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Abstract

In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia,
Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological
unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the
deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in
northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The
aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating
leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating
microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components,
marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo
(Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include
monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic
plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia
Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.
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Introduction

There are currently about 2,600 species of vascular aquatic

macrophytes distributed among 87 families and 407 genera [1];

these plants inhabit all types of wetland environments and are

found throughout the world [2], although they are most diverse in

the tropics, a pattern that is particularly pronounced for aquatic

angiosperms [3]. Today, vascular aquatic macrophytes are

represented by lycophytes (Isoetes), ferns (Salviniales or Hydro-

pteridales) [4–5], and angiosperms (e.g., Nymphaeales, Nelumbo-

naceae, and Ceratophyllum, to name a few) while non-vascular

macrophytes include macroalgae (e.g., Chara, Nitella), and

bryophytes (certain liverworts and mosses) [6]. The fossil record

suggests that aquatic ecosystems were conquered by vascular

macrophytes in the late Early Cretaceous [7]. Heterosporous

water ferns with affinities to the order Salviniales (or Hydropteri-

dales) [4–5] first appeared in the latest Jurassic to earliest

Cretaceous [8–9–10–11], whereas the earliest aquatic angio-

sperms, such as Archaefructus, Proteaphyllum, and ranunculac-

eous species, appeared in the mid-Early Cretaceous (Barremian-

Aptian) [7–12]. A greater diversity of aquatic angiosperms, such as

Nymphaeales [13–14] and some monocots [15–16–17], appeared

later in the Early Cretaceous, when the first unequivocal records of

green algae (Hydrodictyaceae, Scenedesmaceae, Coelastraceae

and Chlorococcaceae) are also recorded [18–19–20].

By the Late Cretaceous, freshwater angiosperms were the

dominants in aquatic assemblages. For example, aquatic commu-

nities documented from Europe [21] include the basal angiosperm

Nymphaeites (Nymphaeaceae), monocots such as Typhaceae, and

the eudicots Nelumbites (Nelumbonaceae) and Palaeoaldrovanda
(Droseraceae), as well as halophytic aquatic plants (although in

some cases the affinities of the latter have been questioned) [8]. In

Mongolia [22], several Maastrichtian localities of the Nemegt

Formation bear aquatic plants that comprise three distinct

assemblages: 1- a pondweed assemblage dominated by Potamo-
geton-like plants associated with an isoetalean component; 2- a

nymphaealean assemblage; and 3- an assemblage dominated by

duckweeds (Araceae subfamily Lemnoideae). These three assem-

blages occurred in oxbow lake deposits associated with fluvial

systems under a temperature regime that was probably subtropical

with a monsoonal dry season. Cretaceous and Paleocene aquatic

plant communities from western North America and northeastern

Asia [23–24–25–26–27] resemble modern communities, and

include common elements such as Nelumbites (Proteales),

Quereuxia (an angiosperm of unknown affinities), Cobbania and
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Limnobiophyllum (monocots in Araceae), along with extinct

aquatic ferns (Hydropteris in Salviniales) [5].

Comparatively little is known about the evolution of aquatic

macrophytes in the Southern Hemisphere, particularly from

macrofossil records. Recently, however, a series of contributions

describing aquatic macrophytes from the Maastrichtian La

Colonia Formation of Patagonia, Argentina, have been published

[28–29–30–31–32–33]. The La Colonia Formation paleoflora,

currently documented from three localities that yield macrofossils,

is interpreted as preserved in situ or after minimal transport given

the excellent preservation of delicate plant organs. This interpre-

tation is also supported by the presence of a highly diverse green

microalgal component. In this contribution, we summarize

recently published and new findings on the composition and

environment of the La Colonia Formation paleofloras. This

constitutes the first detailed description and ecological interpreta-

tion of a latest Cretaceous aquatic plant community from southern

South America.

Materials and Methods

Macrofossils and palynological samples were collected from

several localities of the La Colonia Formation, which outcrops in

the central part of northern Chubut Province in Patagonia,

Argentina (Fig. 1). Based on the characteristics of its paleobiota,

which includes plant macro- and microfossils, dinoflagellates,

invertebrates, and vertebrates, the formation is thought to have

been deposited during the latest Cretaceous into possibly the

earliest Danian [29–34–35–36]. For this contribution, we exam-

ined two stratigraphic sections from a plant horizon that can be

traced for a distance of approximately 10 km through the La

Colonia Formation (Figs. 1, 2). These two sections include

localities that yield plant macrofossils: Cerro Bosta and Cañadón

del Irupé/Quebrada del Helecho (Fig. 2). The sections were

measured from base to top and their sedimentological attributes—

including lithologies, sedimentary structures, and fossil content–

were noted. Macrofossils and microfossils were identified and their

dominance was determined qualitatively. A total of five palyno-

logical samples per locality were analyzed from the same horizons

as the macrofossils, and they were processed following standard

palynological techniques.

No permits were required for the described study. Since the

current study is based on specimens previously collected, no

particular permit was necessary. This is clearly established in the

by-laws of the Chubut Province legislation dealing with fossil

protection (Law Number 3559). All macrofossil specimens are

housed in the Museo Paleontológico Egidio Feruglio (MEF)

Paleobotanical Collection (MPEF-Pb) in Trelew, Chubut, Argen-

tina; palynological samples are also housed in the MEF

Palynological collection (MPEF-Mz Palin) and at the Laboratorio

de Paleobotánica y Palinologı́a, Facultad de Ciencias Exactas y

Naturales, Universidad de Buenos Aires, Argentina (BAFCB). All

specimens and data supporting this contribution is freely available

throughout public repository as indicated above at www.mef.org.

ar/index.php?option = com_content&view = article&id0102&

ltemid085&lang = es.

