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Abstract

Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils
from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in
residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome
amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used
to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/
M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses
were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity
profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates
(CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based
approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be
distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific
metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples
collected from two different locations.
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Introduction

Soil can be found on items submitted for forensic analysis,

however there is currently no reliable method to compare the

DNA content of soils for forensic purposes. Soil, owing to its

inherent features, adheres under fingernails, to cars, tools,

weapons or items of clothing and can transfer during the

commission of a criminal act [1]. Soil can also be useful associative

evidence in the investigation of wildlife crimes, such as poaching.

The presence of soil is often recorded during the forensic

examination of exhibits. Due to the lack of a validated analytical

method, or set of techniques for meaningful comparison of soil

samples, this evidential type provides only limited value in

investigations. There is therefore a need to develop such

comparative methodologies.

Traditionally forensic analysis of soils involves comparison of its

chemical-physical and biological properties [2]. Over the past

decades many studies have been undertaken utilizing the chemical

profiles of soil using a wide variety of novel sophisticated and rapid

analytical methods such as, FTIR [3], X-ray [4] and elemental

analysis [5,6]. These methods are mainly mineralogical techniques

and define geological characteristics of soil, which differ across a

regional scale. Therefore these techniques may be unable to

discriminate soils within a small locality [7]. The potential for

discriminating soils at a local scale exists with methods of soil

microbial community analysis that have been applied for forensic

purposes [8,9]. Previous attempts at DNA based analysis of soils

used DNA fingerprinting techniques which evaluate fragment

length variation such as terminal restriction fragment length

polymorphism (TRFLP) [7,10], denaturing gradient gel electro-

phoresis (DGGE) [11], amplified ribosomal DNA restriction

analysis (ARDRA) [12] and length heterogeneity-polymerase

chain reaction (LH-PCR) [5]. Many fragments in the resultant

DNA fingerprint appear identical in length but differ in sequence

leading to erroneous conclusions of similarity that would be

avoided if the DNA sequences of the fragments were known.

These methods are rapid and permit high throughput analysis but

have insufficient resolution to discriminate complex soil mixtures

[13]. All these methods have potential for use in forensic

comparisons, however a lack of reproducibility and the potential

for false inclusions has restricted their implementation in a forensic

setting.

Development of new platforms for high-throughput DNA

sequencing (HTS) has made it more affordable and led to the

significant growth of HTS-based studies [14–16]. The application

of HTS to soil science has allowed for new insight on the diversity

of soil microbial communities inhabiting various biomes [17–19].

Gene-targeted, or locus-specific, sequencing which typically

targets the 16S rRNA gene is used for characterization of the

taxonomic composition and diversity of microbial communities

[20,21]. Shotgun sequencing is primarily a method for studying
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the functional structure of the communities which aims to examine

the entire genetic assemblage and, being amplification-indepen-

dent, relies on variation and commonality of the collective

genomes found in a given environmental sample [22,23]. Shotgun

typing allows for a more comprehensive perspective on the whole

microbial community but is limited by its propensity to favour

identification of the most dominant members over rarer organisms

[24]. In order to access the rare species found in such a complex

matrix as soil, ultra-deep DNA sequencing is required [25].

Soil samples obtained during forensic investigations, by their

nature, put specific requirements on any metagenomic approach.

The samples are often small and sufficient amount of the sample

should remain after analysis for independent re-testing if required.

Soil DNA extraction procedure, as an initial step of metagenomic

analysis, should provide high quality DNA with a good yield.

Commercially available soil DNA extraction kits is an preferable

option offering forensic investigators a means for standardizing soil

DNA extraction [26–28]. Gene-targeted sequencing based on

PCR amplification technique is able to analyse the minute

amounts of template DNA recovered in forensic samples. The

need for a relatively large amount of initial DNA template for

shotgun sequencing makes this approach less suitable for forensic

oriented metagenomic analysis but whole-genome amplification

(WGA), using Phi 29 DNA polymerase, represents an effective

way of enabling whole-genome shotgun sequencing from small

quantities of DNA [29].

The ability to identify DNA from the entire genetic composition

of a complex soil mixture is desirable for forensic investigation as

the DNA from a wide range of organisms may be present: these

include the DNA from bacteria, fungi, nematodes, mammals,

plant material, and from insect remains. These can be used to

generate a rich DNA profile for comparison and meaningful

discrimination between samples. Targeted metagenomics tech-

nique that are limited to one particular locus, such as the 16S

(small subunit (SSU) of rRNA in prokaryotes [30]), ITS (internal

transcribed spacers widely used for fungi [31]), or 18S (nuclear

SSU rRNA a widely used phylogenetic marker in eukaryotes [32]),

do not detect the variability of the entire soil biota thus providing

less information for comparison and differentiation of soil samples.

Metagenomic sequencing approaches have been reported that

can reliably differentiate soil microbial communities from different

soil types and different land use [17,33]. However from a forensic

point of view, discrimination of visually similar soil samples taken

from geographically different urban areas (community parks with

similar plant cover, residential suburbs, soils of similar land

management) is of greater importance [7,34].

We report on the assessment of the ability of random whole

metagenomic sequencing approaches to produce reproducible site-

specific DNA profiles that can be employed for comparative

analysis and discrimination between soils of different locality for

application in forensic science. We show an assessment of shotgun

and WGA-based sequencing techniques as well as the use of a

single arbitrarily primed DNA amplification (AP-PCR) for

metagenomic soil DNA analysis [35]. The use of AP-PCR was

first reported in the 1990s [36,37] and has been applied to

genotyping [38,39] and the study of microbial communities [40].

Materials and Methods

Soil sampling
Soil samples were collected from two different sites in Adelaide

in July 2013; Location A (S35 01 43.42 E138 34 16.26) and

Location B (S35 00 58.09 E138 32 12.03). These locations are

separated by approximately 3 km. For each site, triplicate samples
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were taken 1 m apart from the upper 1 cm of the soil layer. The

samples collected from Location A and Location B represented a

dark loam rich in organic matter and were visually very similar.

No specific permits were required for these locations and activities.

