
Toxic Peptides Occur Frequently in Pergid and Argid
Sawfly Larvae
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Abstract

Toxic peptides containing D-amino acids are reported from the larvae of sawfly species. The compounds are suspected to
constitute environmental contaminants, as they have killed livestock grazing in areas with congregations of such larvae, and
related larval extracts are deleterious to ants. Previously, two octapeptides (both called lophyrotomin) and three
heptapeptides (pergidin, 4-valinepergidin and dephosphorylated pergidin) were identified from three species in the family
Pergidae and one in Argidae. Here, the hypothesis of widespread occurrence of these peptides among sawflies was tested
by LC-MS analyses of single larvae from eight pergid and 28 argid species, plus nine outgroup species. At least two of the
five peptides were detected in most sawfly species, whereas none in any outgroup taxon. Wherever peptides were
detected, they were present in each examined specimen of the respective species. Some species show high peptide
concentrations, reaching up to 0.6% fresh weight of 4-valinepergidin (1.75 mg/larva) in the pergid Pterygophorus nr turneri.
All analyzed pergids in the subfamily Pterygophorinae contained pergidin and 4-valinepergidin, all argids in Arginae
contained pergidin and one of the two lophyrotomins, whereas none of the peptides was detected in any Perginae pergid
or Sterictiphorinae argid (except in Schizocerella pilicornis, which contained pergidin). Three of the four sawfly species that
were previously known to contain toxins were reanalyzed here, resulting in several, often strong, quantitative and
qualitative differences in the chemical profiles. The most probable ecological role of the peptides is defense against natural
enemies; the poisoning of livestock is an epiphenomenon.
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Introduction

Toxic peptides are parts of the tremendous wealth of bioactive

metabolites in microbes, plants and animals. They are known from

bacteria, soil fungi, mushrooms, (some) plants, sea anemones, cone

snails, scorpions, spiders, bees, wasps, frogs, and snakes [1–6].

Some of these toxic peptides are quite unique in containing D-

amino acids [2], although both toxic and non-toxic D-amino acids

and D-amino acid proteins have been detected in prokaryotes and

most eukaryotes, except plants [7,8]. Another rare feature of

peptides from natural sources is their inclusion of phosphoserine,

an example being the pentapeptide alphostatin isolated from a

strain of the bacterium Bacillus megaterium [9]. Only one source

in nature is known in which the peptides combine a high

proportion of D to L amino acids with the presence of

phosphoserine; these peptides were discovered in sawflies (Insecta,

Hymenoptera).

Since the mid-20th century there have been uncommon but

repeated reports of livestock dying after ingesting certain insects.

Hundreds of cattle, sheep, goats, and pigs have been found dead,

with significant economic consequences to the farmers [10–12],

first in eastern Australia [13,14], then in Denmark [15], and South

America [12,16,17]. The mammals perished after grazing in areas

showing congregations or outright outbreaks of larvae belonging to

one of two sawfly families, Pergidae or Argidae. Autopsies of

carcasses revealed liver necroses and stomachs filled with the

larvae. On occasions in Australia and Uruguay a kind of addictive

behavior was observed, with cattle fighting each other for the

opportunity to ingest more larvae once they had tasted them for

the first time [14]. This behavior, while impossible to interpret

physiologically at this time, appears to explain why mass quantities

of insects were ingested.

On another level, the toxic peptides can affect biological control

programs. The Australian sawfly species Lophyrotoma zonalis
(Pergidae) is a potential control agent of the paperbark tree,

Melaleuca quinquenervia (Myrtaceae), an invasive plant in

Florida, but the sawfly has not been introduced there as the risks

of environmental contamination by the toxins were considered as

too high [18–21]. Similarly, the pergid Heteroperreyia hubrichi
was initially selected as a candidate for biological control of the