Geology and sedimentology of the La Colonia Formation
Background. The La Colonia Formation is a sedimentary

accumulation that outcrops at the southeastern edge of the

Somuncurá Massif in northern Patagonia, Argentina [37] (Fig. 1).

The Somuncurá Massif (or Plateau) is a structural unit composed

of Paleozoic metamorphic and igneous complexes, which are

the source rocks for clastic Late Cretaceous/early Paleogene

sedimentary deposits occurring in the region. A major transgres-

sion caused by subsidence of the south Atlantic margin took place

during the Late Cretaceous, which gave rise to extensive shallow

epicontinental seas defined as Patagonian Platforms [35–38].

These seas covered most of the Patagonian region and represented

the last episode of a tectonic foreland stage [39]. Thus, a series of

Late Cretaceous coastal plain sedimentary deposits representing

estuaries, deltas, and lagoon/barrier complexes accumulated

[36–40].

Deposits of the La Colonia Formation have a maximum

thickness of approximately 240 m [37]. They are underlain by late

Early to Late Cretaceous sediments of the Chubut Group or the

Puntudo Chico Formation [41], and are exposed in the Cerro

Buitre/Mirasol Chico Creek area (Fig. 1), and towards the NE in

the Telsen area over the volcanics of the Jurassic Marifil

Formation [36]. This Jurassic unit seems to have played an

important role in shaping the topography of the landscape during

the latest Cretaceous transgression [36], probably as part of the

Atlantic Patagonian Dorsal [38]. The La Colonia Formation is

overlain by basalts of the El Buitre Formation (Paleocene) and the

informally named ‘‘Baibian Beds’’ (probably Eocene to early

Oligocene) to the southwest [42]. Above these is a basaltic

intrusion (Somuncurá Formation), which is succeeded by the

classic Oligocene-early Miocene deposits of the Sarmiento

Formation. The whole sequence in this area is crowned by

Neogene basalts and Quaternary sedimentary deposits (Te-

huelches Pebbles).

The sedimentology of the La Colonia Formation has been

characterized based on data collected from several localities.

Three lithofacies associations were initially described along the

eastern slope of the La Colonia Formation in the proximity of the

Cerro Buitre area (Fig. 1) [34]. The lowest association is composed

of coarse-grained sandy to conglomeratic cross-bedded deposits up

to 16 m thick and was initially interpreted as a terrestrial setting

drained by low- to moderately sinuous fluvial channels [34]. The

middle and thickest association is represented by fine-grained

deposits and includes three facies (laminated mudstones, pelite-fine

sandstones, and banded siltstones and claystones) thought to have

been deposited on coastal plains. The upper association is a single

facies consisting of laminated claystones deposited in an intertidal

zone.Two of the three facies (pelite-fine sandstones and banded

siltstones and claystones) have also been recognized within the

middle facies association at a locality north of Cerro Buitre

(Fig. 1), where the La Colonia Formation is almost 130 m in

thickness [43]. Near Telsen (Fig. 1), the La Colonia Formation is

much thinner (around 15 m on average) and starts with fine

conglomerates that represent an erosive surface (or ravinement

surface) [36–44–45] resulting from the Maastrichtian transgres-

sion. This is overlain by three sandstone facies and two fine-

grained facies that define four depositional environments: 1)

shoreface transitioning to off-shore, 2) tidal flats, 3) lagoons with

tidal influence, and 4) lagoons without marine influence (36). The

presence or absence of marine influence was determined by the

presence or absence of dinoflagellates.

New sedimentological results. Although the sedimentology

of the La Colonia Formation has received detailed examination

and interpretation, the major sedimentological processes respon-

sible for the deposition of the La Colonia Formation are still poorly

understood. The presence of an aquatic paleobiota in the

formation is thus significant, as it is helpful for making

paleoenvironmental interpretations. In this regard, we have

analyzed two plant-bearing sections that correspond to the Cerro

Bosta and Cañadón del Irupé/Quebrada del Helecho localities of

the La Colonia Formation (Fig. 1). These sections have quite
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similar characteristics in terms of their thickness and in the facies

associations represented. Sandy/conglomeratic coarse-grained

deposits that represent the initial transgressive phase of the latest

Cretaceous Atlantic Epicontinental Sea occur at the base of each

section, and correlate to the erosive ‘‘key surface’’ (or ravinement)

represented in localities to the northeast [36]. These deposits are 5

to 10 m thick and are interpreted as representing shoreface

sedimentation dominated by bi-modal wave processes (Fig. 2a).

This is contrary to the initial fluvial interpretation [34], but in

agreement with that suggested from study of sediments in the

Telsen area [36]. Notably, embayed transgressing coastlines

normally lack fluvial influence in their barrier-lagoon systems

[46–47].

