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Abstract

The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset
diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable.
A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of
this study is to compare the performance of different bioinformatics methods in the functional prediction of
nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of
MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated,
but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes
mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be
able to increase the performance of in silico prediction of disease-causing mutations.
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Introduction

To date, a number of methods have been developed to predict

functional effects of rare human mutations based on the impact of

protein function and/or evolutionary conservation [1–3]. These

methods are valuable to assist the diagnosis of monogenic

inheritance diseases. In the area of diabetes, there is a common

monogenic form, i.e. maturity-onset diabetes of the young

(MODY). MODY accounts for ,1% to 5% of all cases of

diabetes, while it is mainly seen in young adults (#25 years old)

[4]. As an autosomal dominant inherited form of diabetes, MODY

is caused by gene mutations leading to insufficient insulin

production without or with minimal insulin resistance [5]. To

date, at least 13 genes have been identified with mutations that

cause MODY, i.e. HNF4A (MODY1) [6], GCK (MODY2) [7],

HNF1A (MODY3) [6], PDX1 (MODY4) [8], HNF1B (MODY5)

[9], NEUROD1 (MODY6) [10], KLF11 (MODY7) [11], CEL
(MODY8) [12], PAX4 (MODY9) [13], INS (MODY10) [14],

BLK (MODY11) [15], ABCC8 (MODY12) [16,17], and KCNJ11
(MODY13) [16,17].

MODY caused by different gene mutations may have different

severities of diabetes and different drug responses to diabetes

medications [18]. For example, MODY2 (accounts for ,20% of

all MODY cases [19]) caused by GCK gene mutations tends to

have mild hyperglycaemia without obvious glycosuria. Patients

with MODY2 are often asymptomatic [20] or only identified in

women during pregnancy and diagnosed as gestational diabetes

[21]. Most patients with MODY2 can have blood glucose

satisfactorily controlled by diet therapy and don’t need hypogly-

cemic medication [22,23]. In contrast, MODY3 caused by

HNF1A mutations, the most common type of MODY that

accounts for ,63% of all MODY cases [19], tends to have obvious

glycosuria because of impaired glucose-stimulated insulin secretion

[24], as well as decreased renal threshold for glucose [25].

MODY3 patients tend to have good response to sulphonylurea

treatment and don’t rely on insulin therapy [18,26]. Because of the

implications of pharcogenetics and personalized medicine, molec-

ular diagnosis of MODY has clinical importance for clinical

decision and for genetic counseling [18,26]. However, because of

unavailability and expense of MODY molecular diagnosis, it is not

uncommon that MODY patients are classified as type 2 diabetes

[27,28] and occasionally as type 1 [29].

The rapid progress of advanced genomic technologies has been

providing new opportunities to address the need of MODY

molecular diagnosis. The identification of mutations in MODY

genes by sequencing technologies will enable the molecular

diagnosis of MODY, whereas a new issue is emerging. Most

mutations causing MODY are nonsynonymous single-nucleotide

mutations causing the change of an amino acid residue (according

to The Human Gene Mutation Database [30], http://www.hgmd.

org/). High throughput sequencing technologies enable screening

of a large number of patients and parallel sequencing of a large
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number of genes. If a known MODY gene mutation is identified in

a patient suspected of MODY, the molecular diagnosis of MODY

can be established. However, the increased throughput of

sequencing technologies is likely to produce increased numbers

of missense variants whose causative role in MODY can be

questionable. Bioinformatics tools, e.g. SIFT (http://sift.jcvi.org/)

Table 1. MODY or neonatal diabetes genes and mutations (n = 1091).

