reverse Primer. All reactions

were run on the 7900HT Fast Real-Time PCR System with SDS

v2.3 software (Applied Biosystems). The specificity of each gene

specific primer set was validated by melting temperature curve

analysis. Amplification efficiency of each primer sets was

determined by the serial dilution method [36] (Table S3). Relative

expression was determined by the comparative cycle threshold

(DDCt) method [36] with calibration from most highly expressed

samples. The calculated primer efficiencies were used to adjust

data for relative quantification by the efficiency correction method

[37]. Each relative expression value was derived from an average

of three technical replicates and three biological replicates. The

individual expression data points presented as 22DCt [38]. The

significance (p-values) of the difference in expression between

genotypes were detected using Welch two sample t-test in R 3.1.0

based on three technical replicates and three biological replicates.

P-values were calculated either for certain time points of the day or

all time points of the day.

Results

PHYB alleles in diverse sorghum lines
Sorghum genotype 58 M, a photoperiod insensitive early

flowering line, has the genotype ma3Rma3R, corresponding to

the phyB-1 allele [13]. This allele contains a frame shift mutation

that results in a prematurely terminated PhyB lacking regions of

the protein necessary for dimerization and biological activity. To

confirm and extend prior analysis of PHYB diversity in sorghum,

alleles from several sorghum lines that vary in photoperiod

sensitivity were sequenced and compared. The coding sequence of

PHYB from BTx623 and 100 M (both Ma3) was 7285 bp in

length consisting of four exons encoding a protein with 1178

amino acid residues. PHYB sequences from R.07007, Hegari,

Tx7000, BTx642, SC56, Shallu and BTx3197 were identical to

BTx623 and 100 M (Ma3). The PHYB sequence from 58 M

(ma3R), referred to as phyB-1 (Table 1), contains a mutation that

Figure 2. Flowering time QTL and analysis of epistasis in populations derived from 58MxR.07007. (A) Flowering time QTL labeled Ma3,
Ma5 and Ma6, were identified through analysis of flowering time variation in LD in the F2 population derived from 58MxR.07007. LOD values are
shown on the Y-axis and sorghum chromosome numbers on the X-axis. The percent of the variance explained by each QTL is noted. The additive plot
is shown in the lower portion of 2A where a positive value corresponds to alleles from R.07007 that delay flowering time. (B) Boxplot of flowering
time distribution in the subset of the population with Ma1Ma5- genotypes but varying for alleles of Ma3/ma3R and Ma6/ma6. (C) Boxplot of flowering
time distribution in the subset of the population having Ma1Ma3- genotypes but varying for Ma5/ma5 and Ma6/ma6. Median values for flowering
time are represented by horizontal lines within boxes.
doi:10.1371/journal.pone.0105352.g002
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renders the gene inactive [13]. No coding mutations were

identified in 90 M, a line that encodes the weak allele ma3 [28].

IS3620C encodes a different allele, designated phyB-2, which

differs from PHYB by one INDEL and two SNPs, resulting in one

amino acid deletion and two amino acid substitutions (Table 1).

The first substitution in phyB-2 could alter function because it

produces an Asp308Gly change in the GAF domain of PhyB. The

SIFT prediction score of this Asp308Gly substitution is 0.1,

indicating moderate intolerance.

PhyB affects flowering time in LD and SD
The sorghum maturity standards, 100 M and 58 M, were

constructed from Milo genotypes that contain alleles of Ma1 and

Ma3 that modify flowering time [28]. The sorghum maturity

standard 100 M is photoperiod sensitive with a maturity genotype

Ma1Ma2Ma3Ma4Ma5ma6 [26]. The genotype 58 M is photo-

period insensitive, flowers early in LD and SD, and has the

genotype Ma1Ma2ma3RMa4Ma5ma6 [26]. Genotype 58 M

contains null alleles of Ma3 (ma3R, phyB-1) and Ma6 (ghd7-1).
When grown in a greenhouse under 14 h LD during the summer,

58 M plants were spindly and flowered in ,62 days (63 days),

whereas 100 M flowered in ,126 days (64 days) due to the

repressing action of SbPRR37 (Ma1) (Figure 1A). This result

confirmed that loss of PhyB activity in 58 M reduces the ability of

Ma1 to inhibit flowering in LD (p-value,,0.001) [13]. When

grown in a greenhouse in 10 h SD during December–February at

lower light intensity, 100 M flowered in ,59 days (64 days) while

58 M flowered in ,48 days (61 days) (Figure 1B). Therefore in

sorghum, PhyB has a smaller but still significant effect on flowering

time in SD (p-value,,0.001). The factorial ANOVA with

photoperiod and PHYB alleles as factors indicated the effects of

PhyB, day-length and PhyB:day-length interaction are all signif-

icant (p-value,,0.001) (Figure S1-A).