Brazilian peppertree, Schinus terebinthifolius (Anacardiaceae), an

invader to Florida, California and Hawaii. However, the

introduction of that sawfly has been delayed, again because of

its potential for poisoning native wildlife and domesticated animals

that may consume the insect larvae [22].
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The ecological implications of the toxins at the two levels, of

killing livestock and potentially contaminating the environment,

prompted us to investigate the occurrence of the toxins across a

broader range of sawfly species. The first identified oligopeptide

was discovered in the pergid Lophyrotoma interrupta, thus called

lophyrotomin (LGln); it is an octapeptide with four D-amino acids

[23–25]. Subsequently, a closely related octapeptide (LGlu) and

three heptapeptides were discovered in other sawfly species

([26,27]; Table 1): pergidin (Perg), 4-valinepergidin (VPerg), and

dephosphorylated pergidin (dpPerg). The heptapeptides contain

five D-amino acids, and Perg and VPerg also contain phospho-

serine. The compounds are highly toxic to vertebrates, as

demonstrated by the following examples of lethal dose (LD)

values: LD50 <2 mg LGln/kg mice (intra-peritoneal injection);

LD50 <10 mg Perg/kg mice (intra-peritoneal injection); LD = 6 g

fresh weight (FW) L. interrupta larvae/kg sheep (oral dosing);

medium LD = 3–9 g dry weight (DW) L. interrupta larvae/kg

chicken (oral dosing); and lethal single doses of 10–40 g FW

Perreyia flavipes larvae/kg sheep within 68–14 hrs

[11,12,23,24,28–30].

Previously, the peptides had been detected and quantified in

only four sawfly species: L. interrupta, L. zonalis, P. flavipes
(Pergidae), and Arge pullata (Argidae) [24,26,27,31]. Each of these

species can occur in masses in the field, which facilitated the

detection of the toxins. However, we started our study from the

hypothesis that the toxins would be found also in related but non-

pullulating sawfly species. Experiments with extracts from larvae of

Arge pagana, a species common on roses in Europe, and from A.
pullata, that were tested on ants (Myrmica rubra L., Formicidae)

had caused the latter to show paralyzing effects [32]. These

bioassay results indicated that A. pagana contains the toxic

peptides just like A. pullata.

In the past, large batches of probably thousands of larvae were

required to isolate, identify, and quantify the peptides, by using

oven or freeze dried larvae. For the current study, we designed an

extraction procedure using single larvae, and performed liquid

chromatography–mass spectrometry (LC-MS) analyses. This

allowed us for the first time, to include relatively rare target

species and to estimate inter-individual variation in peptide

profiles. The screening of numerous Pergidae and Argidae species

reveals that most of them contain the peptides.

Materials and Methods

Taxon Sampling
Sawfly specimens were collected in the field, mainly in

Australia, Europe and Japan, the taxon sampling comprising

eight Pergidae and 28 Argidae species (Appendix S1). No specific

permissions were required for collecting the insects, and no

endangered or protected species were involved in these collections.

Voucher specimens are deposited at the Royal Belgian Institute of

Natural Sciences. As the specimens used in the chemical analyses

had to be destroyed completely in the process, one or more

specimens from the same population, if not from the same egg-

batch, constitute the respective morphological voucher.

Extraction of Larvae
For each of six pergid and two argid species, 6–8 specimens of

full-grown or almost full-grown larvae were placed individually in

a 1.5 ml microtube, weighed and then euthanized (see Fig. 1),

either by adding 0.5–1.0 ml ethanol or by drying in an oven at

80uC for 20 hrs. Dried specimens were weighed again after the

drying procedure. For all other species, 1–8 specimens per species

were killed in ethanol (see Fig. 2). Generally these larvae were not

weighed, but the approximate fresh weight (FW) was estimated

from the body size (for the extraction and dilution procedure; see

below). All specimens were stored at –30uC until extraction.