The field studies did not involve endangered or protected species.

The soil samples were placed in individual sterile plastic tubes and

stored at 220uC until analysis. DNA extraction was performed

within 24 hours of soil sampling.

DNA extraction, amplification and sequencing
Metagenomic DNA was isolated from 50 mg of each soil sample

using the ZR Soil Microbe DNA Kit (Zymo Research, USA)

following the manufacturer’s recommendations. The quality of the

DNA extracts was verified by gel electrophoresis in a 1% agarose

gel stained with ethidium bromide. DNA concentrations were

determined using a Qubit dsDNA HS Assay Kit (Invitrogen, USA)

on a Qubit fluorometer (Life technologies, USA).

For each of the six samples, WGA was conducted with 20 ng

DNA using Phi29 DNA polymerase (REPLI-g, Qiagen, Ger-

many). The quality of amplification products was determined by

1% agarose gel electrophoresis and by quantification on a Qubit

fluorometer (Life technologies, USA) after purification with a

QIAquick PCR Kit (Qiagen, Germany).

Amplification of extracted soil DNA was performed with an

arbitrarily chosen oligonucleotide primer (sequence 59-

GGAGGTGGTGTTCGAGGG-39), previously reported for gen-

erating soil DNA fingerprints [41]. As a template, 4 ng of

metagenomic DNA was used. The 25 mL final reaction volume

contained 16Hotstar Taq buffer (Qiagen, Germany), 2.5 mM

Mg2+, 0.2 mM of each dNTPs, 0.4 mM of the arbitrary chosen

primer, and 0.5 U HotstarTaq DNA polymerase (Qiagen,

Germany). An initial 15 min denaturation step at 95 uC was

followed by 42 cycles of 30 s at 94uC, 30 s at 55uC and 1 min at

72uC. A final extension step of 7 min at 72uC was used to

complete the reaction. The quality and concentration of purified

PCR products (QIAquick PCR Kit, Qiagen, Germany) were

determined as described for WGA procedure.

All the manipulations were performed in dedicated DNA

extraction and PCR-mixing hoods using sterile DNA/RNA free

water (Ambion, USA) and DNA/RNA free plasticware (Eppen-

dorf, Germany). All the procedures of the extraction and

amplification were conducted with the necessary no-template

controls, including extraction blank controls.

Library preparation from 100 ng of the corresponding DNA

specimen for all three methods under evaluation followed by

sequencing was performed at the Australian Genome Research

Facility (AGRF, http://www.agrf.org.au/, Adelaide, SA, Austra-

lia) using Ion Torrent technology (Ion Torrent PGM Sequencer;

Life Technologies, USA) on a separate Ion 318 chip for each of the

sequencing approaches.

Processing of sequencing data
Raw sequence datasets were uploaded to the Metagenome

Rapid Annotation using Subsystem Technology (MG-RAST)

server (http://metagenomics.nmpdr.org/) (Meyer et al., 2008)

and filtered from low-quality reads prior to annotation. Metage-

nomic datasets were annotated to protein genes against the M5NR

database and SEED Subsystems database resulting in protein-

derived taxonomic and metabolic profiles, respectively. In addition

taxonomic profiles were generated by comparison of the

metagenomic datasets with the M5RNA ribosomal database also

available in MG-RAST. The MG-RAST default annotation

parameters such as maximum E-value ,161025, minimum

length of alignment of 15 bp, and minimum sequence identity of

60%, were used to identify the best database matches. Metage-

nomic profiles were generated at all available MG-RAST

taxonomic (phylum to species) and metabolic (level 1 to functions)

levels of hierarchy. To adjust the differences in sequencing effort

across samples, two common procedure of standardization were

taken:

1. In the first approach metagenomic profiles were generated

using full datasets of the high-quality reads obtained for each

sample. For the metagenomic profiles comparison the relative

abundance scores for each taxon and metabolic feature were

determined by the percentages of respective reads over the total

assigned reads. In the text the relative abundance scores found

both for the taxonomic and metabolic features are represented

as an average 6 SD (standard deviation) across all datasets (if

not mentioned otherwise).

2. A second approach was based on comparison of metagenomic

profiles generated from randomly subsampled datasets of 49

000 annotated reads per sample.

Metagenomic datasets are freely available on the MG-RAST

web-server (http://metagenomics.anl.gov/). The MG-RAST sam-

ple IDs are listed in the Table S1.

Statistical analysis of data
The species richness was estimated by rarefaction analysis

preformed in MG-RAST. The analysis was performed for total

taxa identified with the M5NR protein database in randomly

subsampled metagenomic datasets (including Bacteria, Archaea,

Eukaryota, Viruses, unclassified and other sequences).

Statistical comparison of metagenomes was conducted on

square root transformed data using the statistical package Primer

v.6 for Windows (Version 6.1.13, PRIMER-E, Plymouth) [43]. To

assess the similarity of the taxonomic and metabolic compositions

between soil samples, the Bray-Curtis pair-wise similarity measure

was employed. The resulting Bray-Curtis similarity matrices were

then used for hierarchical agglomerative clustering (CLUSTER)

with the results displayed as group average dendrograms.

Similarity profile analysis (SIMPROF) was used to test for

multivariate structure in the clusters formed. Non-metric multi-

dimensional scaling (NMDS) of Bray-Curtis similarities was

performed as an unconstrained ordination method to graphically

visualise inter-sample relationships. The program RELATE in the

PRIMER package was used to calculate the Spearman rank

correlation between Bray-Curtis similarity matrices generated

from differently standardised datasets at the same level of

taxonomic or metabolic resolution [44].