PHYB is epistatic to Ma1 (SbPRR37) and Ma6 (SbGHD7)
In sorghum, SbPRR37 (Ma1) and SbGHD7 (Ma6) are primary

determinants of photoperiod sensitivity in Ma3 backgrounds

acting in an additive fashion to inhibit flowering in LD [26].

Expression of both genes is induced by light, although the

photoreceptor or photoreceptors that mediate light signaling were

not known prior to the current study [25,26]. To examine how

PHYB (Ma3), SbPRR37 (Ma1), and SbGHD7 (Ma6) co-regulate
the timing of floral initiation, F2 and F3 populations were derived

from a cross of R.07007 (Ma1Ma3ma5Ma6) and 58 M (Ma1-
ma3RMa5ma6). These populations segregated for a wide range of

flowering times (,85 days) when planted in July and grown in a

greenhouse in 14 h LD. Digital genotyping [33] was employed to

generate DNA markers for genetic map construction. The genetic

map spanned all of the ten sorghum chromosomes, although the

long arms of SBI02 and SBI09 in its entirety were deficient in

DNA markers. QTL analysis identified three significant QTL

(LOD score.3.7) for days to anthesis in LD using the F2

population (n= 86), which together explained ,50% of the

phenotypic variance for flowering time (Figure 2A). The QTL

with the highest LOD score (LOD=24.2), spanned DNA on

chromosome 1 from 60,402,909–61,604,749 bp which encom-

passes PHYB (chromosome_1:60,915,677–60,917,553) (Table 2).

Recessive ma3R alleles from 58 M associated with this QTL

caused early flowering time phenotypes. The flowering time QTL

on chromosome 6 spanning a physical interval from 203,707–

1,716,581 bp (1 LOD interval) aligned with SbGHD7 [26]. The

recessive ghd7-1 null allele from 58 M was associated with early

flowering in LD. The third flowering time QTL near the proximal

end of chromosome 1 (chromosome 1:6,139,583–9,077,991) had a
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LOD score of 8.7 and explained 19.6% percent of phenotype

variance. This QTL was tentatively identified as Ma5 because

R.07007 was reported to be recessive for Ma5, a rare allele in

sorghum [29]. No QTL aligned with Ma1 as expected because

both 58 M and R.07007 contain dominant alleles of Ma1
(SbPRR37). The three flowering time QTL were also identified

in the corresponding F3 population (data not shown).

Plants from the F2/3 population are homozygous for Ma1, a
repressor of flowering in LD, but varied in alleles of Ma3, Ma5
and Ma6. Three-way ANOVA was used to analyze the effect of

allelic variation in three maturity genes (Ma3, Ma5 and Ma6) on
flowering time, and three two-way interactions (Ma3:Ma5,
Ma3:Ma6, Ma5:Ma6) showed that allelic variation of the three

Ma genes and three two-way interactions were significant (p-

values,,0.001). The three two-way interaction graphs between

Ma3:Ma5, Ma3:Ma6 and Ma5:Ma6 are shown in Figure S1-B–

D. Progeny with the genotypes Ma3_Ma5_Ma6_ and Ma3_-
Ma5_ma6ma6 flowered later than genotypes that were homozy-

gous recessive for ma3R, showing that PHYB is epistatic to the

floral repressors encoded by Ma1 and/or Ma6 (Figure 2B; Figure

S1-B,C). Progeny with the genotype Ma3_Ma5_Ma6_ (101–129

days) flowered later than plants with the genotype Ma3_Ma5_-
ma6ma6 (60–91 days), consistent with increased floral repression

due to Ma6 in Ma1 dominant backgrounds. The effect of Ma6
was delay flowering with varying extents in different genetic

backgrounds ranging from 14 days in ma3Rma3RMa5_, ,29 days

in Ma3_ma5ma5, and ,9 days in ma3Rma3Rma5ma5. Further-
more, it was noted that progeny lacking PhyB with a dominant