After numerous trials with various extraction procedures

coupled with chemical analyses, the following protocol proved to

give efficient, reproducible results on the content of toxic peptides

in a single larva. The ethanolic extract (of non-dried specimens)

was transferred to a 12 ml tube. The larva was thoroughly crushed

in 1 ml of an equal volume ethanol–water solution (which also

served for extractions from oven dried specimens). Then, the

specimen was vortexed, and sonicated for 15 min at 5065uC,

followed by 5 min centrifugation at 8,000 rpm (Denver Instru-

ments Microcentrifuge Force 7). The supernatant (extract nu1) was

added to the tube, while 1 ml of 50% ethanol was added to the

pellet remaining in the microtube. This sample was again

vortexed, sonicated for 5 min, and centrifuged under the

conditions stated above, which led to an extract nu2. Two to five

extractions (with 5 min sonication) were performed, and the

supernatants accumulated in the tube. The number of extractions

depended on the FW of each larva, as follows: 2 (for determined or

estimated larval weights ,75 mg), 3 (76 to 150 mg), 4 (151 to

300 mg), or 5 (.300 mg). Ethanol (50%) was then added to these

pooled extracts to obtain 3, 4, 5, and 6 ml of solution, respectively.

The pooled extracts were stored at –80uC until dilution. Pilot trials

Table 1. Molecular weights and structural composition of the five toxic peptides known from larvae of Pergidae and Argidae.

Peptide name; abbreviationa MW Structure

Pergidin; Perg 864 (L)pGlu-(D)Ala-(D)Val-(L)Leu-(D)Val-(D)Ser(PO3H2)-(D)Trp(OH)

4-Valinepergidin;
VPerg

850 (L)pGlu-(D)Ala-(D)Val-(L)Val-(D)Val-(D)Ser(PO3H2)-(D)Trp(OH)

Dephosphorylated
pergidin; dpPerg

784 (L)pGlu-(D)Ala-(D)Val-(L)Leu-(D)Val-(D)Ser-(D)Trp(OH)

Lophyrotomin;
LGln

1039 C6H5CO-(D)Ala-(D)Phe-(L)Val-(L)Ile-(D)Asp-(L)Asp-(D)Glu-(L)Gln

‘Lophyrotomin’;
LGlu

1040 C6H5CO-(D)Ala-(D)Phe-(L)Val-(L)Ile-(D)Asp-(L)Asp-(D)Glu-(L)Glu(OH)

aAbbreviation used in the present study.
Molecular weights and structures of Perg, VPerg and dpPerg after MacLeod et al. [26], of LGln and LGlu after Oelrichs et al. [27].
doi:10.1371/journal.pone.0105301.t001
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Figure 1. Concentration of the major peptides detected in six species of Pergidae and two species of Argidae. Peptide names
abbreviated as in Table 1. Values expressed as means 6 SD. Numbers of analyzed specimens given in square brackets. Prior to extraction and
analysis, specimens were either kept in ethanol, or oven dried (o.d.).
doi:10.1371/journal.pone.0105301.g001

Figure 2. Absolute quantities of four peptides detected in 28 species of Argidae. Peptide names abbreviated as in Table 1. Values
expressed as means 6 SD. Numbers of analyzed specimens given in square brackets. Data for Arge nigripes and Arge pagana are those from Fig. 1.
doi:10.1371/journal.pone.0105301.g002
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showed that the extracts were generally too concentrated to allow

peptide quantification by mass spectrometry. Using the aforemen-

tioned larval weight categories, three aliquots each of the pooled

extracts were diluted to 1:20, 1:30, 1:40, or 1:50, respectively,

prior to chemical analysis.

LC-MS Analyses
We used an LC system from Thermo Separation Products

(TSP, San Jose, California) that is equipped with a P1000XR

pump and a TSP AS 3000 autosampler. Separation of peptides

was performed on a C18 Ultrasep ES column (15062.0 mm i.d.,

7 mm; Sepserv GmbH, Berlin, Germany) using a linear gradient

from 90% H2O (with 1% CH3CN and 0.1% HCOOH)/10%

CH3CN to 10% H2O in 23 min. The flow rate was 0.2 ml min21;

the column was maintained at 30uC and the autosampler at 10uC.

Mass spectra were acquired with a Quantum mass spectrometer

(Finnigan MAT, San Jose, CA, USA) equipped with an

electrospray ionization (ESI) source in the positive mode. ESI

inlet conditions were: capillary heated at 380uC, sheath gas at 47

PSI, and auxiliary gas at 20 PSI. Collision induced dissociation

was recorded at a relative collision energy of 30%.