Metagenome profiles were further analysed using canonical

analysis of principal coordinates (CAP) using the PERMANOVA+
version 1.0.3 3 add-on to PRIMER [45] as a constrained

ordination method to test for significant differences among the a
priori groups in multivariate space. All metagenomic profiles were

divided into 6 groups according to the sequencing approach

applied and origin of the samples. The a priori hypothesis of ‘no

difference’ within groups was tested at both taxonomic and

metabolic levels using CAP analysis by evaluation of a P-value

obtained after 9999 permutations. The strength of the association

between multivariate data and the hypothesis of group differences

was indicated by the value of the squared canonical correlation

(d1
2). An appropriate number of principal coordinates axes (m)

used for the CAP analysis were chosen automatically by the CAP

routine to minimize errors of a misclassification. In order to

validate the ability of the CAP model to classify correctly the

Metagenome Sequencing for Forensic Discrimination of Soils
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Figure 1. Comparison of the taxonomic soil profiles generated on full datasets at the phylum (A, B, C) and species (D, E, F)
resolution levels. Bray-Curtis distance similarity matrix was calculated from the square-root transformed abundance of DNA fragments matching
taxa in the M5NR database (E-value ,161025). The Bray-Curtis matrix was used for generating CLUSTER dendrogram, NMDS and CAP ordination

Metagenome Sequencing for Forensic Discrimination of Soils
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samples according to their appropriate groups a cross-validation

procedure was performed for the chosen value of m [46].

Results

Notation and general characteristics of sequencing
datasets

Obtained datasets were grouped and named according to their

sequencing approach and soil sampling sites. Thus samples

processed by the AP-PCR approach have a common prefix

‘‘AP’’, shotgun sequenced samples – ‘‘SH’’, and WGA assisted

sequencing – ‘‘WGA’’. Each dataset designation identifies the

location from where the sample was collected: ‘‘_A’’ – samples

collected from location A; and ‘‘_B’’ – samples collected from

location B. For example the abbreviation AP_A indicates a sample

collected at location A and sequenced by the AP-PCR-based

method.

For each soil DNA sample three datasets were generated from

the same DNA template using three sequencing approaches.

Shotgun metagenome sequencing resulted in an average of 672

542 (531 108–806 843) sequence reads with an average sequence

length of 198673 bases for a total of .133 Mbp of sequence.

Sequencing datasets after WGA consisted of an average of 911 554

(506 028–2 012 359) sequences with an average of 198675 bases

in length for a total of .178 Mbp. The AP-based approach gave

an average of 468 187 (74 370–1 047 266) reads with an average

143669 bases in length for a total of .70.7 Mbp (Table 1).

Datasets were annotated using the online MG-RAST server [42].

Approximately 20% of low quality reads were eliminated from

each dataset at the filtering step. Only 25–35% of the reads which

contained predicted protein coding regions (49 902–689 805 reads

per sample), were taxonomically assigned using M5NR protein

database. While 30–40% of reads assigned to the SEED

Subsystems database were used for generation of metabolic

profiles (Table 1). Each of the metagenomic datasets according

to the MG-RAST statistics contained approximately 10% of reads

with predicted rRNA gene fragments. The subsequent annotation

revealed no reads from the AP-based dataset and only 1% of the

reads from the SH- and WGA-based datasets matched the

M5RNA database.

Taxonomic profiling of metagenomes
The analysis of metagenomic data within MG-RAST occurs

both for protein coding genes and ribosomal (rRNA) genes. And

therefore analysis of taxonomy can be performed in two ways.

Taxonomic classification of protein gene fragments showed that

85 (64)% of the annotated reads were assigned to Bacteria, with

4.5 (62.7)% of reads also matched to Eukaryota and 0.6 (60.4)%

to Archaea. The remaining 10 (61)% of reads were not assigned.

Bacterial taxa Proteobacteria, Actinobacteria and Bacteroidetes
dominated in all metagenomic datasets representing close to 70%

of protein annotated reads. Additional phyla including Chloroflexi,
Planctomycetes, Acidobacteria Firmicutes, Cyanobacteria, Verruco-
microbia represented less than 5% of reads. Among the eukaryotic

taxa, Ascomicota was found to be the dominant microorganism 3.0

(62.6)%. Other eukaryotic taxa such as Streptophyta, Chordata,

Basidiomycota and Arthropoda collectively contributed to the

remaining 1% of the annotated reads (Table S2).

Taxonomic classification of the rRNA gene fragments identified

only in SH- and WGA-based datasets showed that 78 (68)% of

reads were assigned to bacterial taxa and 14.5 (66.5)% to

eukaryotic taxa (data represented as an average relative abun-

dance of taxa between the samples of SH- and WGA-based

datasets). The most abundant bacterial and eukaryotic phyla

found were the same as per protein-derived taxonomic classifica-

tion (described above) namely: Actinobacteria, Proteobacteria,
Bacteroidetes, Ascomycota and Streptophyta. The remaining 7 (64)

% of reads were not assigned (Table S3).

Rarefaction analysis was performed on randomly subsampled

metagenomic datasets (49 000 reads per sample) annotated against

the M5NR non-redundant protein database. The analysis showed

the differences in biodiversity (highest level of taxonomic

resolution) of the datasets generated by the three metagenome

sequencing approaches (Fig. S1). The SH- and WGA-based

datasets demonstrated a similar numbers of identified species from

location A and B. A two fold lower number of species were

identified in the AP-based dataset.

Metabolic profiling of metagenomes
Metabolic profiles for all datasets were created by matching to

the SEED Subsystems database. The most abundant metabolic

features found in all datasets, accounting for almost 60% of

assigned reads were: clustering-based subsystems; carbohydrates;

amino acids and derivatives; protein metabolism; miscellaneous;

cofactors; vitamins; prosthetic groups; pigments and DNA

metabolism. The relative abundance each of the remaining

metabolic features represented less than 5% of reads (Table S4).

Comparison of soil metagenome profiles based on full
sequence datasets

Comparison of protein-derived taxonomic profiles. An

initial comparison of the taxonomic structures of the metagenomes

using lowest (coarsest) resolution profiles derived at the phylum

level of taxonomy was performed. CLUSTER analysis with group-

average linking based on Bray-Curtis similarity matrices delineat-

ed two distinct clusters with similarity of 85% formed by samples

from AP-based dataset grouped according to the sites from where

the samples were taken (Fig. 1A). These clusters were supported by

the SIMPROF analysis that showed statistically significant (p,

0.05) evidence of genuine clustering, as indicated by red dotted

branches on the dendrogram (Fig. 1A). Two samples from

WGA_A group having 94% profiles similarity also formed such

a cluster. Other samples form SH- and WGA-based datasets

formed mixed clusters. For example, a sample from the WGA_B

group formed a united cluster with a sample from the SH_A group

and two samples from the SH_B group (similarity 94%), thus

indicating that the samples from two different locations were

grouped together incorrectly. One more cluster consisted of two

samples from SH_A and SH_B groups with 96% of similarity.