Ma6 allele showed a significant range of flowering times (42–75

days), suggesting that additional genes and/or environmental

factors affect Ma6 action in this genetic background (Figure 2B;

Table 3). A similar wide range of flowering time (59 days) was

observed among plants with the genotype Ma3_ma5ma5Ma6_
(Figure 2C; Table 3). In addition, plants with the genotype

Ma3_Ma5_Ma6_ flowered later in LD than plants with the

genotypes Ma3ma5ma5Ma6_ or Ma3ma5ma5ma6ma6 (Fig-

ure 2C; Figure S1-D). This shows that Ma5 is also required for

late flowering in LD in Ma1Ma3 backgrounds and that Ma5 is

epistatic to Ma1 and Ma6. Plants with the genotype ma3Rma3R-
Ma5_ma6ma6 and Ma3_ma5ma5ma6ma6 flowered early and in

a similar number of days as genotypes that are homozygous

recessive for both ma3R and ma5 (ma3Rma3Rma5ma5ma6ma6)
indicating that the products of both Ma3 and Ma5 are required in

LD for delayed flowering mediated by Ma1 (SbPRR37).
The requirement for both PhyB and the product of Ma5 to

observe delayed flowering in LD led us to examine the Ma5 locus

for candidate genes that might explain this interaction. The Ma5
locus is located on SBI-01 and spans a large number of genes

including several genes known to affect flowering time in other

plants, including AP1, CK2, and PHYC. PHYC appeared to be

the best candidate gene for Ma5 because PhyC modifies flowering

time in rice specifically in LD, similar to Ma5 in sorghum [39],

PhyB stabilizes PhyC, and PhyB:PhyC act as heterodimers in both

Arabidopsis [40,41] and rice [39], consistent with the co-

dependence observed between PHYB and Ma5 in this study.

Comparison of PHYC sequences from BTx623 (Ma5), 100 M

(Ma5), and R.07007 (ma5) revealed four differences in PhyC

amino acid sequence between BTx623 and R.07007, and two

Table 3. Flowering time of F2/F3 progeny from 58MxR.07007 in LD.

Genotype (All plants =Ma1Ma1) Days to Flowering: median (6SE) Days to Flowering: range Number of plants

Ma3_ Ma5_ Ma6_ 115 (65) 101–129 42

Ma3_ Ma5_ ma6ma6 69 (68) 60–91 19

ma3Rma3R Ma5_ Ma6_ 57 (68) 42–75 15

ma3Rma3R Ma5_ ma6ma6 43 (62) 42–50 6

Ma3_ ma5ma5 Ma6_ 75 (612) 44–103 52

Ma3_ ma5ma5 ma6ma6 46 (66) 41–70 30

ma3Rma3R ma5ma5 Ma6_ 53 (66) 42–76 24

ma3Rma3R ma5ma5 ma6ma6 44 (66) 39–68 17

doi:10.1371/journal.pone.0105352.t003

Table 4. Sequence analysis of PHYC coding alleles in different sorghum lines.

Exon 1 Exon 1 Exon 1 Exon 2 Sorghum Genotypes

Nucleotide Variation G.T G.A T.C G.T

Protein Modification Gly.Val Gly.Arg Val.Ala Glu.Asp

Mutation Position (AA #) 124 162 190 922

Alignment with PHYB
in Arabidopsis (AA #)

160 198 226 954

Phytochrome Domain PAS(N) PAS(N) PAS-GAF Loop HKRD(C)

