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Abstract

Nitrotyrosine is one of the post-translational modifications (PTMs) in proteins that occurs when their tyrosine residue is
nitrated. Compared with healthy people, a remarkably increased level of nitrotyrosine is detected in those suffering from
rheumatoid arthritis, septic shock, and coeliac disease. Given an uncharacterized protein sequence that contains many
tyrosine residues, which one of them can be nitrated and which one cannot? This is a challenging problem, not only directly
related to in-depth understanding the PTM’s mechanism but also to the nitrotyrosine-based drug development. Particularly,
with the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop a high
throughput tool in this regard. Here, a new predictor called ‘‘iNitro-Tyr’’ was developed by incorporating the position-
specific dipeptide propensity into the general pseudo amino acid composition for discriminating the nitrotyrosine sites
from non-nitrotyrosine sites in proteins. It was demonstrated via the rigorous jackknife tests that the new predictor not only
can yield higher success rate but also is much more stable and less noisy. A web-server for iNitro-Tyr is accessible to the
public at http://app.aporc.org/iNitro-Tyr/. For the convenience of most experimental scientists, we have further provided a
protocol of step-by-step guide, by which users can easily get their desired results without the need to follow the
complicated mathematics that were presented in this paper just for the integrity of its development process. It has not
escaped our notice that the approach presented here can be also used to deal with the other PTM sites in proteins.
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Introduction

As one of the post-translational modifications (PTMs) of proteins,

nitrotyrosine is a product of tyrosine nitration mediated by reactive

nitrogen species such as peroxynitrite anion and nitrogen dioxide

(Fig. 1). Compared with the fluids from healthy people, a

remarkably increased level of nitrotyrosine is detected in those

suffering from rheumatoid arthritis, septic shock, and coeliac

disease. Accordingly, knowledge of nitrotyrosine sites in proteins is

very useful for both basic research and drug development. Although

conventional experimental methods did provide useful insight into

the biological roles of tyrosine nitration [1–3], it is time-consuming

and expensive to determine the nitrotyrosine sites based on the

experimental approach alone. Particularly, identification of endog-

enous 3-NTyr modifications remains largely elusive (see, e.g., [4–7]).

With the avalanche of protein sequences generated in the

postgenomic age, it is highly desired to develop computational

methods for identifying the nitrotyrosine sites in proteins. The

present study was initiated in an attempt to propose a new method

for identifying the nitrotyrosine sites in proteins in hope that it can

play a complementary role with the existing methods in this area.

As summarized in [8] and demonstrated in a series of recent

publications [9–21], to establish a really useful statistical predictor

for a biological system, we need to consider the following

procedures: (i) construct or select a valid benchmark dataset to

train and test the predictor; (ii) formulate the biological samples

with an effective mathematical expression that can truly capture

their essence and intrinsic correlation with the target to be

predicted; (iii) introduce or develop a powerful algorithm (or

engine) to operate the prediction; (iv) properly perform cross-

validation tests to objectively evaluate the anticipated accuracy; (v)

establish a user-friendly web-server that is accessible to the public.

Below, let us describe how to deal with these steps one by one.

Materials and Methods

1. Benchmark Dataset
To develop a statistical predictor, it is fundamentally important

to establish a reliable and stringent benchmark dataset to train and

test the predictor. If the benchmark dataset contains some errors,

the predictor trained by it must be unreliable and the accuracy

tested by it would be completely meaningless.

For facilitating description later, let us adopt the Chou’s peptide

formulation here that was used for studying HIV protease cleavage

sites [22,23], specificity of GalNAc-transferase [24], and signal

peptide cleavage sites [25]. According to Chou’s scheme, a

potential nitrotyrosine peptide, i.e., a peptide with Tyr (namely Y)

located at its center (Fig. 2), can be expressed as
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Pj(Y)~R{jR{(j{1) � � �R{2R{1YRz1Rz2 � � �Rz(j{1)Rzj ð1Þ

where the subscript j is an integer, R{j represents the j�th

upstream amino acid residue from the center, Rj the j�th

downstream amino acid residue, and so forth. A (2jz1)�tuple
peptide Pj(Y) can be further classified into the following

categories:

Pj Yð Þ[
Pz
j Yð Þ, if its center is a nitrotyrosine site

P{
j Yð Þ, otherwise

(
ð2Þ

where Pz
j Yð Þ represents a true nitrotyrosine peptide, P{

j Yð Þ a

false nitrotyrosine peptide, and [ represents ‘‘a member of’’ in the

set theory.

