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Abstract

Purpose: Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to
establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor
reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips.

Material and Methods: 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main
difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo
echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter
(GM) and white matter (WM), and on a voxel-level.

Results: Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly
different (p,0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE
and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the
WM.

Conclusion: These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor
comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors.

Citation: Mutsaerts HJMM, Steketee RME, Heijtel DFR, Kuijer JPA, van Osch MJP, et al. (2014) Inter-Vendor Reproducibility of Pseudo-Continuous Arterial Spin
Labeling at 3 Tesla. PLoS ONE 9(8): e104108. doi:10.1371/journal.pone.0104108

Editor: Bart Rypma, University of Texas at Dallas, United States of America

Received February 20, 2014; Accepted July 8, 2014; Published August 4, 2014

Copyright: � 2014 Mutsaerts et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the Dutch non-governmental organizations Stichting Coolsingel (grant 179) and NutsOhra (grant 1002-031).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: henkjanmutsaerts@gmail.com

Introduction

Arterial spin labeling (ASL) is an emerging magnetic resonance

imaging (MRI) perfusion modality that enables non-invasive

cerebral perfusion measurements. Since ASL is virtually harmless,

not hampered by the blood-brain barrier and enables absolute

quantification of cerebral blood flow (CBF), it is an attractive tool

compared to other perfusion imaging modalities [1,2]. Through

several methodological advances, ASL perfusion MRI has

matured to the point where it can provide high quality whole-

brain perfusion images in only a few minutes of scanning [3]. Its

reproducibility has been established and its CBF-maps are

comparable with imaging methods based on exogenous tracers

[4–7]. ASL is commercially available on all major MRI systems

and clinical applications are under rapid development. ASL-based

CBF measurements are of clinical value in a number of cerebral

pathologies, such as brain tumors, cerebrovascular pathology,

epilepsy and neurodegeneration [8,9]. Therefore, the initiation of

large-scale multi-center ASL studies is a next step to extend our

understanding of the pathophysiology of many common disorders.

However, it is essential to first establish the inter-vendor

reproducibility of ASL [10,11]. One main obstacle that impedes

multi-center studies, is that fundamental differences exist between

ASL implementations of different vendors. Each MRI vendor has

implemented a different labeling-readout combination, which may

seriously hamper the comparison of multi-vendor ASL-data [12].

Since each labeling and readout strategy exhibits specific

advantages and disadvantages, a substantial technical heterogene-

ity is introduced [13]. Therefore, it remains unclear to which

degree ASL-based CBF-maps from centers with scanners of

different vendors are comparable. The aim of the current study is

to assess and compare the intra- and inter-vendor reproducibility

of pseudo-continuous ASL (pCASL) CBF measurements as

currently clinically implemented by two major vendors: i.e. GE

and Philips.

Materials and Methods

Subject recruitment and study design
Twenty-two healthy volunteers (9 men, 13 women, mean age

22.662.1 (SD) years) were included. In addition to standard MRI
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exclusion criteria, subjects with history of brain or psychiatric

disease or use of medication - except for oral contraceptives - were

excluded. No consumption of vasomotor substances such as

alcohol, cigarettes, coffee, licorice and tea was allowed on the scan

days. On the day prior to the examination, alcohol and nicotine

consumption was restricted to three units and cigarettes respec-

tively.

All subjects were scanned twice at two academic medical centers

in the Netherlands: Erasmus MC – University Medical Center

Rotterdam (center 1) and Academic Medical Center Amsterdam

(center 2). The inter-session time interval was kept at 1–4 weeks.

MRI experiments were performed on a 3T GE scanner at center 1

(Discovery MR750, GE Healthcare, Milwaukee, WI, US) and on a

3T Philips scanner at center 2 (Intera, Philips Healthcare, Best, the

Netherlands), both equipped with an 8-channel head coil (InVivo,

Gainesville, FL, US). Foam padding inside the head coil was used

to restrict head motion during scanning [10]. Subjects were awake

and had their eyes closed during all ASL scans.

Ethics statement
All subjects provided written informed consent and the study

was approved by the ethical review boards of both centers.

Acquisition
Each scan session included a pCASL and 1 mm isotropic 3D

T1-weighted scan for segmentation and registration purposes. For

the acquisition of a single time-point CBF-map, pCASL has

become the preferred labeling strategy because of its relatively

high signal-to-noise ratio (SNR) and wide availability across all

platforms [3,14]. On both scanners we employed the clinically

implemented pCASL protocols that are currently used in clinical

studies [15,16]. Table 1 and Figure 1 summarize the protocol

details and show the timing diagrams for both sequences

respectively. The main difference between the GE and Philips

implementations was the readout module: multi-shot spiral 3D fast

spin-echo vs. single-shot 2D gradient-echo echo-planar imaging

respectively.