The La Colonia Formation section measured at the Cañadón

del Irupé/Quebrada del Helecho localities (Fig. 2b) is 137 m

thick. It represents barrier island deposits that prograde over

lagoonal deposits, creating water bodies separated from the

nearshore. The barrier deposits are composed of fine- to

medium-grained, laminated to cross-bedded sandstones. In some

cases, laminated coarse silts to very fine sandstone deposits

represent sandbars. The lagoon deposit proper is represented by

fine-grained laminated to massive sediments (clays and silts), in

some cases with high participation of heterolithic facies (lenticular

and linsen bedding). These deposits, due to lack of terrestrial

sediment supply, are associated with marine influence, in

particular by washover caused by stormwaters entering the lagoon

[48]. Washover and lagoonal environments tend to be preserved

during transgressions [49], when organic muds are vertically

accreted in a ‘‘shore zone’’ (Fig. 2a) [50–51]. The absence of

washover channels or tidal inlets that represent connections

between the open sea and the lagoons is probably due to the

presence of a microtidal regime that resulted from shallow

conditions along the shoreline of the Patagonian Platform sea

[38]. Microtidal barrier islands tend to be long and narrow, with

abundant storm wave-dominated washover deposits (Fig. 2b) that

overtop the barrier [52]. This communication with the open sea is

responsible for salinity changes within the lagoons, with develop-

ment of aquatic plant communities during freshwater stages [53].

Therefore, coastal environments show a normal gradation from

saline to freshwater conditions [54].

The section at the Cerro Bosta locality reaches 135 m in

thickness (Fig. 2a) and has a well-developed shoreface facies that

clearly shows a bi-modal paleocurrent pattern, suggesting tidal and

wave influence. Here, barrier/washover deposits are not as

evident, and most of the section appears to be dominated by the

constant influence of tidal/wave processes. The exception is the

horizon that yields the aquatic fossil plants, the presence of which

suggests freshwater conditions. As noted for the Cañadón del

Irupé/Quebrada del Helecho section, the absence of both coarse-

clastic sediments and sedimentary structures indicates that the site

was relatively distant from active fluvial dynamics.

In summary, the La Colonia Formation outcropping between

the Cerro Bosta locality and the Cañadón del Irupé/Quebrada del

Helecho, includes sedimentary deposits interpreted as clastic

coastal plains bathed by shallow seas. Barrier-island/lagoon

complexes developed in this region. The lagoons were protected

from the sea by barrier islands, and were built by wave-dominated

Figure 1. Map showing the location of the outcrops of the La Colonia Formation examined for this study in the Cerro Buitre and
Arroyo Mirasol Chico areas. Modified after (101).
doi:10.1371/journal.pone.0104749.g001
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Figure 2. Stratigraphic sections of the La Colonia Formation at the Cerro Bosta locality (a) and Cañadón del Irupé/Quebrada del
Helecho localities (b). Note distribution of lagoon facies and fresh water horizon after correlation of aquatic plants.
doi:10.1371/journal.pone.0104749.g002
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beach/shoreface processes normally related to low sediment

supply and sea-level rise [55].

Reconstruction of the aquatic plant community of the La
Colonia Fm

Modern aquatic macrophytes rarely occur as monospecific

populations in freshwater systems, but instead tend to form

recognizable assemblages composed of several species representing

several different major life forms. These forms include free-floating

macrophytes [2], also known as pleustophytes [4–56], that are not

anchored to the substrate and float in the water column or on the

water surface; and rooted macrophytes [2] that are anchored to

the substrate with structures like rhizomes or roots and known as

benthophytes [56] or, perhaps more commonly, rhizophytes [4].

Rhizomatous or rooted macrophytes can further be divided into

those with leaves that are completely submerged, those with

emergent leaves (borne above the surface of the water), and those

with leaves floating on the water surface [2–57]. The La Colonia

Formation plant community clearly includes both free-floating

macrophytes as well as rooted/rhizomatous macrophytes with

either emergent or floating leaves. Additionally, there is a diversity

of microphytes in the form of free-floating green algae (Chloroph-

yta).

Free-floating microphyte component. Green microalgae

(Fig. 3), represented by members of the families Hydrodictyaceae

(Pediastrum spp.) (Fig. 3 A,B), Botryococcaceae (Botryoccocus spp.)

(Fig. 3C), and filamentous Zygnemataceae (Spirogyra type,

Zygnema type, and Mougeotia type) (Fig. 3 D, E), comprise the

microphyte component of the plant community. These planktonic

algae are abundant and diverse in sediments of the localities

studied, suggesting highly favorable conditions for their growth,

which likely occurred in humid to wet substrates during long

hydroperiods. Abundant freshwater algae indicate meso- to

eutrophic conditions, strong light penetration, and small- to

medium-sized bodies of water [58]. No dinoflagellate cysts were

found within the microfossil samples, suggesting a lack of marine

influences at these levels.

Botryococcaceae colonies are today widely dispersed in

temperate and tropical regions and are able to tolerate seasonally

Figure 3. Free-floating microphyte components (chloroccocalean microalgae). A, B (SEM): Pediastrum spp.; BAFCB meb 262. C: Botryoccocus
sp. (SEM); BAFCB meb 262. D, E: Zygnemataceae spores (LM); BAFCB pm 260. Scales A, B, C = 1000 mm; D, E = 10 mm.
doi:10.1371/journal.pone.0104749.g003
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cold climates [58]. They normally live in freshwater (although

sometimes in brackish water), occurring in bogs, temporary pools,

ponds, and lakes. Quiet water environments are favorable to their

proliferation, and they may form a thick scum on the water surface

[58].