Gene symbol Diabetic mutations* (n) Control mutations (n) Chromosome position Gene name

HNF4A 86 57 20q12-q13.1 hepatocyte nuclear factor 4, alpha

GCK 479 22 7p15.3-p15.1 glucokinase (hexokinase 4, maturity onset
diabetes of the young 2)

HNF1A 324 78 12q24.2 hepatocyte nuclear factor-1 (HNF1) homeobox A

HNF1B 36 52 17cen-q21.3 hepatocyte nuclear factor-1 (HNF1) homeobox B

INS 41 14 11p15.5 insulin

ABCC8 64 185 11p15.1 ATP-binding cassette, sub-family C (CFTR/MRP),
member 8

KCNJ11 61 65 11p15.1 potassium inwardly-rectifying channel,
subfamily J, member 11

* Number of diabetes-causing single nucleotide mutations recorded in the Human Gene Mutation Database (HGMD) 2013.4 release (http://www.hgmd.org/) [30].
doi:10.1371/journal.pone.0104452.t001

Table 2. Methods for function prediction for non-synonymous mutations*.

Method Deleterious Threshold Algorithm

PhyloP .1.6 PhyloP calculates basewise conservation score from Multiz alignment [55] of 46 vertebrate species (ftp://
ccg.vital-it.ch/mga/hg19/phylop/phylop.html) [38].

GERP++ RS .4.4 GERP++ RS calculates site-specific ‘‘rejected substitutions’’ (RS) scores and to discover evolutionarily
constrained elements based on maximum likelihood evolutionary rate estimation [39].

SiPhy .12.17 SiPhy detects bases under selection from a multiple alignment data using a hidden Markov model. (http://
www.broadinstitute.org/genome_bio/siphy/) [40].

SIFT .0.95 SIFT prediction is based on the degree of conservation of amino acid residues in sequence alignments
derived from closely related sequences, collected through PSI-BLAST.(http://sift.jcvi.org/) [31].

PolyPhen-2 .0.5 PolyPhen-2 (Polymorphism Phenotyping v2) predicts the functional significance of an amino acid
substitution by Naı̈ve Bayes classifier, using sequence-based and structure-based predictive features. HDIV,
or HumDiv, identifies human damaging mutations by assuming differences between human proteins and
their closely related mammalian homologs as non-damaging. HVAR, or HumVar, identifies human disease-
causing mutations by assuming common human nsSNPs as non-damaging. (http://genetics.bwh.harvard.
edu/pph2/index.shtml) [32].

LRT .0.999 The likelihood ratio test (LRT) identifies conserved amino acid positions and deleterious mutations using a
comparative genomics data set of multiple vertebrate species. (http://www.genetics.wustl.edu/jflab/
lrt_query.html) [41].

MutationTaster .0.5 MutationTaster evaluates the disease-causing potential of DNA sequence alterations by Naı̈ve Bayes
classifier, integrating information Of evolutionary conservation, splice-site changes, loss of protein features
and changes that might affect the amount of mRNA from different biomedical databases and uses
established analysis tools. (http://www.mutationtaster.org/) [42].

Mutation Assessor .0.65 Mutation Assessor predicts the functional impact of amino-acid substitutions in proteins based on
evolutionary conservation of the affected amino acid in protein homologs. (http://mutationassessor.org)
[43].

FATHMM .0.453 The Functional Analysis through Hidden Markov Models (FATHMM) Predicts the functional consequences
of cancer-associated amino acid substitutions using a model weighted for inherited disease mutations
(http://fathmm.biocompute.org.uk) [44].

RadialSVM score .0.5 RadialSVM score is an ensemble-based approach integrating multiple scoring systems (function prediction
and conservation Score) by radial support vector machine (SVM) [3].

LR score .0.5 LR score is an ensemble-based approach integrating multiple scoring systems (function prediction and
conservation Score) by logistic regression (LR) [3].

* Extensively comparisons of these methods genome-widely have been studied by Thusberg et al. [1,2] and Dong et al. [3]. Deleterious thresholds for PhyloP, GERP++ RS
and SiPhy are defined according to the study by Dong et al. [3]. Deleterious thresholds for SIFT, LRT, MutationTaster, Mutation Assessor, FATHMM and RAdialSVM are
based on converted scores used in dbNSFP version 2.3 [45,46] (converted score is designated as Sc and original score is designated as So): SIFT: Sc = 1-So; LRT: Sc = 1- So