PHYC-1 (Ma5) 2 2 2 2 BTx623

PHYC-2 2 + + 2 100 M, 90 M

phyC-1 (ma5) + + + + R.07007

doi:10.1371/journal.pone.0105352.t004
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differences between 58 M/100 M and R.07007 (Table 4). The

latter amino acid variants occur in the PAS domain (Gly:Val) and

HKRD domain (Glu:Asp) and SIFT analysis [42] indicated these

changes could affect the function of PhyC. These results are

Figure 3. Relative expression of SbPRR37 and SbGHD7 in 100 M (Ma3/PHYB) and 58 M (ma3R/phyB-1) in LD and SD. 100 M (solid black
line) and 58 M (dashed red line) plants were entrained LD (14 h light/10 h dark) or SD (10 h light/14 h dark) and sampled for one 24 h cycle, followed
by 48 h in LL (continuous light and temperature). The grey background corresponds to time when plants are in darkness. Relative gene expression
was determined every 3 hours by qRT-PCR. Arrows represent morning peaks of expression and arrowheads represent evening peaks of expression.
(A) In LD, the second peak (arrowhead) of SbPRR37 expression in the evening (,15 h) is missing in the phyB deficient line, 58 M. (B) In SD, the second
peak (arrowhead) of SbPRR37 is absent in both 100 M and 58 M. (C) In LD, the second peak (arrowhead) of SbGHD7 expression in the evening (,15 h)
is attenuated in 58 M. (D) In SD, the second peak of SbGHD7 is attenuated in both 100 M and 58 M. Each data point of relative expression was based
on data from three technical replicates and three biological replicates. Error bars indicate SEM.
doi:10.1371/journal.pone.0105352.g003
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consistent with PHYC as the candidate gene for Ma5. Further
analysis is underway to test this assignment.

PhyB modulates expression of SbPRR37 and SbGHD7 in
long days
Expression of SbPRR37 and SbGHD7 in leaves is regulated by

light and gating by the circadian clock [25,26]. The influence of

PhyB on SbPRR37 and SbGHD7 expression was analyzed using

100 M (PHYB) and 58 M (phyB-1) plants grown for 32 days in LD

then entrained for 7 days in LD or SD (Figure 3). Following

entrainment, leaf samples were collected from plants for one 24 h

LD or SD light-dark cycle, then from plants exposed to continuous

light and temperature for an additional 48 h. In leaves of 100 M,

SbPRR37 and SbGHD7 expression peaked in the morning

(arrow) and evening (arrowhead) in LD as previously reported

[25,26] (Figure 3A/C, solid lines). SbPRR37 and SbGHD7 RNA

abundance continued to oscillate with peaks in the morning and

evening when 100 M plants were transferred to continuous light

and temperature consistent with regulation by the circadian clock

(Figure 3, 24–72 h). In leaves of 58 M in LD (Figure 3A/C,

dashed red lines), SbPRR37 and SbGHD7 showed an increase in

RNA abundance in the morning (arrow) but only a small increase

in expression in the evening (arrowhead) compared to 100 M

(Figure 3A, p-value,0.1; Figure 3C, p-value,0.05). These results

indicate that PhyB is required for elevated evening expression of

SbPRR37 and SbGHD7 in LD in 100 M.

When 100 M and 58 M plants were entrained and assayed in

SD, the morning peak of SbPRR37 expression was of similar

amplitude in both genotypes and expression of SbPRR37 was low

Figure 4. Expression of SbCO, SbEhd1, SbCN8/12/15 in 100 M (Ma3/PHYB) and 58 M (ma3R/phyB-1) in LD and SD. Relative RNA levels in
leaves of 100 M (solid black lines) and 58 M (dashed red lines) entrained and sampled in LD (14 h light/10 h dark) or SD (10 h light/14 h dark) for 24 h
followed by 24 h in LL (continuous light and temperature). Relative expression levels were determined every 3 hours by qRT-PCR analysis. The gray
shaded areas represent the dark periods. (A) SbCO, (B) SbEHD1, (C) SbCN8, (D) SbCN12, (E) SbCN15. Each data point of relative expression is based on
three technical replicates and three biological replicates. Error bars indicate SEM.
doi:10.1371/journal.pone.0105352.g004
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during the evening (Figure 3B). Similarly, SbGHD7 expression in

SD was highest in the morning, reaching similar levels in 100 M

and 58 M, and lower in the evening when compared to expression

levels measured in LD (Figure 3D). These results indicate that in

SD, PhyB has a limited effect on SbPRR37 and SbGHD7
expression. When 100 M plants entrained in SD were exposed to

continuous light, the evening peak of SbPRR37 and SbGHD7
expression observed in LD reappeared on the first subjective day

and expression levels were also elevated in the second subjective

day (Figure 3B/D). In 58 M, the evening peak of SbPRR37 and

SbGHD7 reappeared during the first subjective day, however

overall expression was attenuated relative to 100 M during the

second subjective day.