Post-processing: quantification
Matlab 7.12.0 (MathWorks, MA, USA) and Statistical Para-

metric Mapping (SPM) 8 (Wellcome Trust Center for Neuroim-

aging, University College London, UK) were used for post-

processing and statistical analyses. For the Philips data, label and

control pCASL images were pair-wise subtracted and averaged to

obtain perfusion-weighted images. For the GE data, the perfusion-

weighted images as directly provided by the scanner were used.

Since the images as provided by GE did not incorporate motion

correction, this was not applied to the Philips data. The perfusion-

weighted maps of both vendors were quantified into CBF maps

using a single compartment model [3,17]:

CBF (mL=100 g=min )~
6000DMePLD=T1a

2aainvM0aT1a(1{e{t=T1a )
ð1Þ

where DM represents the difference images between control and

label and M0a the equilibrium magnetization of arterial blood. In

Philips, DM was corrected for the transversal magnetization decay

time (T2*) of arterial blood (48 ms) during the 17 ms echo time

(TE) by eTE/T2* [18]. PLD is the post-labeling delay (1.525 s), T1a

is the longitudinal relaxation time of arterial blood (1.650 s), a is

the labeling efficiency (0.8), where ainv corrects for the decrease in

labeling efficiency due to the 5 and 2 background suppression

pulses at GE (0.75) and Philips (0.83) respectively and t represents

the labeling duration (1.450 s and 1.650 s for GE and Philips

respectively) [19–21]. The increase in label decay in the ascending

acquired 2D slices in Philips-data was accounted for. GE has, but

Philips has not, implemented a standard M0-acquisition where

proton density maps are obtained with a saturation recovery

acquisition using readout parameters identical to the ASL readout.

These maps were converted to M0a by the following equation:

M0a~
PD

lGM (1{e
{tsat

T1GM

)
ð2Þ

where tsat is the saturation recovery time (2 s), T1GM is the

relaxation time of gray matter (GM) tissue (1.2 s) and lGM is the

GM brain-blood water partition coefficient (0.9 mL/g) [15,22,23].

For the Philips data, a single M0a-value was used for all subjects.

This value was obtained in a previous study with the same center,

scanner, head coil, pCASL protocol and a similar population

(n = 16, 56% M, age 20–24 years) [24]. In short, cerebrospinal

fluid T1 recovery curves were fitted on the control images of

multiple time-point pCASL measurements, with the same readout,

without background suppression. The acquired M0 was converted

to M0a by multiplication with the blood water partition coefficient

(0.76) and the density of brain tissue (1.05 g/mL) [23,25]. No

difference was made between the quantification of GM and WM

CBF.

Post-processing: spatial normalization
A single 3D T1-weighted anatomical scan from each scanner for

each subject (n = 44) was segmented into GM and white matter

(WM) tissue probability maps. All CBF maps were transformed

into anatomical space by a rigid-body registration on the GM

tissue probability maps. The tissue probability maps were spatially

normalized using the Diffeomorphic Anatomical Registration

analysis using Exponentiated Lie algebra (DARTEL) algorithm,

and the resulting normalization fields were applied to the CBF

maps as well [26]. Finally, all normalized images were spatially

smoothed using an 86868 mm full-width-half-maximum Gauss-

ian kernel, to minimize registration and interpolation errors.

Data analysis
All intra-vendor reproducibility analyses were based on a

comparison of session 1 with session 2 within each vendor (n = 22).

All inter-vendor reproducibility analyses were based on a

comparison of GE session 1 with Philips session 2, and GE session

2 with Philips session 1 (n = 44). In this way, the temporal

physiological variation is expected to have an equal contribution to

the intra- and inter-vendor reproducibility. All reproducibility

analyses were based on the mean CBF of the two sessions, and on

the mean and standard deviation of the paired inter-session CBF

difference, denoted as DCBF and SDDCBF respectively. The

within-subject coefficient of variation (wsCV) - a normalized

parameter of variation - was defined as the ratio of SDDCBF to the

mean CBF of both sessions:

wsCV~100%
SDDCBF

meanCBF
ð3Þ

Reproducibility was assessed on a total GM and WM level, and

on a voxel-level.

Inter-Vendor Reproducibility of PCASL
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Data analysis: total supratentorial GM and WM
Mean CBF-values of each session were obtained for the total

supratentorial GM and WM. GM and WM masks were obtained

by thresholding GM and WM probability maps at 70% and 95%

tissue probabilities respectively. GM-WM CBF ratios were

calculated individually. The significance of paired inter-session

CBF differences (DCBF) was tested with a paired two-tailed

Student’s t-test. The Levene’s test was used to test the significance

of the difference between GE SDDCBF and Philips SDDCBF, as well

as between the inter-vendor SDDCBF and both intra-vendor

SDDCBF [27]. Limits of agreement - defining the range in which

95% of future measurements is expected to lie - were defined as

DCBF61.96 SDDCBF [28].