*0.5 if V,1, or Sc = So *0.5 if V. = 1; MutationTaster: Sc = So if the prediction is ‘‘A’’ or ‘‘D’’ or Sc = 1- So if the prediction is ‘‘N’’ or ‘‘P’’; Mutation Assessor:
Sc = (So -(25.545))/(5.975-(25.545)); FATHMM: Sc = 1-(So -(216.13))/(10.64-(216.13)); RadialSVM: Sc = (1+ So/3.03993691875303)*0.5 if predicted ‘‘D’’ and
Sc = (1- So/-2.00575697514507)*0.5 otherwise. More details of the conversion can be found at http://dbnsfp.houstonbioinformatics.org/dbNSFPzip/dbNSFP2.3.readme.
txt.
doi:10.1371/journal.pone.0104452.t002
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[31] and PolyPhen (http://genetics.bwh.harvard.edu/pph2/

index.shtml) [32], are often used to assess the pathogenicity of a

nonsynonymous mutation [27]. Because the limitations of in silico
methods, the functional prediction of a nonsynonymous mutation

lacks a gold standard. To date, a number of bioinformatics

methods besides SIFT and PolyPhen, based on different

algorithms, have been developed [1–3]. The purpose of this study

is to compare the performances of different bioinformatics

methods in the functional prediction of nonsynonymous mutations

in each MODY gene, and to provide reference matrices to assist

the molecular diagnosis of MODY.

Methods

Data source
The diabetes mutation data analyzed in this study were

acquired from the Human Gene Mutation Database (HGMD)

2013.4 release (http://www.hgmd.org/) [30]. As the purpose of

this study is to assess the prediction performances of different in
silico methods for nonsynonymous single-nucleotide mutations,

insertion/deletion mutations (InDels) are not included in this

study. Altogether, 1,130 nonsynonymous single-nucleotide muta-

tions from 24 genes have been reported causing MODY or

neonatal diabetes. Among these genes, 7 genes harbor more than

30 single-nucleotide mutations within each gene with the total of

1,091 diabetes mutations (Table 1), while the other 17 genes

harbor #6 diabetes mutations in each gene. To enable statistical

comparisons of different in silico methods across different genes,

those 17 genes with #6 diabetes mutations were not involved in

this study. Among the 1,091 mutations, 155 mutations from the

genes ABCC8, GCK, INS, or KCNJ11, have the phenotype of

neonatal diabetes, either transient or permanent. The other 936

mutations in the 7 genes have the phenotype of MODY.

Control nonsynonymous single-nucleotide mutations in the

diabetes genes were acquired from the NHLBI GO Exome

Sequencing Project (ESP) [33,34], the ARIC samples [35] in the

CHARGE Exome Sequencing Project [36], and the 1000

Genome Project [37], excluding mutations recorded in the

HGMD database.

Functional prediction of nonsynonymous single-
nucleotide mutations

Eleven methods, including PhyloP [38], GERP++ RS [39],

SiPhy [40], SIFT [31], PolyPhen-2 [32], the likelihood ratio test

(LRT) [41], MutationTaster [42], Mutation Assessor [43],

FATHMM [44], RadialSVM score [3], and logistic regression

(LR) score [3], were covered in the dbNSFP database [45,46] and

compared in this study (Table 2). Among the 1,091 mutations

involved in this analysis, 104 mutations from the genes GCK,

HNF1A, HNF1B, HNF4A, and INS, are nonsense mutations, i.e.

producing a pre-termination codon; two other mutations from the

gene GCK replace a termination codon with an amino acid codon.

For these mutations, the methods, PolyPhen-2 HDIV, PolyPhen-2

HVAR, MutationAssessor, FATHMM, Radial SVM score, LR

score are not applicable to nonsense mutations or mutations

assumed with highly damaging potential. Other methods, except

MutationTaster, tend to have higher error rates (false negative

rates, FNR), compared to the prediction of amino acid substitution

mutations, i.e. SIFT FNR = 72%, GERP++ RS FNR = 40%,

PhyloP FNR = 35%, SiPhy FNR = 26%, LRT FNR = 21%, and

MutationTaster FNR = 3%, for the prediction of nonsense

mutations. Compared with amino acid substitutions, the assess-

ment of the functional effect of nonsense mutations tends to be less

of an issue. The final analysis of this study involved 985

nonsynonymous single-nucleotide mutations. The quantitative

performances of these methods were compared by the Spearman’s

rank correlation test [47] and the ANOVA test using the IBM

SPSS Statistics 19 software ((IBM SPSS Inc., Chicago, IL, USA).