Peptide Quantification, Analytical Quality Controls, and
Stability of the Peptides

The five peptides known from the literature to occur in larvae of

Pergidae and Argidae (Table 1) were synthesized by, and

purchased from, Biosyntan GmbH (Berlin, Germany) at .95%

purity. They were analyzed by full MS2 on the [M+H]+ ions

(Appendix S2). To differentiate between ions C13 of LGln (m/
z = 1040) and C12 of LGlu (m/z = 1040), the latter peptide was

analyzed using the single ion monitoring mode for the ion

fragment m/z = 866, which caused no interference between the two

ions.

Calibration curves for the five standard (i.e. synthesized)

peptides were constructed over five concentrations in the range

of 1–2000 ng/ml, and proved to be linear, with r2 values .0.99.

The limit of detection for the peptides analyzed by LC–MS was in

the 0.1 ng range, their limit of quantification being in the 1 ng/ml

range.

The peptide concentrations in the samples were determined by

comparing their ratios of peak areas to calibration curves. These

concentrations (in ng/ml) were multiplied by one of the factors 60,

120, 200 or 300, depending on the two dilutions operated (e.g.,
3 ml of pooled extract diluted to 1:20 leads to factor 60). The final

concentrations (in mg/individual) were averaged over the three

replicates (aliquots). For eight species where the precise FW of a

larva was known (see Fig. 1), peptide concentration was expressed

in % FW.

The recovery of the five peptides was determined using larvae of

Rhadinoceraea micans and Nematus miliaris (Tenthredinidae), two

species that had shown no detectable amounts of the peptides in

previous LC-MS analyses. Specimens were extracted by the same

procedure as all other specimens, except that after removal of

ethanol 100% they were crushed not in ethanol 50% but in

ethanol 50% plus 200 or 1000 ng/ml of the standards. Since these

recovery experiments were carried out with larvae having a FW in

the 76–150 mg range, the purpose was to obtain 24 and 120 mg/

individual, respectively. The recoveries averaged over the five

peptides actually yielded 24.5 and 125.4 mg/individual, with a

coefficient of variation of 14% and 11%, respectively.

Stability of the peptides was monitored for 4.5 months in eight

larvae of L. zonalis, using one of the three replicates available (and

kept in ethanol 50%). They were stored at –30uC between the

successive LC-MS analyses, which were performed at least once

per month.

Results

Toxic peptides occurred in each of the 6–8 individual larvae

(with determined weight) from each of the six pergid and two argid

species, at least by the constant presence of Perg (Fig. 1, Appendix

S3). This was the major peptide in L. analis, whereas VPerg was

the major one in the other pergid species. In contrast, LGln and

especially Perg were major compounds in the Argidae. Our results

invariably show that at least one peptide was present in each

specimen of all these species. However, peptide quantities can vary

among populations of the same species. Larvae from two

populations of L. interrupta contained similar amounts of VPerg

but various amounts of Perg, whereas two populations of A.
pagana showed similar amounts of both Perg and LGln. The total

amount of peptides ranged from ca. 0.4% to 0.8% FW in the

Pergidae (Fig. 1). In Lophyrotoma spp. and Pterygophorus spp.

only small amounts of dpPerg (,0.005% FW) were detected, and

in some of the individuals only; LGlu was detected in only one of

the two populations of L. zonalis, at 0.002% FW (Appendixes S1

and S3).

Perg and LGln were always detected in Arge (20 screened

species) and Spinarge (4), and both peptides were detected in

Cibdela janthina, whereas only Perg was present in Schizocerella
pilicornis (Fig. 2). Among the Argidae, C. janthina reached the

highest concentrations, with over 500 mg Perg and ca. 250 mg

LGln per individual. The peptides VPerg and dpPerg occurred

sporadically among argid species, and at relatively low mean

concentrations never exceeding 60 and 7 mg/individual, respec-

tively (Appendix S3).

No peptides were detected in any individuals of Perga affinis,
Pergagrapta polita, Aproceros leucopoda, Sterictiphora geminata,

nor in any of the outgroup taxa, which included sawfly and non-

sawfly species (see Appendixes S1 and S3).