As pointed out by a comprehensive review [26], there is no need

to separate a benchmark dataset into a training dataset and a

testing dataset for examining the performance of a prediction

method if it is tested by the jackknife test or subsampling (K-fold)

cross-validation test. Thus, the benchmark dataset for the current

study can be formulated as

Sj~Sz
j

[
S{

j ð3Þ

where Sz
j only contains the samples of Pz

j (Y), i.e., the

nitrotyrosine peptides; S
{
j only contains the samples of P{

j Yð Þ,
i.e., the non-nitrotyrosine peptide (cf. Eq. 2); and | represents the

symbol for ‘‘union’’ in the set theory.

Since the length of the peptide Pj(Y) is 2jz1(Eq. 1), the

benchmark dataset with different values of j will contain peptides

of different numbers of amino acid residues, as formulated by

Sj contains the

peptides of

13 residues, when j~ 6

15 residues, when j~ 7

17 residues, when j~ 8

19 residues, when j~ 9

21 residues, when j~ 10

..

. ..
.

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

The detailed procedures to construct Sj are as follows. (i) Its

elements were derived based on the same 546 source proteins used

in [27] that contain 1,044 nitrotyrosine sites (see columns 1 and 2

of Supporting Information S1). (ii) Slide a flexible window of

2jz1 amino acids (Fig. 3) along each of the 546 protein

sequences taken from the Uni-Prot database (version 2014_01). (iii)

Collect only those peptide segments with Y (tyrosine) at the center.

(iv) If the upstream or downstream in a protein was less than j, the

lacking residue was filled with a dummy residue ‘‘X’’ [28]. (v)

Those peptide samples thus obtained were put into the positive

subset S
z
j if their centers have been experimentally confirmed as

the nitrotyrosine sites; otherwise, into the negative subset S{
j .

By following the aforementioned procedures, five such bench-

mark datasets (Sj~6,Sj~7,Sj~8,Sj~9, and Sj~10) had been

constructed. Each of these datasets contained 1,044 nitrotyrosine

peptides and 7,669 non-nitrotyrosine peptides. Note that the

sample numbers thus obtained have some minor difference with

those in [27]. This is because some proteins originally used in [27]

have been removed or replaced in the updated version of the Uni-

Prot database.

However, it was observed via preliminary trials that when j~9,

i.e., the peptide samples concerned were formed by 19 residues,

the corresponding results were most promising (see Fig. 4 and

Fig. 5). Accordingly, we choose Sj~9 as the benchmark dataset

for further investigation. Thus, Eq. 3 can be reduced to

S~Sz
[

S{ ð5Þ

where S~S9, S
z~S

z
9 containing 1,044 nitrotyrosine peptide

samples, and S{ ~ S{
9 containing 7,669 non-nitrotyrosine

peptide samples. The detailed 19-tuple peptide sequences and

their positions in proteins are given in Supporting Information S1.

2. Feature Vector and Pseudo Amino Acid Composition
One of the most important but also most difficult problems in

computational biology today is how to effectively formulate a

biological sequence with a discrete model or a vector, yet still keep

considerable sequence order information. This is because all the

existing operation engines, such as correlation angle approach

[29], covariance discriminant [30], neural network [31], support

vector machine (SVM) [32], random forest [33], conditional

random field [28], K-nearest neighbor (KNN) [34], OET-KNN

[35], Fuzzy K-nearest neighbor [36], ML-KNN algorithm [37],

Figure 1. A schematic drawing to show protein nitrotyrosine.
doi:10.1371/journal.pone.0105018.g001
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and SLLE algorithm [30], can only handle vector but not