PhyB modulates expression of CO, Ehd1, SbCN8, SbCN12
and SbCN15
In 100 M entrained to LD, the sorghum ortholog of CON-

STANS (SbCO) shows peaks of expression at dawn (24 h) and in

the evening (15 h) that are regulated by SbPRR37, the circadian

clock, and day length [25]. In 58 M entrained and sampled in LD,

the amplitude of the peak of SbCO expression at dawn (24 h) was

reduced compared to 100 M (Figure 4A, p-value,0.05). The peak

of SbCO expression at dawn was also reduced and of similar

amplitude in plants entrained and sampled in SD (Figure 4A,

lower). These results show that the peak of SbCO expression at

dawn is dependent on PhyB, most likely because expression of

SbPRR37 in the evening of LD is dependent on PhyB (Figure 3A).

In contrast, the evening peak (15 h) of SbCO expression was

similar in both LD and SD in 100 M and 58 M indicating that

PhyB does not significantly modulate SbCO expression at this time

(15 h) of day.

EHD1 is an activator of Hd3a, one of the florigens in rice [43].

The sorghum ortholog of Hd3a is SbCN15. Expression of

SbEHD1 increases when 100 M is transferred from LD to SD

in parallel with increased expression of SbCN8 (ortholog of ZCN8
[24]) and SbCN12 (ortholog of ZCN12) that have been proposed

to encode florigens in sorghum [19,25,26]. SbPRR37 and

SbGHD7 repress expression of SbEHD1 in 100 M entrained in

LD [25,26]. Therefore SbEHD1 expression in 58 M and 100 M

was quantified and compared to determine if PhyB modulates

SbEHD1 expression. In LD, SbEHD1 RNA abundance peaked in

the evening and was up to ,100-fold higher in 58 M relative to

100 M throughout the time course (Figure 4B, upper; Figure S2-

A, p-value,,0.001). In SD, expression of SbEHD1 was high in

both genotypes and peaked during the night (Figure 4B, lower;

Figure S2-A).

In 58 M entrained and analyzed in LD, expression of SbCN8
(Figure 4C, upper) and SbCN12 (Figure 4D, upper) peaked early

in the morning and the relative abundance of RNA derived from

these genes was elevated more than ,100-fold relative to their

levels in 100 M (Figure S2-B/C, p-values,,0.001). In SD,

SbCN8 (Figure 4C, lower) and SbCN12 (Figure 4D, lower)

expression was similar in both genotypes. Similarly, SbCN15
(Hd3a) expression was increased up to ,60-fold in 58 M

compared to 100 M in LD and SD (Figure 4E; Figure S2-D, p-

values,,0.001) at all time points assayed, indicating that PhyB

mediated repression of SbCN15 expression occurs regardless of

photoperiod.

PhyB could be inducing SbPRR37 and SbGHD7 expression

directly, and/or indirectly by altering output from the circadian

clock. To determine if allelic variation in PHYB affected clock

gene expression, TOC1 and LHY/CCA1, the central oscillators,

and GI, a mediator of clock output were examined (Figure S3). In

LD and SD, TOC1, LHY and GI expression in 58 M and 100 M

peaked at similar times and most of these genes showed similar

amplitude of expression, although expression of GI was approx-

imately 2-fold lower in 58 M. Although three biological replica-

tions at the indicated time points may not be sufficient to detect all

biologically significant variation present, the small fold differences

of circadian clock genes do not appear sufficient to explain the

large variation in SbPRR37 and SbGHD7 expression observed in

Figure 5. Model of the photoperiod flowering time pathway in
sorghum. Phytochrome B (PhyB) is mediates light signaling that
modulates flowering time in response to photoperiod in sorghum. In
LD, PhyB up-regulates the expression of PRR37 and GHD7, two central
floral repressors, during the evening phase of LD but with minimal
influence in SD. Induction at this time of day is also dependent on
output from the circadian clock. PhyB may stabilize and interact with
PhyC, a candidate gene for Ma5 a locus that also contributes to
photoperiod regulation of flowering time. SbPRR37 activates SbCO
expression peaking at dawn. SbPRR37 and SbGhd7 repress expression
of the floral inductors SbEHD1, SbCN8, SbCN12 and SbCN15, leading to
delayed flowering in long days. In SD or 58 M (phyB-1), expression of
the floral repressors SbPRR37 and SbGHD7 is reduced which results in
floral initiation once plants have satisfied other requirements for
flowering. PhyB was found to mediate repression of SbCN15 regardless
of day length.
doi:10.1371/journal.pone.0105352.g005
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Ma3 vs. ma3R backgrounds. PHYB and PHYC RNA levels were

similar in 100 M and 58 M plants in LD and SD (data not shown).