The fossil record in South America indicates that from the Late

Cretaceous to the Early Eocene only the widespread Pediastrum
boryanum (Hydrodictyaceae) occurs [59]. In this regard, the

presence of at least three species in the La Colonia sediments

denotes that the genus was well established by the late Cretaceous

at high southern latitudes. Pediastrum is a freshwater planktonic

coenobium that can occur in various trophic conditions [59],

although theyare generally more abundant under slightly eutro-

phic conditions. Proliferation of Pediastrum may result in the

formation of an ooze at the bottom of a lagoon, pond, or lake.

Cenobia walls have a delicate sporopollenin layer that is easily

broken during diagenetic processes. Nevertheless, most cenobia

found in the La Colonia sediments remain complete and well

preserved, denoting in situ preservation in a low energy

paleoenvironment.

Zygnemataceae, one of the most common families of modern

freshwater unbranched filamentous algae, typically occurs in

shallow, stagnant, clean, and oxygen-rich waters where they form

scums on the water surface, although a few species occur in

brackish water. Members of this family produce sexual spores

(zygospores) in spring under favorable conditions and also asexual

resistant spores (aplanospores) that allow them to persist through

periods when environmental conditions are unfavorable. Differ-

entiation between sexual and asexual spores is not discernible in

most genera but their sole presence indicates local conditions of

the body of water [60–61].

Free-floating macrophytes. The free-floating macrophyte

[2] or pleustophyte [6–56] component of the La Colonia plant

paleocommunity is represented by vascular plants, incudingferns

and angiosperms (see Table 1). The vascular plants can be

classified as acropleustophytes, or macrophytes that float on the

water surface [6–56], based on their structure and comparison to

related modern plants.

The ferns are members of the family Salviniaceae (Order

Salviniales, water ferns). Modern and fossil Salviniaceae are

aquatic, free-floating, heterosporous ferns [62–63]. Salviniaceous

ferns were first identified from the La Colonia Formation based on

megaspores and microspore massulae assigned to Paleoazolla
patagonica from the Cerro Bosta locality [28]. Paleoazolla
patagonica megaspores with preserved floats and microspore

massulae with characteristic glochidia bearing recurved lateral

barbs were found at all three La Colonia Formation localities

sampled for this study (Figs. 4 C, D). Azolla megaspores without

floats preserved and microspore massulae bearing glochidia with

anchor-shaped ends like those found in modern Azolla section

Azolla [64–65] were also found at the Cerro Bosta and Cañadón

del Irupé localities (Fig. 4 B). Additionally, Azolla-like sporophytes,

including sterile and fertile material, are known from the Cañadón

del Irupé locality (Figs. 5B, D) [30]. The fertile specimens bear

megasporocarps and microsporocarps, the latter including smaller

round bodies interpreted as in situ microspore massulae (Fig. 4 B).

The spores to which the sporophyte correspond have not yet been

definitively established.

Today, Azolla is frequently found in abundance floating on the

surface of ponds, lakes, marshes, and slow-moving streams, in

freshwater or sometimes in brackish water. It occurs in tropical to

warm-temperate regions throughout the world [62–66] and has

limited tolerance for frost, salinity, and drought [67–68–69]. Due

the fact that Azolla does not tolerate high salinity and prefers
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stagnant water, it is an excellent indicator of freshwater, low

energy environments [62–63–69].

Another free-floating component of this plant community is

represented by leaves and pollen attributed to a lemnoid Araceae

basal to the duckweed clade and definitely part of the free-floating

aquatic aroids [31] (Figs. 5 A, C). The leaves belong to a newly

described genus comparable to the fossil genera Limnobiophyllum
and Cobbania [30–31]. They are associated with Pandaniidites-
type pollen (Fig. 4E), which has also been found in situ in

Limnobiophyllum anthers [70]. These fossils are found only at the

Cañadón del Irupé locality [31]. Today, the Araceae are a large,

mostly terrestrial tropical family with approximately 20 species

adapted to the aquatic/wetland environment with low flow or

stagnant shallow waters [56–71] as interpreted for the Quebrada

del Irupé locality in Patagonia.

Rooted/rhizomatous macrophytes. The rooted macro-

phyte [1] or benthophyte or rhizophyte [4–57] component of

the La Colonia Formation flora is also represented by ferns and

angiosperms (Table 1). These plants are thought to have had

either emergent or floating leaves based on their structure and

comparison to their nearest living relatives.

Ferns include members of the family Marsileaceae (Order

Salviniales, water ferns). The fossil species Regnellidium thomas-
taylorii (Fig. 6 A, B) is the only macrophyte known from two of the

localities, Cerro Bosta and Quebrada del Helecho. Remains of this

plant include petiolate compound leaves with two leaflets (Fig. 6B),

aerenchymatous rhizomes bearing rootlets (Fig. 6 A), and a small

septate sporocarp. The marsileaceous sporae dispersae Molaspora
lobata (megaspores, Fig. 7A) and Crybelosporites (microspores,

Fig. 7B) were recovered in abundance from the same layer bearing

R. thomas-taylorii macrofossils. Mirasolita irupensis, leaves and

leaflets representing an extinct form (Fig. 6C, D), co-occur with

Lugiomarsiglia aquatica, representing marsileaceous sporocarps

(Fig. 6D), at the Cañadón del Irupé locality; Molaspora lobata
megaspores are known to occur in the same layers [33].