sequence samples. However, a vector defined in a discrete model

may totally miss the sequence-order information. To deal with

such a dilemma, the approach of pseudo amino acid composition

[38] or Chou’s PseAAC [39] was proposed. Ever since it was

introduced in 2001 [38], the concept of PseAAC has been rapidly

penetrated into almost all the areas of computational proteomics,

such as in identifying bacterial virulent proteins [40], predicting

anticancer peptides [41], predicting protein subcellular location

[42], predicting membrane protein types [43], analyzing genetic

sequence [44], predicting GABA(A) receptor proteins [45],

identifying antibacterial peptides [46], predicting anticancer

peptides [41], identifying allergenic proteins [47], predicting

metalloproteinase family [48], identifying GPCRs and their types

[49], identifying protein quaternary structural attributes [50],

among many others (see a long list of references cited in a 2014

article [51]). Recently, the concept of PseAAC was further

extended to represent the feature vectors of DNA and nucleotides

[9], as well as other biological samples (see, e.g., [52]). Because it

has been widely and increasingly used, recently three types of

powerful open access soft-ware, called ‘PseAAC-Builder’ [53],

‘propy’ [54], and ‘PseAAC-General’ [51], were established: the

former two are for generating various modes of Chou’s special

PseAAC; while the 3rd one for those of Chou’s general PseAAC.

According to a comprehensive review [8], PseAAC can be

generally formulated as

P~ y1 y2 � � � yu � � � yV½ �T ð6Þ

where T is the transpose operator, while V an integer to reflect the

vector’s dimension. The value of V as well as the components

yu(u~1,2, � � � ,V) in Eq. 6 will depend on how to extract the

desired information from a protein/peptide sequence. Below, let

us describe how to extract the useful information from the

benchmark datasets to define the peptide samples via Eq. 6.

For convenience in formulation, let rewrite Eq. 1 as follows

Pj~R1R2 � � �RjRjz1 � � �R2jR2jz1 ð7Þ

where Rjz1, the residue at the center of the peptide, is tyrosine

(Y), and all the other residues Ri(i=jz1) can be any of the 20

native amino acids or the dummy code X as defined above.

Hereafter, let us use the numerical codes 1, 2, 3, …, 20 to

represent the 20 native amino acids according to the alphabetic

order of their single letter codes, and use 21 to represent the

dummy amino acid X. Accordingly, the number of possible

different dipeptides will be 21|21~441, and the number of

dipeptide subsite positions on the sequence of Eq. 7 will be

(2jz1{1)~2j.

Now, let us introduce a positive and a negative PSDP (position-

specific dipeptide propensity) matrix, as given below

Zz(j)~

zz
1,1 zz

1,2 � � � zz
1,2j

zz
2,1 zz

2,2 � � � zz
2,2j

..

. ..
.

P
..
.

zz
441,1 zz

441,2 � � � zz
441,2j

2
666664

3
777775 ð8aÞ

Z{(j)~

z{
1,1 z{

1,2 � � � z{
1,2j

z{
2,1 z{

2,2 � � � z{
2,2j

..

. ..
.

P
..
.

z{
441,1 z{

441,2 � � � z{
441,2j

2
666664

3
777775 ð8bÞ

where the element

zz
i,j ~Fz(Dijj)

z{
i,j ~F{(Dijj)

(
(i~1,2, � � � ,441; j~1,2, � � � ,2j) ð9Þ

and

D1~AA,D2~AC,D3~AD, � � � ,D440~XY,D441~XX ð10Þ

In Eq. 9, Fz(Dijj) is the occurrence frequency of the i�th

dipeptide (i = 1,2,� � � ,441) at the j�th subsite on the sequence of

Eq. 7 (or the j�th column in the positive subset dataset Sz) that

Figure 2. An illustration to show Chou’s scheme for a peptide of (2jz1) residues with tyrosine (Y) at the center. Adapted from Chou
[55,76] with permission.
doi:10.1371/journal.pone.0105018.g002
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can be easily derived using the method described in [55] from the

sequences in the Supporting Information S1; while F{ (Dijj) is

the corresponding occurrence frequency but derived from the

negative subset dataset S{. Thus, for the peptide sequence of Eq.

7, its attribute to the positive set Sz or negative set S{ can be

formulated by a 2j-D (dimension) vector Pz or P{, as defined by

[23]

Pz
j ~ yz

1 yz
2 � � � yz

u � � � yz
2j

� �T ð11aÞ

P{
j ~ y{

1 y{
2 � � � y{

u � � � y{
2j

� �T ð11bÞ

where

yz
u ~

zz
1,u when RuRuz1 ~ AA

zz
2,u when RuRuz1 ~ AC

..

. ..
.

zz
21,u when RuRuz1 ~ AX

zz
22,u when RuRuz1 ~ CA

..