Discussion

Sorghum genotypes used for grain production are typically

photoperiod insensitive and flower in 55–75 days when planted in

April in locations such as College Station, Texas where day lengths

increase during the early portion of the growing season. Early

flowering in grain sorghum helps avoid adverse weather and insect

pressure during the reproductive phase, thereby enhancing yield.

In contrast, highly photoperiod sensitive energy sorghum geno-

types planted in this same location will not initiate flowering for

175 days until mid-September when day lengths decrease to less

than 12.2 h [1,29]. Delayed flowering results in long duration of

vegetative growth of energy sorghum, increasing biomass yield [8]

and nitrogen use efficiency [8]. The importance of optimal

flowering time for sorghum productivity led us to investigate the

genetic and molecular basis of variation in this trait in sorghum.

Variation of flowering time of sorghum germplasm grown in LD

environments is caused principally by differences in photoperiod

sensitivity, although shading, GA, temperature, length of the

juvenile phase among other factors also affect this trait [7]. A

model summarizing information about photoperiod regulation of

flowering time in sorghum is shown in Figure 5. In LD, flowering

is delayed in photoperiod sensitive sorghum by the additive action

of the floral repressors, SbPRR37 (Ma1) and SbGhd7 (Ma6)
[25,26,28,29]. SbPRR37 and SbGhd7 repress expression of the

grass specific floral activator, SbEHD1. In addition, SbPRR37

inhibits the activity of CO, another activator of flowering in

sorghum [19]. The floral activators, SbEhd1 and SbCO, induce

expression of SbCN8 and SbCN12, the proposed sources of FT in

sorghum. SbCN15, the ortholog of Hd3a and a source of florigen

in rice [21], may also be a source of florigen in sorghum. The

circadian clock is shown regulating expression of SbGI, SbCO,
SbPRR37 and SbGHD7, and light regulating expression of

SbGHD7 and SbPRR37 as shown in previous studies [25,26].

Photoperiod has minimal impact on flowering time in sorghum

genotypes such as SM100 that encode null versions of SbPRR37
and SbGHD7 [25,26]. Presence of functional alleles of either gene

increases photoperiod sensitivity and a further delay in flowering is

observed when both genes are present in dominant Ma3Ma5
backgrounds. Expression of SbPRR37 and SbGHD7 is regulated

by light and the circadian clock. Both genes show peaks of RNA

abundance in the morning and again in the evening in LD and

both peaks of RNA are attenuated in darkness. Importantly, the

evening peak of expression is attenuated in SD when this phase

occurs in darkness, indicating a requirement for light signaling

during the evening to maintain sufficiently high levels expression

of SbPRR37 and SbGHD7 to inhibit flowering. The morning and

evening peaks of SbPRR37 and SbGHD7 expression observed in

sorghum in LD is a pattern of expression first observed in

photoperiod versions of this C4 grass. In Arabidopsis, PRR7, the
ortholog of SbPRR37, shows a single peak of clock-regulated

expression during the morning [44]. In rice, SbGHD7 shows a

single peak of clock-gated expression in the morning of LD [22]. It

will be interesting to determine if the dual peak pattern of PRR37
and GHD7 expression observed in sorghum is found in other

related C4 grasses such as pearl millet, Miscanthus and sugarcane.

The current study focused on characterizing the light-signaling

pathway that regulates SbPRR37 and SbGHD7 expression in

response to day length. Previous studies showed that sorghum

genotypes lacking PHYB (58 M, phyB-1) flower earlier in LD

compared to near isogenic genotypes (100 M) expressing PHYB,

demonstrating that light signaling through this photoreceptor is

required for photoperiod sensitive variation in flowering time [13].