Bray-Curtis distances between metagenomic profiles were then

displayed on an NMDS plot (Fig. 1B). NMDS analysis did not

reveal a clear visual separation of data. Points denoting samples

plots. CLUSTER analysis (A and D). Red dotted branches on the CLUSTER dendrogram indicate no significant difference between metagenomic
profiles (supported by the SIMPROF analysis, p,0.05). NMDS unconstrained ordination (B and E). The NMDS plot displays distances between
samples. Data points that are closer to each other represent samples with highly similar metagenomic profiles. CAP constrained ordination (C
and F). CAP analysis tests for differences among the groups in multivariate space. The significance of group separation along the canonical axis is
indicated by the value of the squared canonical correlation (d1

2) and P-value. A contour line on the NMDS and CAP ordinations drawn round each of
the cluster defines the superimposition of clusters from CLUSTER dendrogram at the selected level of similarity.
doi:10.1371/journal.pone.0104996.g001
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from WGA- and SH-based datasets were located much closer

together showing a higher similarity of the profiles than points

representing AP-based dataset (Fig. 1B). Overlaying clusters on

the NMDS plot made visual discrimination of the patterns formed

by AP-based dataset easier (Fig. 1B).

It has been noted that the distinct patterns of multi-dimensional

datasets could be hidden in the low-dimensional space of NMDS

ordination [46]. Consequently for the comparison of our

metagenomics datasets, CAP analysis as a constrained ordination

method was also performed. CAP analysis tests the hypothesis of

whether there is a difference between pre-defined groups. In our

research all datasets were divided into 6 groups in accordance with

combined factors, including the sequencing approach applied and

the origin of soil samples. The results of the CAP ordination at the

phylum level demonstrated that the first squared canonical

correlation was very large (d1
2 = 0.97), indicating the significance

of the CAP model. The first canonical axis showed clear

separation of the samples within AP-based dataset according to

the soil sampling sites. At the same time a close overlapping of the

samples from the SH- and WGA-based datasets was observed

(Fig. 1C). However, the cross-validation results of the CAP model

for the chosen value of m = 6 did not confirm the above defined

separation of the metagenomic datasets (Table 2). Thus, the most

distinct groups, which had a 100% success under cross-validation,

were AP_B and WGA_A. One sample from the AP_A group was

misclassified to the AP_B group. One sample from each of the

SH_A and SH_B groups were misclassified to the SH_B and

SH_A groups, respectively. All the samples from the WGA_B

group were misclassified to another three different groups (SH_A,

SH_B and WGA_A).

It is of note that apart from AP_A and WGA_A groups at the

class level of taxonomic resolution the cross-validation of the CAP

model showed a 100% correct classification of the samples from

AP_B group (Table 2). Additionally one sample from the SH_A

group was misclassified to the WGA_B group, whereas two

samples from the SH_B group were misclassified to the SH_A and

WGA_B groups.

Further CLUSTER analysis, NMDS and CAP ordinations of

the metagenomic samples at higher levels of taxonomy demon-

strated similar patterns of differentiation as observed at the phylum

and class levels (Figs.1, S2,S3). Thus, at the order, family, genus

and species levels of resolution two samples from the WGA_A

group and two samples from the SH_A group formed separate

genuine clusters on the CLUSTER dendrograms (Fig. 1D, S2D,

S3A, S3D). Two more genuine mixed clusters were observed

consisting of the samples from the SH_B and the WGA_B groups.

NMDS and CAP ordinations at all levels of resolution clearly

displayed three distinct clusters; two clusters consisting of the

samples from the AP_A and the AP_B groups and one mixed

cluster of samples from all the other groups (Fig. 1, S2, S3). Cross-

validation results of the CAP models at all levels of resolution,

starting from the class level, showed an accurate 100% correct

classification of samples from the AP-based dataset (Table 2).

Despite the visual overlapping of the SH- and WGA-based data

points shown on the ordination plots (Fig. 1, S2, S3), the samples

from WGA_A group were classified 100% correctly across all

levels of taxonomic resolution (Table 2). Of note was that, at the

genus level, all samples from the SH_A group were also

successfully allocated.

Comparison of taxonomic profiles based on rRNA gene

fragment classification. Taxonomic profiles were generated

only for the SH- and the WGA-based datasets where the rRNA

gene fragments matched to the M5RNA database. The AP-based

dataset was excluded from the consecutive comparative analysis
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Figure 2. Comparison of the metabolic soil profiles generated on full datasets at the subsystems level 1 (A, B, C) and subsystems
function (D, E, F) resolution levels. Bray-Curtis distance similarity matrix was calculated from the square-root transformed abundance of DNA
fragments matching taxa in the SEED database (E-value ,161025). The Bray-Curtis matrix was used for generating CLUSTER dendrogram, NMDS and
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since no sequence matches to the ribosomal database were found.

CLUSTER analysis of rRNA-based taxonomic profiles at the

phylum level of resolution demonstrated the formation of four

genuine clusters confirmed by SIMPROF analysis (p,0.05) (Fig.

S4A). One cluster included three samples from the WGA_A group

and one sample from the WGA_B group with similarity of 77%. A

second cluster consisted of two samples from the SH_A group and

one sample from the SH_B group with similarity of 85%. Two

other mixed clusters were formed by the samples from different

groups. The pattern formed by the samples from the WGA_A

group was also seen on the NMDS and CAP plots with a 100%

correct allocation which was confirmed by the results of cross-

validation of the CAP model (Fig. S4B, S4C; Table S7). Two

separate clusters formed by the samples from the WGA_A and the

SH_A groups were observed at the higher levels of taxonomic

resolution (genus and species) (Figs. S6). Observed groupings had a

100% correct allocation under cross-validation of the CAP model

only at the genus level of classification (Table S7). The latter

findings were in full accordance with the allocation of WGA_A

and SH_A groups performed using protein-derived taxonomy

(Table 2).