. ..
.

zz
441,u when RuRuz1 ~ XX

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u~1,2, � � � ,2j~V½ � ð12aÞ

y{
u ~

z{
1,u when RuRuz1~AA

z{
2,u when RuRuz1~AC

..

. ..
.

z{
21,u when RuRuz1~AX

z{
22,u when RuRuz1~CA

..

. ..
.

z{
441,u when RuRuz1~XX

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u~1,2, � � � ,2j~V½ � ð12bÞ

where Ru and Ruz1 represent the residues in the u�th and

(uz1)�th positions of the peptide concerned.

3. Discriminant Function Approach
Now in the 2j-D space, let us define an ideal nitrotyrosine

peptide IIz [22] and an ideal non-nitrotyrosine peptide II{ as

expressed by

IIz
j ~

lz
1

lz
2

..

.

lz
u

..

.

lz
2j

2
666666666664

3
777777777775

II{
j ~

l{
1

l{
2

..

.

l{
u

..

.

l{
2j

2
666666666664

3
777777777775

ð13Þ

where lz
i (i~1,2, � � � ,2j) is the upper limit of the corresponding

matrix element in Eq. 12a, and l{
i (i~1,2, � � � ,2j) is the upper

limit of the corresponding matrix element in Eq. 12b. Theoret-

ically speaking, each of these hypothetical upper limits in Eq. 13

should be 1 [23]. Thus, the similarity score of Pz
j with IIz and

that of P{
j with II{ can be defined as

Pz
j
:IIz

j ~
X2j

u~1
yz

u

P{
j
:II{

j ~
X2j

u~1
y{

u

8<
: ð14Þ

Similar to the treatment in [23], let us define a discriminant

function D given by

Dj~ Pz
j
:IIz

j {P{
j
:II{

j

� �
{<~

X2j

u~1
yz

u {y{
u

� �
{< ð15Þ

where < is the adjust parameter used to optimize the overall

success rate when the positive and negative benchmark datasets

are highly imbalanced in size. Now the peptide Pj of Eq. 7 can be

identified according to the following rule

Pj belongs to nitrotyrosine peptide, if Dj w 0

Pj belongs to non� nitrotyrosine peptide, if Dj ƒ 0

(
ð16Þ

The predictor obtained via the above procedures is called iNitro-Tyr.

How to properly and objectively evaluate the anticipated accuracy of a

new predictor and how to make it easily accessible and user-friendly are

the two key issues that will have important impacts on its application

value [56]. Below, let us address these problems.

Figure 3. Illustration to show the peptide segment highlighted by sliding the scaled window {j,zj½ � along a protein sequence.
During the sliding process, the scales on the window are aligned with different amino acids so as to define different peptide segments. When, and
only when, the scale 0 is aligned with Y (tyrosine), is the 2jz1ð Þ�tuble peptide segment seen within the window regarded as a potential
nitrotyrosine peptide. Adapted from Chou [55,77] with permission.
doi:10.1371/journal.pone.0105018.g003

Protein Nitrotyrosine Site Prediction

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e105018



Results and Discussion

1. Metrics for Scoring Prediction Quality
In literature the following four metrics are often used to score

the quality of a predictor at four different angles

Sn~
TP

TPzFN

Sp~
TN

TNzFP

Acc~
TPzTN

TPzTNzFPzFN

MCC~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

where TP represents the number of the true positive; TN, the

number of the true negative; FP, the number of the false positive;

FN, the number of the false negative; Sn, the sensitivity; Sp, the

specificity; Acc, the accuracy; MCC, the Mathew’s correlation

coefficient. To most biologists, unfortunately, the four metrics as

formulated in Eq. 17 are not quite intuitive and easy-to-

understand, particularly the equation for MCC. Here let us adopt

the formulation proposed recently in [9,11,28] based on the symbols

introduced by Chou [25,55] in predicting signal peptides. Accord-

ing to the formulation, the same four metrics can be expressed as

Sn~1{
Nz

{

Nz
, 0 ƒ Sn ƒ 1

Sp~1{
N{

z

N{
, 0 ƒ Sp ƒ 1

Acc~1{
Nz

{zN{
z

NzzN{
, 0 ƒ Acc ƒ 1

MCC~

1{
Nz

{

Nz
z

N{
z

N{

	 

ffip

1z
N{

z{Nz
{

Nz

	 

1z

Nz
{{N{

z

N{

	 
 , {1 ƒ MCC ƒ 1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð18Þ

where Nz is the total number of the nitrotyrosine peptides

investigated while Nz
{ the number of the nitrotyrosine peptides

incorrectly predicted as the non-nitrotyrosine peptides; N{ the total

number of the non-nitrotyrosine peptides investigated while N{
z the

number of the non-nitrotyrosine peptides incorrectly predicted as

the nitrotyrosine peptides [57].