The current study showed that PhyB (Ma3) is epistatic to genes

encoding the floral repressors SbPRR37 and SbGhd7 and that

PhyB is required for photoperiod-regulated expression of these

genes. Moreover, 58 M, a genotype lacking functional PhyB,

showed attenuated expression of SbPRR37 and SbGHD7 during

the evening of LD compared to 100 M (PhyB). In SD, expression

of the floral repressors was similar in 58 M and 100 M. Taken

together, these results indicate that in sorghum PhyB is required

for light signaling in LD that results in elevated expression of

SbPRR37 and SbGHD7 during the evening.

The molecular basis of PhyB induced expression of SbPRR37
and SbGHD7 during the evening of long days is unknown but

could involve other photoreceptors and intermediary transcription

factors such as PIFs [45]. Detailed studies in rice showed that

PhyA, PhyB and PhyC modulate flowering time [39]. PhyC in

particular plays a role in natural variation of flowering time in

pearl millet [46], Arabidopsis [47], and wheat [48]. In Arabi-

dopsis, a long day plant, PhyB destabilizes CO, an action

countered by Cry, PhyA and SPA in LD, leading to floral

induction [20]. In rice, phyB mutants flower early in LD and SD

similar to sorghum. Interestingly, rice phyC mutants flower early

only in LD [39]. In addition, in rice, both PhyB and PhyC are

required to induce GHD7 expression, where PhyB alone causes

some repression of GHD7 mRNA levels [49]. This indicates that

in rice PhyB regulates floral induction in both LD and SD, while

PhyC modifies flowering time selectively in LD. The stability of

PhyC is reduced in the absence of PhyB in rice and Arabidopsis

[40]. PhyB increases PhyC stability, and chromophore-containing

PhyB:PhyC heterodimers are required for PhyC activity [41].

Therefore, in sorghum the requirement for PhyB in photoperiod

sensitive flowering time may be because PhyB increases PhyC

stability and through formation of PhyB:PhyC heterodimers.

Genetic analysis of the role of PHYB in sorghum was examined

using a population dominant for Ma1 (SbPRR37) and segregating

for alleles of PHYB (Ma3), Ma5, and SbGHD7 (Ma6). The

presence of Ma1 in all progeny of the population caused delayed

flowering in LD unless the expression or activity of Ma1 (and in

some genotypes Ma1 and Ma6) was altered by recessive alleles of

Ma3 or Ma5. The analysis showed that plants homozygous for

null alleles of PHYB (phyB-1) in Ma5_ backgrounds had reduced

photoperiod sensitivity and flowered earlier in LD compared to

plants encoding PhyB. Similarly, progeny homozygous for

recessive alleles of Ma5, in Ma3_ backgrounds, showed reduced

photoperiod sensitivity and flowered earlier in LD. The results

indicated that both PHYB and Ma5 are epistatic to Ma1 and

Ma6. Progeny recessive for either gene flowered earlier in LD, but

showed a range of flowering times, indicating that other genes

and/or environmental factors affected flowering time in these

backgrounds, although with reduced response to photoperiod.

Interestingly, PHYB and Ma5 appear to be co-dependent or

acting at a similar point in the regulatory pathway because allelic

differences at Ma5 did not affect flowering time significantly in

phyB-1 backgrounds and vice versa. R.07007 (Ma3ma5) and

58 M (ma3RMa5) show attenuated expression of SbPRR37 and

SbGHD7 in the evening of LD ([25] and this study) indicating that

both Ma3 (PhyB) and Ma5 are required for elevated expression of

the sorghum floral repressors during the evening of LD. In

searching for an explanation for this co-dependence, we found the

Ma5 locus spans several genes known to affect flowering time

including PHYC and that the sequence of PhyC in R.07007 (ma5)
contained amino acid changes that could potentially modify the

function of this protein. The hypothesis that Ma5 corresponds to
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PHYC is consistent with studies showing that PhyC modifies

flowering in an LD specific manner in rice, similar toMa5 [39]. In

addition, PhyC stability is dependent in part on PhyB and PhyC

activity requires the formation of functional heterodimers with

PhyB (and other phytochromes) [41]. If sorghum PhyC is

regulated by PhyB in a manner similar to their counterparts in

rice, this would explain why Ma5 (presumptive PHYC) activity is

not observed in phyB-1 backgrounds. Experiments designed to test

this hypothesis are currently underway.