Metabolic profiles comparison. CLUSTER analysis of

metabolic profiles generated by different sequencing approaches at

the lowest level of resolution (level 1) showed that all three samples

from the AP_B group formed a separate cluster with a similarity of

92% (Fig. 2A). Two samples from the AP_A group had a similarity

of 90%. The third AP_A sample was bundled with the samples

from SH- and WGA- based datasets forming a new mixed cluster.

Importantly the SH- and WGA-based datasets consisting of 12

metagenomic samples formed one united mixed cluster with a

similarity of 97% (Fig. 2A). NMDS and CAP ordinations also

showed that all the points associated with the samples from SH-

and WGA-based datasets produced a very compact cluster

(Fig. 2B and Fig. 2C). However, according to a cross-validation

procedure the most distinct groups with 100% allocation success

were the AP-based groups and the WGA_A group, whereas

misclassification errors were shown for the WGA_B, SH_A and

SH_B groups (Table 3). Statistical comparisons of the metabolic

profiles at higher resolution levels (level 2, level 3 and function)

resulted in similar discriminating success (Fig. 2, S7). CLUSTER

analysis showed correct site-specific grouping of the samples from

AP-based dataset (Fig. 2D, S7A, S7D). All the profiles produced

by SH- and WGA-based methods again formed a single

unresolved cluster. NMDS and CAP ordinations demonstrated

clear separation of three clusters (Fig. 2, S7), which was also the

case for the metagenomic profiles comparison based on protein-

derived taxonomy (Fig. 1, S2, S3). In both cases cross-validation

results of the CAP model gave 100% correct classification of the

samples from the AP_A, AP_B and WGA_A groups and

misclassification errors for samples from the SH_A, SH_B and

WGA_B groups (Table 2, Table 3).

Comparison of metagenomic profiles based on randomly
sub-sampled datasets

Comparison of taxonomic profiles based on rRNA gene

fragment classification. CLUSTER analysis and NMDS

ordination of rRNA-based taxonomic profiles at the phylum level

of taxonomy demonstrated a heterogeneous mixed cluster of the

samples from the SH- and WGA-based datasets with an average

similarity of 70% (data not shown). Cap analysis showed 100%

correct classification of samples from the WGA_A group and

misclassification errors for samples from other groups. At the

species level of resolution CLUSTER analysis also revealed a

single heterogeneous mixed cluster with thea taxonomic profile

similarity of approximately 25%. CAP analysis indicated a high

degree of misclassification errors.

Comparison of protein-derived taxonomic and metabolic

profiles. It has been proposed that in order to enable the

comparison of metagenomes based on equal sequencing efforts,

the datasets should be randomly sub-sampled to the size of the

smallest sample [17,47]. The metagenomic datasets generated by

shotgun, WGA-based and AP-PCR-based approaches were re-

analysed by MG-RAST at an equivalent sequencing depth of 49

000 annotated reads per sample. Comparison of taxonomic and

metabolic profiles generated from sub-sampled datasets at all levels

of classification available within MG-RAST was performed by

CLUSTER analysis, NMDS and CAP ordination.

Statistical analysis of the sub-sampled metagenomic datasets

generated by three metagenome sequencing approaches yielded

nearly identical estimates of the overall differences between soil

microbial communities from locations A and B as those obtained

using full sequence datasets (Figs. S8– S12, Tables S5– S6). This

similarity was also confirmed using the RELATE programme

which revealed a strong correlation between Bray-Curtis distance

matrices (Spearman rank coefficient r.0.9, p,0.0001) generated

on both full, and sub-sampled, datasets at all levels of taxonomic

and metabolic resolution (Table 4).

Discussion

Numerous ecological studies show that soil microbial commu-

nities differ between land uses and vegetation types

[17,18,33,48,49]. The discrimination of geographically distinct

urban soils with similar land management type and similar plant

cover is of great forensic relevance [7,34]. If two soil samples

appear very different visually then a simple exclusion can be made

but more typically soils appear visually similar and currently no

further action is taken. The vast majority of samples submitted for

forensic investigation come from urban areas; here we include

gardens, parkland and open spaces as well as built-up areas. Thus

we focused our study on assessing the ability of three random

whole metagenomic sequencing approaches to describe and

differentiate the composition of soil microbial communities from

two random parklands in 3 km apart within Adelaide residential

areas. The vegetation categories of these locations appeared to be

very similar, with widespread grass and trees species.

Along with standard metagenomic approaches such as shotgun

and WGA, which are widely accepted as the most comprehensive

sources of data for studying complex microbial communities, we

evaluated AP-PCR as a method for generation of random

metagenomic DNA profiles of soils that were then analysed by

high throughput DNA sequencing. In this technique an arbitrary

chosen oligonucleotide is used as a single primer that targets

CAP ordination plots. CLUSTER analysis (A and D). Red dotted branches on the CLUSTER dendrogram indicate no significant difference between
metagenomic profiles (supported by the SIMPROF analysis, p,0.05). NMDS unconstrained ordination (B and E). The NMDS plot displays
distances between samples. Data points that are closer to each other represent samples with highly similar metagenomic profiles. CAP constrained
ordination (C and F). CAP analysis tests for differences among the groups in multivariate space. The significance of group separation along the
canonical axis is indicated by the value of the squared canonical correlation (d1

2) and P-value. A contour line on the NMDS and CAP ordinations drawn
round each of the cluster defines the superimposition of clusters from CLUSTER dendrogram at the selected level of similarity.
doi:10.1371/journal.pone.0104996.g002
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multiple genomic sequences producing a highly primer-sequence-

specific profiles. Depending both on the primer chosen and the

annealing temperature used there is sequence specific selection of

complementary sequences to the primer to be DNA amplified.