Now, it is crystal clear from Eq. 18 that when Nz
{ ~ 0

meaning none of the nitrotyrosine peptides was incorrectly

predicted to be a non-nitrotyrosine peptide, we have the sensitivity

Sn~1. When Nz
{ ~ Nz meaning that all the nitrotyrosine

peptides were incorrectly predicted as the non-nitrotyrosine

peptides, we have the sensitivity Sn~0. Likewise, when N{
z ~ 0

meaning none of the non-nitrotyrosine peptides was incorrectly

predicted to be the nitrotyrosine peptide, we have the specificity

Sp~1; whereas N{
z ~ N{ meaning all the non-nitrotyrosine

peptides were incorrectly predicted as the nitrotyrosine peptides,

we have the specificity Sp~0. When Nz
{ ~ N{

z ~ 0 meaning

that none of nitrotyrosine peptides in the positive dataset S
z

and

none of the non- nitrotyrosine peptides in the negative dataset S{

was incorrectly predicted, we have the overall accuracy Acc~1
and MCC~1; when Nz

{ ~ Nz and N{
z~N{ meaning that all

the nitrotyrosine peptides in the positive dataset Sz and all the

non- nitrotyrosine peptides in the negative dataset S
{

were

incorrectly predicted, we have the overall accuracy Acc~0 and

MCC~{1; whereas when Nz
{ ~ Nz=2 and N{

z ~ N{=2 we

have Acc~0:5 and MCC~0 meaning no better than random

prediction. As we can see from the above discussion based on Eq.
18, the meanings of sensitivity, specificity, overall accuracy, and

Mathew’s correlation coefficient have become much more

intuitive and easier-to-understand.

It is instructive to point out, however, the set of metrics in Eqs.
17–18 is valid only for the single-label systems. For the multi-label

systems, such as those for the subcellular localization of multiplex

proteins (see, e.g., [58–62]) where a protein may have two or more

Figure 4. A sequence logo plot to show the difference between the positive and negative peptides. The window’s size is 19 when j~9.
See Eq. 1 and the legend of Fig. 3 for further explanation.
doi:10.1371/journal.pone.0105018.g004

(18)
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locations, and those for the functional types of antimicrobial

peptides (see, e.g., [63] where a peptide may possess two or more

functional types, a completely different set of metrics is needed as

elaborated in [37].

2. Jackknife Cross-Validation
With a set of clear and valid metrics as defined in Eq. 18 to

measure the quality of a predictor, the next thing we need to

consider is how to objectively derive the values of these metrics for

a predictor.

In statistical prediction, the following three cross-validation

methods are often used to calculate the metrics of Eq. 18 for

evaluating the quality of a predictor: independent dataset test,

subsampling test, and jackknife test [64]. However, of the three test

methods, the jackknife test is deemed the least arbitrary that can

always yield an unique result for a given benchmark dataset [65].

The reasons are as follows. (i) For the independent dataset test,

although all the samples used to test the predictor are outside the

training dataset used to train it so as to exclude the ‘‘memory’’