In Arabidopsis, CO expression peaks once per day in the

evening and the amplitude of CO expression is regulated by blue

light/GI-FKF1-ZTL mediated turnover of CDF1, a repressor of

CO expression [50]. PRR7 also modifies CO expression through

repression of CDF1 expression [51]. In sorghum, SbCO expression

peaks twice each day, at dawn and again in the evening in LD.

The peak of SbCO expression at dawn is attenuated in SD ([25]

and this study) and in genetic backgrounds lacking SbPRR37 [19].

It is possible that SbPRR37 modulates SbCO expression by

repressing sorghum orthologs of CDF1 as occurs in Arabidopsis

[51]. The peak of SbCO expression at dawn in LD was not

observed in the sorghum genotype lacking PhyB (58 M). Since

PhyB is required for elevated SbPRR37 expression in the evening

of LD, and SbPRR37 has been shown to induce elevated

expression of SbCO at dawn, it is likely that lack of PhyB induced

expression of SbPRR37 during the evenings of LD explains the

observed expression of SbCO in 58 M.

In rice, Hd3a, a member of the PEBP gene family, encodes an

FT protein that acts as a florigen [52]. In maize, ZCN8 and

possibly ZCN12 are sources of florigen [24,53]. Sorghum encodes

orthologs of Hd3a (SbCN15), ZCN8 (SbCN8) and ZCN12
(SbCN12). SbCN8 and SbCN12 expression is regulated by day

length and by alleles of SbPRR37, SbGHD7, and PHYB in a

manner consistent with these genes being sources of florigen in

sorghum. In prior studies, SbCN15 expression was modulated to

only a small extent by variation in photoperiod and in mutants of

SbPRR37 and SbGHD7 that affect flowering time, suggesting that

this gene was not an important target of photoperiod regulation

[25,26]. In the current study, expression of SbCN15 was found to

be ,60-fold higher in leaves of 58 M (phyB-1) compared to

100 M (PHYB) in both LD and SD. If SbCN15 functions as a

source of florigen as in rice, photoperiod independent repression of

SbCN15 expression by PhyB suggests that this gene may be

responsible for early flowering induced by shading [7]. 58 M

plants exhibit shade avoidance responses including longer leaf

blades and sheaths, fewer tillers, narrower leaf blades, less leaf

area, and more rapid stem elongation [7]. In Arabidopsis, light

signaling through PhyB represses shade avoidance responses, and

PhyB deficient mutants have elongated stems and an early

flowering phenotype associated with ‘‘constitutive shade avoid-

ance’’ [54]. Information on photoperiod regulated flowering time

in sorghum described in this paper will hopefully facilitate analysis

of flowering time variation caused by shading and other

environmental factors.

Supporting Information

Figure S1 ANOVA interaction graphs showing (A) Day-
length:PhyB (Day:Genotype) interaction. (B–D) Three two-

way interactions (Ma3:Ma5, Ma3:Ma6, Ma5:Ma6) in the

58MxR.07007 F2/F3 population.

(TIF)

Figure S2 Fold differences of SbEHD1, SbCN8, SbCN12
and SbCN15 RNA abundance at peaks of expression in
100 M and 58 M grown in LD (14 h light/10 h dark) or
SD (10 h light/14 h dark). Positive fold difference values

indicate higher mRNA levels detected in 58 M. (A) SbEHD1, (B)
SbCN8, (C) SbCN12, (D) SbCN15. The time point corresponding

to peak expression is shown below each graph.

(TIF)

Figure S3 Relative expression levels of circadian clock
genes and GI in 100 M (black solid line) and 58 M (red
dashed line) under either LD (14 h light/10 h dark) or
SD (10 h light/14 h dark) conditions. The gray shaded area

represents the dark period. The first 24 h covers one light-dark

cycle, followed by 24 h of continuous light. (A) GI. (B) TOC1. (C)

LHY. Each data point of relative expression corresponds to three

technical replicates and three biological replicates. Error bars

indicates SEM.

(TIF)

Table S1 Genotypes and flowering dates of sorghum lines.

(DOCX)

Table S2 Primer sequences used for PHYB alleles amplification

and sequencing.

(DOCX)

Table S3 Primer sequences and amplification efficiency for

qRT-PCR.

(DOCX)
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