Based on previous studies the random amplification of polymor-

phic DNA, normally performed at low stringency conditions (low

annealing temperature), becomes more reproducible at high

stringency amplification conditions [50]. Amplification with a

single arbitrary primer yields an arbitrary product pattern which

might possess PCR products from both abundant species and

those that are rare, again depending on the affinity of the primer.

The composition of the soil microbial communities was

determined from both taxonomic classification of rRNA fragments

and the taxonomic assignment of functional gene fragments.

Similar taxonomic distribution of dominant microbial phyla was

observed across all metagenomic datasets using these two different

annotation pipelines. Reads with functional gene fragments were

also used for the comparison of metagenomic datasets based on

metabolic profiles.

Previous reports have indicated that comparison of metagen-

omes at low levels of resolution, i.e. analysis based on more

broadly defined categories, results in a more conservative estimate

of the distances between metagenomic profiles [17]. Low levels of

taxonomic or functional classification show less overlap between

samples and are therefore also used frequently for metagenomic

profile discrimination [51,52]. The results of the metagenomic

dataset comparison in the current study are presented at all MG-

RAST taxonomic (phylum to species) and metabolic (level 1 to

functions) levels of hierarchy. The comparison of metagenomes

was performed with a number of unconstrained statistical tools

including CLUSTER and NMDS analyses as well as constrained

CAP analysis testing a predefined hypothesis that was previously

shown to be successful for soil microbial communities discrimina-

tion [46,53].

SH- and WGA-based metagemonic sequencing approaches

showed incorrect and inconsistent discrimination of soil samples

according to sampling sites using both taxonomic (protein and

ribosomal) and metabolic classifications. Comparison of the SH-

and WGA-based profiles revealed not only misclassification of the

samples between the locations but often between repeat analysis of

each sequencing approach, with the exception of the WGA_A

samples which had a 100% allocation success. The high similarity

of the data generated by these methods appears to be driven by the

highly similar, or even identical, dominant microorganisms found

in the soil samples collected from two distinct sites of similar urban

type. This supports the theory that the data generated by shotgun

sequencing are commonly shifted towards describing the most

abundant taxa leaving the contribution of rare microorganisms

undervalued for comparative analysis [54].

A rarefaction analysis was performed to determine microbial

species richness of metagenomic datasets produced by three

random whole metagenome sequencing approaches for the soil

samples from location A and B. The rarefaction curves computed

for metagenomic datasets did not reach the plateau phase

suggesting that more sequencing effort would be required to

achieve species saturation. At the same time the analysis showed

that the SH- and WGA-based approaches provided a higher

number of species from the same number of sequence reads than

the AP-based approach. The AP-PCR utilises primer dependant

sequence specific selection of gene fragments and therefore

unlikely to amplify all the DNA fragments present in samples.

Nevertheless, despite the lower species coverage of soil metagen-

omes provided by the AP-based approach it allowed for a 100%

correct discrimination between soils samples from different

locations. This may be as a result of the pre-enrichment

mechanisms of AP-PCR that are based on the primer sequence

targeting both dominant and rare microorganisms equally. An AP-

PCR-based strategy for whole metagenomic profile generation

may be compromised by artefacts, including chimeric sequences

caused by PCR amplification, which have been reported for gene-

targeted (e.g. 16S) sequencing approaches [19]. It is likely that the

AP-PCR based approach does not reflect the true picture of the

soil microbial community composition. However, we found

consistent evidence that an AP-PCR-based whole metagenome

sequencing approach was able to discriminate similar soil samples

based on differences in both taxonomic and metabolic composi-

tions.

Conclusion

In the research presented here we investigated the ability of

whole metagenome analysis techniques to discriminate soil

samples of similar land use and vegetation type but collected

from different geographical locations. There is currently no agreed

evaluation approach leading to an accurate picture of the soil

metagenome structure as the true soil microbial community

composition [55]. Three methods of whole soil metagenome

analysis based on high-throughput DNA sequencing were

assessed; shotgun, whole genome amplification and arbitrarily

primed PCR. The metagenomic datasets underwent comprehen-

sive statistical analysis using unconstrained and constrained

approaches including CLUSTER analysis, NMDS and CAP

ordination at all levels of both taxonomic and metabolic

classification. The shotgun and WGA-based approaches generated

highly similar metagenomic profiles for soil samples such that the

soil samples could not be distinguished. An AP-PCR-based

approach was shown to be the most powerful technique for

obtaining site-specific metagenomic DNA profiles which were able

Table 4. RELATE comparison of Bray-Curtis similarity matrices.

Taxonomic level Spearman rank coefficient Metabolic level Spearman rank coefficient

phylum 0.887 level 1 0.652

class 0.944 level 2 0.958

order 0.959 level 3 0.967

family 0.940 functions 0.969

genus 0.965

species 0.966

The Bray-Curtis similarity matrices calculated from square root transformed abundance of DNA fragments generated based on full datasets and sub-sampled datasets.
doi:10.1371/journal.pone.0104996.t004
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to successfully discriminate between similar soil samples taken

from different locations.

The methods presented in this study show a significant step

towards possible implementation of forensic soil discrimination

using random whole metagenomics for investigation and evidence

generation. By increasing the amount of samples analysed from

each location and also by increasing the number of distinct

geographical locations it will become possible to train algorithms

that can then be used for comparison to unknown soil samples

obtained as part of criminal investigations. The power of

discrimination of these tools is proportional to the amount of

samples taken and ultimately the unique metagenomic profile of

the different locations. The investigation of temporal microbial

variation would further strengthen any tool that is developed. As

the sample sizes increase the tool will move from the model

developed in this study to one that has sufficient power as a useful

investigative tool and ultimately to a method that can be presented

in court. The step to being a useful investigative tool for law

enforcement can be made from the current study with increased

repetition and geographic sampling. For presentation in a court of

law the development of a sufficient sample size and distinct

geographic profiles will need to be bolstered with a determination

of the limitations of the method, including false positive and

negative rates. This can be achieved via blind trials, mock case

work and a period of casework hardening in order to achieve the

levels require for acceptance.