effect or bias, the way of how to select the independent samples to

test the predictor could be quite arbitrary unless the number of

independent samples is sufficiently large. This kind of arbitrariness

might result in completely different conclusions. For instance, a

predictor achieving a higher success rate than the other predictor

for a given independent testing dataset might fail to keep so when

tested by another independent testing dataset [64]. (ii) For the

subsampling test, the concrete procedure usually used in literatures

is the 5-fold, 7-fold or 10-fold cross-validation. The problem with

this kind of subsampling test is that the number of possible

selections in dividing a benchmark dataset is an astronomical

figure even for a very simple dataset, as demonstrated by Eqs.28–

30 in [8]. Therefore, in any actual subsampling cross-validation

tests, only an extremely small fraction of the possible selections are

taken into account. Since different selections will always lead to

different results even for a same benchmark dataset and a same

predictor, the subsampling test cannot avoid the arbitrariness

either. A test method unable to yield an unique outcome cannot be

deemed as a good one. (iii) In the jackknife test, all the samples in

the benchmark dataset will be singled out one-by-one and tested

by the predictor trained by the remaining samples. During the

process of jackknifing, both the training dataset and testing dataset

are actually open, and each sample will be in turn moved between

the two. The jackknife test can exclude the ‘‘memory’’ effect. Also,

the arbitrariness problem as mentioned above for the independent

dataset test and subsampling test can be avoided because the

outcome obtained by the jackknife cross-validation is always

unique for a given benchmark dataset. Accordingly, the jackknife

test has been increasingly used and widely recognized by

investigators to examine the quality of various predictors (see,

e.g., [33,41,43,45–47,66–72]).

Figure 5. A plot to show the different ROC curves obtained by the 10-fold cross-validation under different j values. As we can see,
when j~9, the corresponding AUC (i.e., the area under its curve) is the largest, meaning the most promising compared with the other values of j.
doi:10.1371/journal.pone.0105018.g005
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Accordingly, in this study we also used the jackknife cross-

validation method to calculate the metrics in Eq. 18 although it

would take more computational time.

3. Comparison with Other Methods
The jackknife test results by iNitro-Tyr on the benchmark

dataset S ~ S
zS

S
{

(cf. Supporting Information S1) for the

four metrics defined in Eq. 18 are listed in Table 1, where for

facilitating comparison, the corresponding results by GPS-YNO2

[27] with different thresholds are also given.

From the table, we can see the following facts. (i) The overall

accuracy by the current iNitro-Tyr predictor is Acc~84:52%,

which is higher than the overall accuracy by GPS-YNO2

regardless what threshold is used for the latter. (ii) The Mathew’s

correlation coefficient obtained by iNitro-Tyr is MCC~0:4905,

which is significantly higher than that by GPS-YNO2, indicating

that the new predictor is more stable and less noisy. (iii) The

sensitivity and specificity obtained by iNitro-Tyr are Sn~81:76%
and Sp~85:89%, which are much more evenly distributed than

those by the GPS-YNO2 predictor.

It is instructive to point out that, as shown by Eqs. 12a and b,

the amino acid pairwise coupling effects [11] has been incorpo-

rated via the general form of PseAAC [8] to formulate the peptide

samples. If, however, we just used the single amino acid specific

position occurrence frequency to formulate the peptide samples,

the corresponding prediction quality would drop down to

Acc~44:88% and MCC~0:1656, clearly indicating that consid-

eration of the amino acid pairwise coupling effects could

significantly enhance the prediction quality, fully consistent with

the reports by previous investigators [73,74], where it was

observed that the prediction of protein secondary structural

contents had been remarkably improved by taking into account

the amino acid pairwise coupling effects.

Accordingly, compared with the best of existing predictors for

identifying the nitrotyrosine sites in proteins, the new iNitro-Tyr
predictor not only can yield higher or comparable accuracy, but is

also much more stable and less noisy. It is anticipated that iNitro-
Tyr may become a useful high throughput tool in this area, or at

the very least play a complementary role to the existing predictors.

4. Web-Server and User Guide
For the convenience of most experimental scientists, we have

established a web-server for the iNitro-Tyr predictor, with which

users can easily get their desired results according to the steps

below without the need to understand the mathematical equations

in the method section.

Step 1. Open the web server at http://app.aporc.org/iNitro-

Tyr/and you will see the top page of the predictor on your

computer screen, as shown in Fig. 6. Click on the Read Me

button to see a brief introduction about iNitro-Tyr predictor and

the caveat when using it.

Step 2. Either type or copy/paste the sequences of query

proteins into the input box shown at the center of Fig. 6. All the

input sequences should be in the FASTA format. A sequence in

FASTA format consists of a single initial line beginning with the

symbol ‘‘.’’ in the first column, followed by lines of sequence data

in which amino acids are represented using single-letter codes.

Except for the mandatory symbol ‘‘.’’, all the other characters in

the single initial line are optional and only used for the purpose of

identification and description. The sequence ends if another line

starting with the symbol ‘‘.’’ appears; this indicates the start of

another sequence. Example sequences in FASTA format can be

seen by clicking on the Example button right above the open box.

Note that if your input protein sequences should be formed by the

20 native amino acid codes (ACDEFGHIKLMNPQRSTVWY).