Living marsileaceaous ferns are amphibious and rhizomatous,

with adventitious roots borne on the rhizome that anchors them in

the substrate [72–73]. All three extant genera of Marsileaceae

(Marsilea, Pilularia, and Regnellidium) are adapted to intermit-

tently dry conditions [74–75]. Extant Marsilea and Regnellidium
exhibit heterophylly, producing two to three adult leaf forms

(terrestrial, floating, and submerged) depending on the availability

of water when the leaves develop [76]. These leaves vary in some

of their features in characteristic ways. For example, floating leaves

tend to be glabrous and entire-margined, whereas terrestrial leaves

tend to bear trichomes and may have terminal teeth [77–78]. The

morphology of the fossil leaves suggests that they are floating or

terrestrial/emergent forms. Regnellidium only grows in shallow

waters or in muddy substrates that are subject to periodic flooding

and the leaf petioles reach a maximum of ca. 21 cm in length [74],

roughly indicating the maximum water depth in which the extant

plants might occur when the leaves develop.

Sporocarps of Marsilea and Regnellidium typically develop on

the leaf petioles only when the plants are exposed to air by a

decrease in water level, and it is thought that sporocarp production

may be stimulated by exposure of plant organs to light. Water,

however, is necessary for dehiscence [76]. The leaflets of Marsilea
leaves that bear sporocarps die away by the time the sporocarps

are mature [76], so perhaps the Mirasolita leaves and Lugiomar-
siglia sporocarps found at the Cañadón del Irupé locality were

produced at different times under slightly different environmental

conditions. The somewhat inexplicable paucity of marsileaceous

sporocarps in the fossil record, despite the occurrence of

marsileaceous ferns in habitats conducive to preservation and

the durability of the sporocarps themselves, is perhaps explained

by the tendency of sporocarps to float or to germinate quickly

under favorable conditions [78].

The eudicot Nelumbo puertae is another macrophyte of the La

Colonia Formation flora that has emergent or floating leaves. This

taxon occurs at the Cañadón del Irupé locality [29–30]. The plant

is represented by typical peltate, discoidal leaves (Fig. 6E) and

associated infructescences (Fig. 6F). Modern Nelumbonaceae

comprise two species within the genus Nelumbo. Modern Nelumbo
develops horizontal rhizomes with nodal adventitious roots and

tubers. Its leaves are emergent or floating, with petioles up to 2 m

long. Flowers are also elevated and frequently emergent on a

peduncle up to 2 m in length. The maximum lengths of the leaf

petioles and flower peduncles determine the maximum depths at

which this aquatic plant can grow [54–79]. Considering the size

and mature condition of the nelumbonaceous remains from

Cañadón del Irupé, the lagoon system at this locality likely could

not have been deeper than 2 m.

Structure and organization of the aquatic

paleocommunity. Aquatic macrophyte assemblages are com-

monly organized along depth gradients, with macrophytes bearing

emergent leaves typically dominating shallow areas, submerged

macrophytes colonizing deeper sites, androoted or rhizomatous

species with floating leaves inhabiting zones of intermediate depth

[80]. Other physical environmental variables can also affect the

distribution and community structure of aquatic plants, the most

relevant being water temperature light availability, and salinity

[53–81]. Most aquatic macrophytes and some microalgae are able

to tolerate conditions unfavorable for their growth and survival

(e.g., suboptimal water temperatures, changes in water chemistry,

low water levels, etc.) for limited periods.

The aquatic plant communities at the Cerro Bosta and

Quebrada del Helecho localities were dominated by the rooted

marsileaceous fern Regnellidium thomas-taylorii, which was

associated with the presumably free-floating salviniaceous fern

Paleoazolla and abundant microalgae (see reconstructions in

Figs. 8, 9). These localities probably represented a sector of a

lagoon system with eutrophic conditions and shallow water. At the

Cañadón del Irupé locality (see reconstruction in Fig. 9), aquatic

macrophytes were more diverse, with free-floating components

represented by an araceous plant and water ferns in the family

Salviniaceae (Azolla and Paleoazolla). There were also free-

floating microphytes and rooted macrophytes, the latter including

marsileaceous ferns and the eudicot Nelumbo (Nelumbonaceae).

Based on the life habits of the nearest living relatives of these

plants, this paleocommunity also probably occupied shallow

waters of the lagoon system. The substratum may have been

more organic than at the other localities as indicated by the

carbonaceous nature of the fossil remains. The aquatic plant

horizon identified in different sections of the La Colonia

Formation suggests that freshwater conditions prevailed at this

stage throughout the whole region. Periodic influx of saline water

Figure 4. Spores and pollen organs representing free-floating aquatic macrophytes. A: Azolla-like megaspore (SEM) without floats
preserved; MPEF-MEB 5505 (scale = 50 mm). B: Azolla microspore massula (SEM); BAFCB meb 263 (scale = 20 mm). C: Paleoazolla patagonica
megaspore with floats preserved (SEM); MPEF-MEB 5506 (scale = 200 mm). D: Paleoazolla patagonica microspore massula (SEM); MPEF-MEB 5507
(scale = 10 mm). E: Araceae pollen grain (Pandaniidites sp.); BAFCB pm 259 (LM) (scale = 10 mm).
doi:10.1371/journal.pone.0104749.g004
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from the nearby sea caused retreat of freshwater macro- and

microphytes to more suitable habitats in the coastal plain water

bodies. Finally, the lack of frost tolerance in modern analogues of

some components of the La Colonia Formation flora (e.g., Azolla,

lemnoids, Marsiliaceae) suggests that water temperatures were

rarely, if ever, too cold.