Supporting Information

Figure S1 Rarefaction curves created in MG-RAST.
Rarefaction analysis was performed at the species level for each

metagenomic protein-derived taxonomic profile based on ran-

domly sub-samples datasets (49 000 reads per sample). The curves

for all taxa include Bacteria, Archaea, Eukaryota, Viruses,

unclassified and other sequences identified after metagenomic

dataset annotation with M5NR database.

(TIF)

Figure S2 Comparison of the soil protein-derived
taxonomic profiles generated on full datasets at the
class (A, B, C) and order (D, E, F) taxonomic resolution
levels. Bray-Curtis distance similarity matrix was calculated from

the square-root transformed abundance of DNA fragments

matching taxa to the M5NR database (E-value ,161025). The

Bray-Curtis matrix was used for generating CLUSTER dendro-

gram, NMDS and CAP ordination plots. CLUSTER analysis
(A and D). Red dotted branches on the CLUSTER dendrogram

indicate no significant difference between metagenomic profiles

(supported by the SIMPROF analysis, p,0.05). NMDS uncon-
strained ordination (B and E). The NMDS plot displays

distances between samples. Data points that are closer to each

other represent samples with highly similar metagenomic profiles.

CAP constrained ordination (C and F). CAP analysis tests

for differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S3 Comparison of the soil rRNA profiles gener-
ated on full datasets at the phylum (A, B, C) and class (D,
E, F) taxonomic resolution levels. Bray-Curtis distance

similarity matrix was calculated from the square-root transformed

abundance of DNA fragments matching taxa in the M5RNA

database (E-value ,161025). The Bray-Curtis matrix was used

for generating CLUSTER dendrogram, NMDS and CAP

ordination plots. CLUSTER analysis (A and D). Red dotted

branches on the CLUSTER dendrogram indicate no significant

difference between metagenomic profiles (supported by the

SIMPROF analysis, p,0.05). NMDS unconstrained ordina-
tion (B and E). The NMDS plot displays distances between

samples. Data points that are closer to each other represent

samples with highly similar metagenomic profiles. CAP con-
strained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S4 Comparison of the soil rRNA profiles gener-
ated on full datasets at the phylum (A, B, C) and class (D,
E, F) taxonomic resolution levels. Bray-Curtis distance

similarity matrix was calculated from the square-root transformed

abundance of DNA fragments matching taxa in the M5RNA

database (E-value ,161025). The Bray-Curtis matrix was used

for generating CLUSTER dendrogram, NMDS and CAP

ordination plots. CLUSTER analysis (A and D). Red dotted

branches on the CLUSTER dendrogram indicate no significant

difference between metagenomic profiles (supported by the

SIMPROF analysis, p,0.05). NMDS unconstrained ordina-
tion (B and E). The NMDS plot displays distances between

samples. Data points that are closer to each other represent

samples with highly similar metagenomic profiles. CAP con-
strained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S5 Comparison of the soil rRNA profiles gener-
ated on full datasets at the order (A, B, C) and family (D,
E, F) taxonomic resolution levels. Bray-Curtis distance

similarity matrix was calculated from the square-root transformed

abundance of DNA fragments matching taxa in the M5RNA

database (E-value ,161025). The Bray-Curtis matrix was used

for generating CLUSTER dendrogram, NMDS and CAP

ordination plots. CLUSTER analysis (A and D). Red dotted

branches on the CLUSTER dendrogram indicate no significant

difference between metagenomic profiles (supported by the

SIMPROF analysis, p,0.05). NMDS unconstrained ordina-
tion (B and E). The NMDS plot displays distances between

samples. Data points that are closer to each other represent

samples with highly similar metagenomic profiles. CAP con-
strained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the
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superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S6 Comparison of the soil rRNA profiles gener-
ated on full datasets at the genus (A, B, C) and species
(D, E, F) taxonomic resolution levels. Bray-Curtis distance

similarity matrix was calculated from the square-root transformed

abundance of DNA fragments matching taxa in the M5RNA

database (E-value ,161025). The Bray-Curtis matrix was used

for generating CLUSTER dendrogram, NMDS and CAP

ordination plots. CLUSTER analysis (A and D). Red dotted

branches on the CLUSTER dendrogram indicate no significant

difference between metagenomic profiles (supported by the

SIMPROF analysis, p,0.05). NMDS unconstrained ordina-
tion (B and E). The NMDS plot displays distances between

samples. Data points that are closer to each other represent

samples with highly similar metagenomic profiles. CAP con-
strained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S7 Comparison of the soil metabolic profiles
generated on full datasets at the subsystems level 2 (A,
B, C) and level 3 (D, E, F) metabolic resolution levels.
Bray-Curtis distance similarity matrix was calculated from the

square-root transformed abundance of DNA fragments matching

taxa in the SEED database (E-value ,161025). The Bray-Curtis

matrix was used for generating CLUSTER dendrogram, NMDS

and CAP ordination plots. CLUSTER analysis (A and D). Red

dotted branches on the CLUSTER dendrogram indicate no

significant difference between metagenomic profiles (supported by

the SIMPROF analysis, p,0.05). NMDS unconstrained
ordination (B and E). The NMDS plot displays distances

between samples. Data points that are closer to each other

represent samples with highly similar metagenomic profiles. CAP
constrained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S8 Comparison of the soil protein-derived
taxonomic profiles generated on randomly sub-sampled
datasets at the phylum (A, B, C) and class (D, E, F)
metabolic resolution levels. Bray-Curtis distance similarity

matrix was calculated from the square-root transformed abun-

dance of DNA fragments matching taxa in the M5NR database

(E-value ,161025). The Bray-Curtis matrix was used for

generating CLUSTER dendrogram, NMDS and CAP ordination

plots. CLUSTER analysis (A and D). Red dotted branches on

the CLUSTER dendrogram indicate no significant difference

between metagenomic profiles (supported by the SIMPROF

analysis, p,0.05). NMDS unconstrained ordination (B
and E). The NMDS plot displays distances between samples.