Step 3. Click on the Submit button to see the predicted

results. For example, if you use the two query protein sequences in

the Example window as the input, after clicking the Submit

button, you will see the following on your screen. (i) The 1st protein

(P05181) contains 18 Y residues; of which only those located at the

sequence position 71, 318, 349, 381, and 423 are of nitrotyrosine

site, while all the others are of non-nitrotyrosine site. (ii) The 2nd

protein (P03023) contains 8 Y residues; of which only those located

at the sequence positions 7, 12, 17, and 47 belong to the

nitrotyrosine site, while all the others belong to non-nitrotyrosine

site. All these results are fully consistent with experimental

observations except for one Y residue at the position 349 in the

1st protein (P05181) that is actually non-nitrotyrosine site but was

overpredicted as nitrotyrosine site.

Step 4. As shown on the lower panel of Fig. 6, you may also

submit your query proteins in an input file (with FASTA format)

via the ‘‘Browse’’ button. To see the sample of input file, click on

the Example button right under the input box.

Step 5. Click on the Data button to download the benchmark

dataset used to train and test the iNitro-Tyr predictor.

Conclusions

As one of the important posttranslational modifications (PTMs),

nitrotyrosine is a product occurring in proteins when their tyrosine

(Tyr or Y) residue is nitrated. Since a remarkably increasing level

of nitrotyrosine is detected for those patients who have suffered

from rheumatoid arthritis, septic shock, and coeliac disease,

knowledge of nitrotyrosine is very useful for developing drugs

against these diseases.

A new predictor was developed for identifying the nitrotyrosine

sites in proteins based on a set of 19-tuple peptides generated as

follows. Sliding a window of 19 amino acids along each of the 546

protein sequences taken from a protein database, collected were

Table 1. Comparison of the new iNitro-Tyr predictor with the existing predictors in identifying the nitrotyrosine sites; the rates
listed below were derived by the jackknife cross-validation on the 546 source proteins used in [27].

Predictor Threshold Acc (%) MCC Sn (%) Sp (%)

GPS-YNO2a High 82.57 0.1884 28.89 90.02

Medium 79.60 0.2171 40.53 85.02

Low 76.51 0.2335 50.09 90.18

iNitro-Tyrb 84.52 0.4905 81.76 85.89

aAs reported in [27], where j~7, i.e., the length of the potential nitrotyrosine peptides considered is 2jz1ð Þ~15.
bSee Eqs. 15–16, where <~0:70 and j~9, i.e., the length of the potential nitrotyrosine peptides considered is 2jz1ð Þ~19.
doi:10.1371/journal.pone.0105018.t001
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only those peptide segments with Y (tyrosine) at the center, i.e., the

potential nitrotyrosine-site-containing peptides. The benchmark

dataset thus obtained contains 1,044 experiment-confirmed

nitrotyrosine peptides and 7,669 non-nitrotyrosine peptides.

The new predictor is called iNitro-Tyr, in which each of the

potential nitrotyrosine-site-containing peptides was formulated

with a 18-D vector formed by incorporating the position-specific

dipeptide propensity (PSDP) into the general form [8] of pseudo

amino acid composition [38,75] or Chou’s PseAAC [39,51,54].

It has been observed by the rigorous cross validations that the

iNitro-Tyr not only yields higher success rates but also is more

stable and less noisy as reflected by a set of four metrics generally

used to measure the quality of a predictor from different angles.

For the convenience of most experimental scientists, the web-

server of iNitro-Tyr has been established at http://app.aporc.org/

iNitro-Tyr/. Furthermore, to maximize their convenience, a step-

by-step guide has been provided, by which users can easily get

their desired results without the need to follow the complicated

mathematics that were presented in this paper just for the integrity

of the predictor.

It has not escaped our notice that the current approach can also

be used to develop various effective methods for identifying the

sites of other PTM sites in proteins.

Supporting Information

Supporting Information S1 The benchmark dataset used
in this study contains 8,713 peptides formed by 19
amino acid residues with Y (tyrosine) at the center. Of

these peptides, 1,044 are of nitrotyrosine and 7,669 of non-

nitrotyrosine. Listed are also the codes of the source proteins from

which these 19-tuple peptide sequences are derived as well as their

corresponding sites in proteins. See the main text for further

explanation.
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