Surrounding vegetation. Terrestrial vegetation surrounding

the lagoon system can be divided into two prinicipal types based

on the participation of different plant groups, the ‘‘wetlands’’ (or

parautochthonous elements) and the ‘‘nearby upper lowlands’’

(allochthonous elements).

1.Wetlands or parautochtonous (marshes). This terrestri-

al component is represented in the microflora by arecaceous

(palm) and typhaceous pollen and in the macroflora by herbaceous

monocots (probably Typhaceae) and several dicot leaves of

uncertain affinities [30] (Table 1; Fig. 10). Dicksoniaceous ferns,

represented by macro- and microfossils (Fig. 10A, C), are an

important terrestrial component of the vegetation. We interpret

these plants as having occupied a belt of vegetation surrounding

the water bodies where a shallow water table was present. They

probably represent a region of open vegetation composed of an

understory of dicot shrubs or small trees (represented by leaf

macrofossils) and herbaceous monocots (Typhaceae), a tree-fern

stratum (Dicksoniaceae), and an overstory of taller palm trees

(Arecaceae) (Fig. 8).

Extant genera of Typhaceae (Typha and Sparganium) are

aquatic macrophytes; they can be considered caulescent plane-

mergent or emergent benthophytes [57] or submerged/floating-

leaved/emergent macrophytes [2–82–83–84–85]. A few fragments

of parallel-veined, putatively typhaceous leaves were reported

from the Cañadón del Irupé locality [30] (Fig. 10B). However, the

presence of typhaceous plants is mostly based on several pollen

grains of Sparganiaceaepollenites, a type similar to pollen

produced by Sparganium and Typha [86], found at the Cerro

Bosta and Cañadón del Irupé localities (Fig. 10D). Typically,

Typhaceae grow in freshwater lagoons and stagnant ponds,

Figure 5. Free-floating aquatic macrophyte components from the Cañadón del Irupé locality. A, C: Lemnoid leaves; MPEF-Pb 3983. B, D:
Azolla sporophytes B. Sporophyte with sporocarps (s, arrows); MPEF-Pb 5060. D: Sterile sporophytes; MPEF-Pb 5081. Scales A, C = 1 cm; B, D = 5 mm.
doi:10.1371/journal.pone.0104749.g005
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although they sometimes occur in brackish environments or in

swamps. Modern Typhaceae produce enormous amounts of

pollen, and pollen grains that land in the water eventually sink

and settle on the substrate [87–88]. This suggests that Spargia-
ceaepollenites pollen should be abundant if plants were producing

it in loco at the La Colonia Formation localities. Because

Sparganiaceaepollenites pollen was found in very small amounts

within the palynoflora, we infer that the typhaceous plants were

not growing within the lagoon itself, but were part of the

vegetation belt surrounding it.

Macrofossil Dicksoniaceae are extremely abundant at the

Quebrada del Helecho locality and occur more sporadically at

the Cañadón del Irupé locality [30]. At both localities, dicksoniac-

eous ferns are represented by dispersed spores and spore massulae

as well as fertile and sterile tripinnate pinnules (Fig. 10A). While

the sporophytic phase is completely terrestrial in Dicksoniaceae,

these ferns favor humid environments and are frequently found on

riverbanks [89–90].

Palm (Arecaceae) pollen grains were found in sediments of the

study localities as isolated grains (Fig. 10G) as well as clumps.

When palm pollen is found in clumps, it is indicative that the

pollen grains fell close to the source [91]. Although few species of

palms grow in wetlands, several are characteristic of this type of

environment. These include Manicaria saccifera, Mauritia
flexuosa, and Euterpe oleracea, which today are quite common

in the Orinoco Delta region of Venezuela [92], where they occur

in coastal freshwater swamps, frequently in large, dense stands

[92].

2. Nearby upper lowlands (allochtonous). The plant

remains of the nearby upper lowland flora are considered to be

allochthonous. They are composed of plants that did not require

direct contact with a permanent water body and were adapted to a

deeper water table. The upper lowlands were inhabited primarily

Figure 6. Rooted/rhizomatous macrophytes. A: Regnellidium thomas-taylorii rhizomes, rootlets, petioles and leaflets; MPEF-Pb 5405. B: R.
thomas-taylorii leaflets; MPEF-Pb 5446. C: Mirasolita leaflets; MPEF-Pb 5521. D: Luigimarsiglia sporocarps; MPEF-Pb 5527. E: Nelumbo puertai leaf;
MPEF-Pb 864. F: Nelumbo-like associated reproductive organ; MPEF-Pb 920. Scales = 1 cm.
doi:10.1371/journal.pone.0104749.g006
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by conifers, in particular those yielding Classopollis (Cheirolepi-

diaceae) and podocarpaceous pollen (Fig. 10F). Some angiosperms

were also present, as suggested by their dispersed pollen grains and

undetermined leaf remains. Pollen include three species of

Nothofagaceae, several types of Proteaceae, and several other

unidentified eudicots and monocots.