Body size is generally larger in the studied Pergidae than in the

Argidae, but these differences were only partially reflected in the

Perg contents (Fig. 3). Body weight correlated with the absolute

quantity of Perg regardless of the taxa (shown in Fig. 1), except for

the two Pterygophorus species that showed a proportionally low

Perg concentration (Fig. 3). Concerning the methods of killing and

storing the insects, i.e. in ethanol versus by drying, no significant

differences between peptide profiles were noticed (Fig. 1), and a

roughly constant DW/FW ratio of 20–25% was obtained for

larvae of different species (value of FW and DW in mg as mean 6

SD): L. zonalis (220645 and 56614; n = 8), Pterygophorus
insignis (262654 and 5168; n = 7), Pterygophorus nr turneri
(300649 and 5969; n = 8), A. pagana (5667 and 1261; n = 8).

Measuring peptide stability over time revealed that concentra-

tions of Perg, VPerg and LGln remained stable for at least one

month (Fig. 4). Stability could not be assessed for dpPerg and

LGlu, as these were present from the beginning at relatively low

concentrations, which impeded accurate quantification.

Discussion

In many living organisms, including sawflies, taxonomic

affiliation across species is reflected in congruent chemically-based

defensive strategies (e.g. [33]). The fact that previously only four

species from two sawfly families were known to contain toxic

peptides, was not representative of their actual occurrence in

nature but a strong underestimation of the actual number of

species containing such peptides. Our study has discovered the

presence of toxic peptides in most of the analyzed species of

Toxic Peptides in Sawfly Larvae
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Pergidae and Argidae (Figs 1 and 2), two families that are closely

related [34–36]. Since the peptides were not detected in any

outgroup species, it is likely that their occurrence is restricted to

the two sawfly families.

The extraction procedure used here is the first that allows

chemical analysis of single specimens, which offers several

advantages over earlier methods described in the literature and

which are all based on large amounts of oven-dried specimens.

Our methodology appears as robust in that the presence or

absence of at least one of the peptides was constant across all

individuals of a given species. It is unlikely that a contamination of

the LC-column has affected the results, since daily blanks were

performed, and the samples analyzed in triplicate on different days

gave, nevertheless, similar results.

The chemical analyses revealed intraspecific variation in

peptide concentrations, among individuals as well as populations.

The two populations of L. interrupta (see Appendix S1) were

sampled on host plants belonging to different genera; they showed

similar concentrations of VPerg but different concentrations of

Perg (Fig. 1). In Australia, L. zonalis has the potential to poison

grazing livestock, although no such case has been reported [37]. It

remains unclear to what extent geographical and/or other factors

may affect the chemical profiles. However, the two populations of

A. pagana, sampled in different years and at different locations,

had similar chemical profiles (Fig. 1), suggesting that there is no

temporal and geographical influence on the chemistry of this

species. More generally, the biosynthesis of the peptides remains

unknown, not the host plant but endosymbionts being supposed to

produce them [29].

Some of our results are strikingly different from those reported

in the literature. Intriguingly, differences between the respective

two data sources are quantitative but also qualitative. While our

findings confirm that A. pullata contains LGln at ca. 50 mg/larva

(Fig. 2 versus data estimated from [31]), this species was previously

not reported to contain Perg, which we detected unequivocally.

Other published peptide quantities are expressed in % DW, as

follows: 0.01–0.07% LGln in L. interrupta [24,28], 0.1% LGln in

A. pullata [31], 0.16% LGln and 0.2% Perg in P. flavipes [29],

and 0.36% LGlu and 0.43% of a Perg+VPerg mixture in L.
zonalis [27]. Comparisons with our data are possible for the two