Data points that are closer to each other represent samples with

highly similar metagenomic profiles. CAP constrained ordina-
tion (C and F). CAP analysis tests for differences among the

groups in multivariate space. The significance of group separation

along the canonical axis is indicated by the value of the squared

canonical correlation (d1
2) and P-value (P,0.05). A contour line

on the NMDS and CAP ordinations drawn round each of the

cluster defines the superimposition of clusters from CLUSTER

dendrogram at the selected level of similarity.

(TIF)

Figure S9 Comparison of the soil protein-derived
taxonomic profiles generated on randomly sub-sampled
datasets at the order (A, B, C) and family (D, E, F)
taxonomic resolution levels. Bray-Curtis distance similarity

matrix was calculated from the square-root transformed abun-

dance of DNA fragments matching taxa in the SEED database (E-

value ,161025). The Bray-Curtis matrix was used for generating

CLUSTER dendrogram, NMDS and CAP ordination plots.

CLUSTER analysis (A and D). Red dotted branches on the

CLUSTER dendrogram indicate no significant difference between

metagenomic profiles (supported by the SIMPROF analysis, p,

0.05). NMDS unconstrained ordination (B and E). The

NMDS plot displays distances between samples. Data points that

are closer to each other represent samples with highly similar

metagenomic profiles. CAP constrained ordination (C and
F). CAP analysis tests for differences among the groups in

multivariate space. The significance of group separation along the

canonical axis is indicated by the value of the squared canonical

correlation (d1
2) and P-value (P,0.05). A contour line on the

NMDS and CAP ordinations drawn round each of the cluster

defines the superimposition of clusters from CLUSTER dendro-

gram at the selected level of similarity.

(TIF)

Figure S10 Comparison of the soil protein-derived
taxonomic profiles generated on randomly sub-sampled
datasets at the genus (A, B, C) and species (D, E, F)
taxonomic resolution levels. Bray-Curtis distance similarity

matrix was calculated from the square-root transformed abun-

dance of DNA fragments matching taxa in the M5NR database

(E-value ,161025). The Bray-Curtis matrix was used for

generating CLUSTER dendrogram, NMDS and CAP ordination

plots. CLUSTER analysis (A and D). Red dotted branches on

the CLUSTER dendrogram indicate no significant difference

between metagenomic profiles (supported by the SIMPROF

analysis, p,0.05). NMDS unconstrained ordination (B
and E). The NMDS plot displays distances between samples.

Data points that are closer to each other represent samples with

highly similar metagenomic profiles. CAP constrained ordina-
tion (C and F). CAP analysis tests for differences among the

groups in multivariate space. The significance of group separation

along the canonical axis is indicated by the value of the squared

canonical correlation (d1
2) and P-value (P,0.05). A contour line

on the NMDS and CAP ordinations drawn round each of the

cluster defines the superimposition of clusters from CLUSTER

dendrogram at the selected level of similarity.

(TIF)

Figure S11 Comparison of the soil metabolic profiles
generated on randomly sub-sampled datasets at the
subsystems level 1 (A, B, C) and subsystems Level 2 (D,
E, F) metabolic resolution levels. Bray-Curtis distance

similarity matrix was calculated from the square-root transformed

abundance of DNA fragments matching taxa in the SEED

database (E-value ,161025). The Bray-Curtis matrix was used

for generating CLUSTER dendrogram, NMDS and CAP
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ordination plots. CLUSTER analysis (A and D). Red dotted

branches on the CLUSTER dendrogram indicate no significant

difference between metagenomic profiles (supported by the

SIMPROF analysis, p,0.05). NMDS unconstrained ordina-
tion (B and E). The NMDS plot displays distances between

samples. Data points that are closer to each other represent

samples with highly similar metagenomic profiles. CAP con-
strained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05)… A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Figure S12 Comparison of the soil metabolic profiles
generated on randomly sub-sampled datasets at the
subsystems level 3 (A, B, C) and subsystems functions
(D, E, F) metabolic resolution levels. Bray-Curtis distance

similarity matrix was calculated from the square-root transformed

abundance of DNA fragments matching taxa in the SEED

database (E-value ,161025). The Bray-Curtis matrix was used

for generating CLUSTER dendrogram, NMDS and CAP

ordination plots. CLUSTER analysis (A and D). Red dotted

branches on the CLUSTER dendrogram indicate no significant

difference between metagenomic profiles (supported by the

SIMPROF analysis, p,0.05). NMDS unconstrained ordina-
tion (B and E). The NMDS plot displays distances between

samples. Data points that are closer to each other represent

samples with highly similar metagenomic profiles. CAP con-
strained ordination (C and F). CAP analysis tests for

differences among the groups in multivariate space. The

significance of group separation along the canonical axis is

indicated by the value of the squared canonical correlation (d1
2)

and P-value (P,0.05). A contour line on the NMDS and CAP

ordinations drawn round each of the cluster defines the

superimposition of clusters from CLUSTER dendrogram at the

selected level of similarity.

(TIF)

Table S1 Summary of soil metagenomic samples. All

metagenomes are publically available on the MG-RAST server

(http://metagenomics.anl.gov/).

(PDF)

Table S2 Protein-derived taxonomic composition of the
soil microbial communities. Relative abundances of major

taxa (phylum level) derived from taxonomic assignment of protein

gene fragments matched to M5NR database.

(PDF)

Table S3 Taxonomic composition of the soil microbial
communities based on rRNA gene fragments classifica-
tion. Relative abundances of major taxa (phylum level) derived

from taxonomic assignment of rRNA gene fragments matched to

M5RNA database.

(PDF)

Table S4 Metabolic composition of the soil microbial
communities. Relative abundances of major metabolic features

(level 1) derived from annotation of protein gene fragments to

SEED Subsystems database.

(PDF)

Table S5 Results of CAP model cross-validation of soil
protein-derived taxonomic profiles discrimination gen-
erated from sub-sampled sequencing datasets.

(PDF)

Table S6 Results of CAP model cross-validation of soil
metabolic profiles discrimination generated from sub-
sampled sequencing datasets.

(PDF)

Table S7 Results of CAP model cross-validation of soil
rRNA taxonomic profiles discrimination generated from
full sequencing datasets.

(PDF)
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