Plant consumers: the associated fauna and its
environmental and paleoecological implications

Undoubtedly, one of the best-preserved and most diverse latest

Cretaceous meso- and macrofaunas in the Southern Hemisphere

occurs in the La Colonia Formation. The fauna is composed of

dinosaurs including carnosaurs, hadrosaurs, and ankylosaurs [93–

94], aquatic and terrestrial turtles [95], plesiosaurs [96–97], snakes

[98], birds [99], and mammals [34–100–101]. The presence of

polycotylid plesiosaurs [96–97] and elasmosaurs [96] in the Cerro

Bosta paleofauna supports the interpretation of lagoonal settings

for these sections of the formation. Polycotylid plesiosaurs [102]

are part of a derived clade of small plesiosaurs (actually pliosaurs)

that lived in lagoonal, estuarine and freshwater environments

[103]. Elasmosaurs are another group of small plesiosaurs that

lived in the same types of paleoenvironments.

Figure 7. Rooted/rhizomatous macrophytes represent by spores and pollen. A: Molaspora lobata megaspore (SEM) associated with
Regnellidium thomas-taylorii; MPEF-MEB 5501 (scale = 50 mm). B: Crybelosporites microspore (SEM) associated with Regnellidium thomas-taylorii; MPEF-
MEB 5502 (scale = 10 mm). D: Molaspora lobata megaspore (SEM) associated with Mirasolita and Luigimarsiglia; MPEF-MEB 5503 (scale = 50 mm). D:
Nelumbo-like tetracolpate-reticulate pollen grain (SEM); BAFCB pm 263 (scale = 10 mm).
doi:10.1371/journal.pone.0104749.g007
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Of particular interest among the dinosaurs are several forms

with aquatic or semi-aquatic lifestyles, the hadrosaurs and

ankylosaurs. Hadrosaurs are traditionally considered important

consumers of aquatic plants based on their ecology and

adaptations, while ankylosaurs could have been consumers of

aquatic plants as suggested from their dentition features adapted

mainly for soft vegetation [104]. Turtles are the most abundant

and diverse of the reptilian fauna in the La Colonia Formation,

and some of them are also potential consumers of the aquatic

vegetation. Plants such as green microalgae colonies, Azolla (a fast-

growing fern that is also a good source of nitrogen due to its

symbiosis with a cyanobacterium), and aquatic angiosperms could

have served as nutritious sources of food for these herbaceous

vertebrates [65].

True water bugs (Heteroptera, Nepomorpha) are also com-

monly found in the La Colonia Formation (Petrulevicius, pers.

comm.). Nepomorphs are distributed worldwide, but are most

diverse in the tropics, inhabiting different habitats ranging from

shores of small ponds and banks of streams to deep inland water

bodies [105]. These insects are characterized by their seasonal

adaptations that permit them to survive under periodically

fluctuating environmental conditions such as those that affect

lagoon systems, especially during episodes when the lagoon is

flooded with seawater [105]. In the La Colonia Formation, these

water bugs most likely found shelter and food sources in the

aquatic vegetation, probably creating their own microhabitats.

Biogeographic patterns
Most diverse modern aquatic plant communities are primarily

distributed in the zone between the 30uN and 30uS latitude [1].

Species diversity is highest in the Neotropics, followed by the

Afrotropics, Indo-Malaya, the Nearctic, and then the remaining

phytogeographic regions [1]. The broad distribution of aquatic

plants has classically been attributed to long-distance dispersal, in

particular via migratory birds [2]. Continental drift and land

connections also likely played a major role, and were probably

particularly important before the evolution of birds in the

Cretaceous [24].

This tendency toward broad geographic distribution was

established early in the history of aquatic macrophytes. Fossil

Nelumbonaceae, for example, are mainly recorded from Laurassia

with a curious record in southern South America at the La

Colonia and Lefipán formations by the Late Cretaceous [29–30],

initially explained by the spreading of the group [106–107], but

suggesting continuous and similar conditions in fresh water coastal

ecosystems from North to South America that would have allowed

Figure 8. Reconstruction of the plant communities at the Cerro Bosta locality. Surrounding (close-allochthonous) terrestrial vegetation: (a)
Arecaceae, (A) Euterpe (Plantsystematics.org- DOL11633) and (b) Dicksoniaceae, (B) Dicksonia sellowiana (Photo by R. Moran, Plantsystematics.org-
DOL75000). Autochthonous vegetation: Emergent-rooted macrophyte (c) Regnellidium thomas-taylorii, (C) Regnellidium diphyllum (Photo by D.W.
Stevenson, Plantsystematics.org- DOL25635) and free-floating macrophyte (d) Azolla and Paleoazolla, (D) Azolla (Photo by R. Moran,
Plantsystematics.org- DOL6803).
doi:10.1371/journal.pone.0104749.g008
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some migratory flow. Interestingly, the record of the family in

South America is only represented by fossil forms from Patagonia

[29–30], with the current presence of Nelumbo on Gondwanan

continents (northern South America and northern Australia)

probably being attributable to human-mediated dispersal [107].