Lophyrotoma species. In L. interrupta we detected VPerg and Perg

but not LGln, which has been reported ever since the first

publications on the chemistry of toxic peptides, and has been

mentioned as the only peptide in that species [24,25,28]. For

larvae of L. zonalis we obtained an FW/DW ratio of 4, so that our

% FW values are equivalent to ca. 0.004% DW LGlu, 0.09% DW

LGln, and 2.8% DW Perg+VPerg (see Appendix S3). Thus, there

are quantitative and qualitative inconsistencies between peptide

concentrations in our study and those in the literature. The

differences in chemical profiles may have multiple causes and

remain difficult to extricate. The methods of extracting and

chemically analyzing the compounds may impact the results, and

our LC-MS analyses generally seem to slightly overestimate the

peptide amounts, as shown by the recovery experiments. In

contrast, the ways of preparing specimens, by drying them in an

oven or keeping them in ethanol, do not influence the chemical

output (see Fig. 1), which corroborates a high thermostability of

the peptides. The latter are chemically stable because they are

water soluble but lipophilic, strongly acidic, and enzymatically

non-degradable compounds [27]. Some differences between

published chemical profiles and our results might also be due to

misidentifications. Apart from specific taxonomic problems with

Figure 3. Fresh body weight and detected quantity of pergidin in individual larvae of species of Pergidae and Argidae. Species data
from Fig. 1 combined at genus level, where applicable, i.e. Arge nigripes + Arge pagana; Lophyrotoma analis + Lophyrotoma interrupta + Lophyrotoma
zonalis; Philomastix macclaei; Pterygophorus insignis + Pterygophorus nr turneri.
doi:10.1371/journal.pone.0105301.g003
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individual taxa, the identification of sawfly larvae, including those

in Pergidae and Argidae, still is generally hampered by the lack of

suitable identification keys.

The combination of the unusual chemical properties and high

toxicity of the peptides has provoked reservations against using

certain pergid species as biological control agents (e.g., [21,22]). In

contrast, the argid C. janthina has been introduced on Reunion

Island to control the invasive Rubus alceifolius (Rosaceae) [38]. We

have not seen reports of this argid affecting the local (vertebrate)

fauna, although in our analyses larvae of C. janthina (collected from

Reunion Island) contain high amounts of Perg and LGln (Fig. 2).

Considering the functioning of (natural) ecosystems, the

poisoning of livestock following the ingestion of toxin-containing

sawfly larvae is merely an epiphenomenon. On the scale of the

larvae, the value of the toxic peptides probably lies in defense

against natural enemies such as predators. The peptides were not

detected in species of the pergid subfamily Perginae, but these

larvae exhibit another defensive mechanism. Once disturbed, they

discharge a viscous oral fluid [39,40], perhaps as an alternative

defensive strategy. In laboratory bioassays, extracts from several

isolated body parts of A. pagana and A. pullata proved to be

effective as feeding deterrents against ants, and the extracts also

rapidly paralyzed feeding ants; both of these bioactivities are

ascribed to the action of peptides [32]. The taming of aggressive

behavior by ants has been documented also for oligopeptides

recently isolated from frogs [6]. It is likely that predators are

strongly deterred from ingesting sawfly larvae that contain toxins.

In turn, this fact should keep the peptides from being disseminated

widely in the food webs of natural environments.

Conclusions

The peptides that caused the death of livestock in various

regions of the world have been detected in the larvae of nearly all

analyzed species of Argidae and Pergidae; this supports our initial

hypothesis that the toxins occur commonly in these sawfly taxa.

Concerning previous reports on such peptides in the literature, we

analyzed three of the four corresponding species and found strong

deviations from the published species-specific chemical profiles.

Intraspecific variation, but also the methods used for chemical

extractions and analyses, are possible explanations for these

differing results.

Supporting Information

Appendix S1 Table mainly containing systematic, collection,

and host-plant data on the sawfly larvae used in this study.

(XLSX)

Appendix S2 Figure showing TIC chromatograms and full MS2

mass spectra of the five synthesized peptides.

(PDF)

Appendix S3 Table containing peptide quantities and concen-

trations of the five peptides in the insects analyzed by LC-MS.

(XLSX)

Figure 4. Diluted extracts from Lophyrotoma zonalis repeatedly analyzed to track peptide quantity over storage time. Peptide names
abbreviated as in Table 1. Values (means 6 SD) refer to eight extracts stored at –20uC in between the chemical analyses. Peptides shown are pergidin
(Perg), 4-valinepergidin (VPerg), and lophyrotomin (LGln).
doi:10.1371/journal.pone.0105301.g004
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