To re-define gene-specific thresholds of deleterious mutations, the

receiver operator characteristic (ROC) analysis was calculated by

the sensitivity and specificity values of screening series of cutoffs of

each method for each gene. A redefined threshold was identified

using the maximum Matthews correlation coefficient (MCC) [48].

Results and Discussion

In our analysis, the prediction scores by different methods of the

diabetes mutations are highly correlated (Table 3). The highest

correlations are seen between RadialSVM score and LR score

(r = 0.957), PolyPhen-2 HDIV and PolyPhen-2 HVAR (r = 0.89),

Table 4. Method comparisons for function prediction for non-synonymous mutations causing diabetes.

Methods Missing Rate* False Negative Rate False Positive Rate** MCC

PhyloP 0% 18% 53% 0.300

GERP++ RS 0% 21% 52% 0.281

SiPhy 0% 16% 51% 0.342

SIFT 13% 25% 39% 0.350

PolyPhen-2 HDIV 15% 9% 51% 0.447

PolyPhen-2 HVAR 15% 16% 42% 0.434

LRT 18% 7% 68% 0.324

MutationTaster 3% 3% 77% 0.333

Mutation Assessor 15% 30% 32% 0.362

FATHMM 14% 1% 95% 0.127

RadialSVM score 8% 5% 57% 0.474

LR score 8% 4% 69% 0.393

* The missing rate refers to the percentage of mutations that a method is inapplicable;
**The false positive rate was calculated by nonsynonymous single-nucleotide mutations in the diabetes genes acquired from the NHLBI GO Exome Sequencing Project
(ESP) [33], the CHARGE Exome Sequencing Project [34,36], and the 1000 Genome Project [37], excluding mutations recorded in the HGMD database.
doi:10.1371/journal.pone.0104452.t004
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and phyloP and GERP++ RS (r = 0.871), while the other

correlations have r,0.80. Therefore, in spite of the high statistical

significance of correlations between different methods, different

methods may not be able to replace each other except for the

above three pairs. Especially, the FATHMM method has no

obvious correlation with PhyloP, GERP++ RS, and LRT, while

the correlation with MutationTaster is less significant. On the

other hand, we observed significantly varied performances in

detecting deleterious mutations by different methods (Table 4).

Prediction errors by the in silico methods highlight the limitations

of these methods and the need for cautious applications of the in
silico prediction in data explanation. Among different methods,

FATHMM has the lowest false negative rate (FNR = 1%), but also

the highest false positive rate (FPR = 95%) [Matthews correlation

coefficient (MCC) = 0.127]. Considering the lack of correlation of

FATHMM with the PhyloP, GERP++ RS, and LRT, caution

should be taken when explaining the FATHMM results because of

its high FPR and low MCC. The highest MCC scores were seen in

the RadialSVM score (MCC = 0.474, FNR = 5%), PolyPhen-2

HDIV (MMC = 0.447, FNR = 9%), PolyPhen-2 HVAR

(MCC = 0.434, FNR = 16%) and LR score (MCC = 0.393,

FNR = 4%).

Our investigation further disclosed significant differences of the

quantitative performances of different methods, except SIFT,

across different genes (Table 5). Varied performances across genes

highlight another aspect of limitation of these in silico methods.

The distribution of the prediction scores presented in Table 5 may

be able to serve as a matrix to assist the assessment of functional

effects of new mutations in these diabetes genes.

The varied performances of these methods in different genes

and the different scores of each method for different genes suggest

that using gene-specific thresholds for deleterious mutations may

improve the prediction performance of these in silico methods. We

screened each gene and identified the gene-specific threshold with

maximum MCC. Nonsynonymous single-nucleotide mutations in

the diabetes genes from the NHLBI GO Exome Sequencing

Project (ESP) [33,34], the ARIC samples [35] in the CHARGE

Exome Sequencing Project [36], and the 1000 Genome Project

[37], were used as controls without including mutations recorded

in the HGMD database. Shown by our analysis (Table S1), we

have been able to improve the prediction performance of each

method in most cases, with the FATHMM method as an

exception because of its nil/low FNRs in those diabetes genes.