Additionally, aquatic marsileaceous ferns are found throughout

the world in the Cretaceous, with an extensive and cosmopolitan

dispersed spore record that extends throughout the period (for

summaries of many known occurrences, see Arcellites, Molaspora,

Rodeites and Crybelosporites in [9–108]). Aquatic Araceae are

clearly present by the latest Cretaceous to Paleocene not only in

South America, but also in North America and northeastern Asia

[23–27–70–109–110]

Latest Cretaceous and Paleocene aquatic communities reported

from the Northern Hemisphere include those from Europe (19),

Mongolia/NE Asia [22–24], and western North America [24–27],

which share elements with the La Colonia flora. Although the

taxonomic composition of these floras is not the same at generic

level, commonalities are observed at the level of plant family or

plant habit. All are composed of floating microalgae (e.g.,

Pediastrum), floating aquatic ferns (e.g., Azolla), rooted salvinia-

lean ferns (e.g., Hydropteris, Marsileaceae), and floating and/or

rooted angiosperms (Araceae and Nelumbonaceae), with a

terrestrial component consisting of selected coniferous gymno-

sperms, ferns, and angiosperms. The presence of aquatic swamp

communities dominated by Azolla and Pediastrum was reported

from the latest Cretaceous Hell Creek Formation [24], North

Dakota, USA, in paleoenvironments analogous to modern

subtropical swamps. These elements are abundant in the Cañadón

del Irupé/Quebrada del Helecho localities, suggesting a similar

environment.

In Patagonia, an aquatic plant community has been detected

from the nearbyPaleocene (Danian)-aged Bororó Formation [111].

This community comprises some of the elements found within the

La Colonia flora, including Chlorococcales, Zygnematales,

Salviniaceae, pteridophytes, and conifers, as well as angiosperms

in the families Araceae, Arecaceae, Typhaceae, and Proteaceae.

The occurrence of the same taxa suggests that the Cretaceous/

Paleogene boundary event did not affect aquatic plant commu-

nities, which retained approximately similar structure and

composition during the transition between the Maastrichtian

and the basalmost Paleocene (Danian). Similar conclusions were

obtained from the coeval and nearby Lefipán Formation in

northwestern Patagonia [112].

Figure 9. Reconstruction of the plant communities at Cañadón del Irupé/Quebrada del Helecho localities. Surrounding (close-
allochthonous) terrestrial vegetation: (a) Arecaceae, (A) Euterpe (Plantsystematics.org- DOL11633), (b) Dicksoniaceae, (B) Dicksonia sellowiana (Photo
by R. Moran, Plantsystematics.org-DOL75000), and (c) Typha-like, (C) Typha latifolia (Photo by K.C. Nixon, Plantsystematics.org- DOL6212).
Autochthonous vegetation: Emergent-rooted macrophytes: (d) Mirasolita-Lugiomarsiglia, (D) Marsilea scalaripes (Photo by D. Nickrent,
PhytoImages.siu.edu-DOL69348) and (e) Nelumbo puertae and reproductive structures, (E) Nelumbo lutea (Photo by R. Moran, Plantsystematics.org-
DOL42110); and freeifloating macrophytes: (f) Araceae, (F) Pistia lactucoides (Photo by K.C. Nixon, Plantsystematics.org- DOL4884) and (g) Azolla and
Paleoazolla, (G) Azolla (Photo by R. Moran, Plantsystematics.org- DOL6803).
doi:10.1371/journal.pone.0104749.g009
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Concluding remarks
Near the end of the Cretaceous in central and southern

Patagonia, marine transgressions favored oceanic climates that

influenced the composition of the vegetation. In general, the

Patagonian paleofloras were dominated by angiosperms, suggest-

ing warm-temperate to subtropical humid conditions for the

region [113]. Notably, the frost intolerance of the modern

analogues of some plants found in the La Colonia Formation

sediments—such as Salviniaceae, Marsiliaceae, Araceae, and

palms—also indicates a tropical to subtropical climate.

Based on the data presented in this report, it is clear that by the

latest Cretaceous there was a suite of lagoonal coastal wetlands in

Patagonia, that promoted the proliferation and, later, the

preservation of freshwater plant communities. The interpretation

of the paleofloral localities as representing a lagoonal environment

is confirmed by the presence and types of free-floating aquatic

Figure 10. Main representatives of the surrounding lowland vegetation. A: Dicksoniaceous fertile and sterile fronds; MPEF-Pb 6457. C:
Dicksoneaceous spore massulae; BAFCB meb 263. B: Typhaceous leaf; MPEF-Pb 5074. D: Arecipites type pollen grain; BAFCB meb 261. E:
Podocarpaceous bisaccate pollen grain; BAFCB meb 262. F: Classopolis pollen grain; BAFCB meb 259. G: Typhaceous pollen grain; BAFCB meb 260. C,
D, E (SEM); F, G (LM). Scales: A, B = 1 cm; C = 20 mm; D = 5 mm; E, F, G = 10 mm.
doi:10.1371/journal.pone.0104749.g010
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macrophytes (pleustophytes), free-floating microphytes, and rooted

macrophytes with floating or emergent leaves (planmergent or

emergent benthophytes) that constituted the main components of

the aquatic vegetation. A small number of terrestrial and aquatic

macrophytes surrounded the water bodies, and additional

allochthonous components occurred on higher ground. The clastic

conditions of these southern hemisphere mid-latitude environ-

ments did not allow for the development of mangrove vegetation

that is normally linked to more calcareous shallow platforms.

Many of the records reported for the La Colonia paleocommu-

nity are of significant value. The Salviniaceae, Nelumbonaceae,

and Araceae constitute the first macrofossil records for these

Southern Hemisphere families. The occurrence of arecaceaous

pollen within a wetland environment suggests that palms were

found in both drier and in wetland areas in Patagonia in the past.

In summary, the La Colonia paleocommunity is the first aquatic

plant community described for the Southern Hemisphere based on

both macro- and microfossils, and, thus, provides a unique

window into better understanding the Late Cretaceous Patagonia

and Southern Hemisphere.
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