For example, the FNR of GERP++ RS for HNF4A mutations and

the FNR of LRT for HNF1B mutations were decreased without

any obvious change of their FPRs. On the other hand, redefined

thresholds are able to decrease the FPRs of LRT for INS
mutations, MutationTaster for ABCC8 mutations, LR score for

INS mutations, LRT for ABCC8 mutations, MutationTaster for

INS mutations, and MutationTaster for HNF1B mutations,

without obviously increasing the FNRs. The general performances

of different methods were summarized in Table 6. From low to

high MCCs, the methods were sorted from left to right and from

top to bottom. The average difference of MCCs and P value of

each two methods was shown.

The varied performance of different methods in different genes

is related to specific molecular mechanisms of diabetes mutations.

For the 41 INS mutations involved in this study, 34 mutations

cause neonatal diabetes. These mutations exert diabetic effects by

causing misfolding of the insulin protein, rather than inactivating

the gene [49,50]. The dominantly inherited mode of the disease is

from dominant negative mechanism, instead of haploinsufficiency.

The misfolded insulin protein interferes cellular processes, leading

to severe endoplasmic reticulum stress and potentially b cell death

by apoptosis [50]. In contrast, a heterozygous individual with one

copy of inactivating INS mutation may still have a sufficient

response to metabolic regulation, thus without neonatal diabetes.

For the prediction of neonatal diabetes mutations in the INS gene,

a protein structure-based prediction method may thus have better

performance than others. In this study, we see that PolyPhen-2

with structure-based predictive features has better performance

than the more sequence-based SIFT method (Table S1). Unlike

other monogenic diabetes genes, the neonatal diabetes mutations

in ABCC8 and KCNJ11 are gain-of-function mutations [51].

Sequence-based method like SIFT has also lower performance for

these mutations than PolyPhen-2.

We acknowledge the current publication bias of diabetes

mutations (i.e. the bias towards identifying and reporting

diabetes-causing mutations in the general human population).

The diabetes mutations have been identified by studies involving

much larger number of human individuals, while the genome

sequencing projects involved limited number of human subjects.

For a disease-causing mutation, no matter its low frequency, as

long as the mutation is identified, it will be included. For example,

in the case of GCK and HNF1A genes, the numbers of reported

diabetes mutations are much larger than control mutations (479

vs. 22, 324 vs. 78, respectively). We also want to emphasize the

application of gene-specific mutations as functionally neutral

controls. Our analysis showed that different methods using

redefined thresholds by genome-wide control mutations, instead

of gene-specific controls, tend to have poor performances (data

available upon request). To acquire a satisfactory MCC tends to

need a large number of both diabetes mutations and functional

neutral mutations. The gene-specific prediction model proposed

by our study will have further improved performance with the

availability of sequencing data of a larger number of human

individuals.

In conclusion, the available in silico methods for the prediction

of diabetes mutations have varied performances across different

genes. In spite of the high statistical significance of correlations

between different methods, different methods may not be able to

replace each other. Because of varied performances across genes,

applying gene-specific thresholds when possible (i.e. for genes with

a number of disease mutations identified and the ROC analysis

feasible) may be able to increase the performance of prediction.

For genes without sufficient numbers of mutations for the ROC

analysis, a consensus threshold should be used [52]. Nevertheless,

the limitations of the above methods warrant that new methods

are being developed continuously. For example, Johansen et al.

recently developed a sequence conservation-based artificial neural

network predictor called NetDiseaseSNP [53]. Capriotti et al.

developed a Meta-SNP algorithm for the detection of disease-

associated nsSNVs, which integrates four different methods:

PANTHER, PhD-SNP, SIFT and SNAP. They showed these

methods are orthogonal with different biologically relevant

relationships, and the integration of different methods achieved

higher accuracy [54].

Supporting Information

Table S1 Method comparisons for gene-specific function

prediction for non-synonymous mutations causing diabetes.

(XLS)
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