Data analysis: voxel-level comparison
To assess spatial inter-vendor differences, CBF- and wsCV-

values were computed for each voxel. For CBF, both sessions and

all subjects were averaged. To test significant voxel-wise inter-

vendor CBF differences, a Bonferroni-corrected paired two-tailed

Student’s t-test was performed (using both sessions, n = 44).

Individual histograms of CBF (25 bins, range 0–160 mL/100 g/

min) were averaged to generate a group-level histogram. A wsCV

histogram (25 bins, range 5–45%) was generated from the wsCV-

maps. Both CBF and wsCV histograms were generated for the

total supratentorial GM and WM of each vendor. Statistical

significance was set to p,0.05 for all tests.

Results

Session timing
The number of days between intra-vendor sessions did not differ

between vendors: 18.366.5 and 19.767.2 for GE and Philips

respectively (independent sample Student’s t-test, p = 0.5). How-

ever, GE session 1 and session 2 took place earlier in the day

compared to the Philips sessions (15 h2664 h00 and

15 h5563 h34 compared to 20 h1662 h06 and 19 h4762 h38

respectively, p,0.01).

Total GM and WM
The intra- and inter-vendor statistics are summarized in

Table 2 and visualized by the Bland-Altman plots in Figure 2.

GM CBF did not differ significantly between both vendors

(p = 1.0), but WM CBF did (p,0.01). Likewise, the intra-vendor

GM variances of the paired CBF differences did not differ between

the two vendors whereas the WM variances did (p = 0.6 and

p = 0.02 respectively). The GM-WM CBF ratios of both vendors

differed significantly, the 2D readout (Philips) GM-WM ratio

Table 1. Acquisition protocols.

GE Philips

Labeling module pseudo-continuous pseudo-continuous

Labeling pulse shape Hanning Hanning

Labeling pulse duration 0.5 ms 0.5 ms

Labeling pulse flip angle 23u 18u

Mean gradient strength 0.7 mT/m 0.6 mT/m

Maximal gradient strength 7 mT/m 6 mT/m

Labeling duration 1450 ms 1650 ms

Post-labeling delay (PLD) (initial) 1525 ms 1525 ms

PLD increase per slice n.a. 28.3 ms

PLD (average) 1525 ms 1770 ms

Labeling plane planning Fixed 22 mm below lower edge 89 mm below, parallel to AC-PC line

Labeling plane distance* 72 mm 89 mm

Readout module 3D fast spin-echo interleaved stack-of-spirals 2D gradient-echo single-shot echo-planar imaging

SENSE 2.5, CLEAR

Acquisition matrix 8 spirals6512 sampling points 80680

Field of view 24 cm3 24 cm2

Number of slices 36 17

Slice thickness 4 mm 7 mm

Acquisition voxel size (volume) 3.863.864 mm (57.8 mm3) 3.063.067.0 mm (63 mm3)

Reconstruction voxel size 1.961.964.0 mm 3.063.067.0 mm

Slice gap n.a. 0 mm

Echo time/repetition time 10.5/4600 ms 17/4000 ms

Number of signal averages 3 33

Readout planning True axial, lower edge fixed at lower boundary pons Parallel to AC-PC line

Background suppression (n pulses) yes (5) yes (2)

Vascular crushing no no

Acquisition duration 4:29 min 4:33 min

*Labeling plane distance represents distance from the anterior commissure-posterior commissure (ACPC) line in the head-feet direction [20]. n.a. = not applicable.
doi:10.1371/journal.pone.0104108.t001
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being approximately twice as large as the ratio of the 3D readout

(GE) (p,0.01). Both the GM and WM intra-vendor wsCVs were

similar to the inter-vendor wsCVs (Table 2), which is confirmed by

the Levene’s test. The variance of GM inter-vendor CBF

differences did not differ significantly from the variance of intra-

vendor differences (p = 0.3 and p = 0.5 for GE and Philips

respectively). For the WM, however, the variance of inter-vendor

CBF differences did differ significantly from the Philips variance

but not from the GE variance (p = 0.02 and p = 0.8 respectively).

Voxel-level comparison
Spatial CBF differences between GE and Philips are illustrated

for a single subject and on group level in Figure 3 and 4

respectively. The spatial wsCV distribution is shown in Figure 5.

In addition, Figure 6 provides an overview of spatial CBF

differences between subjects, sessions and vendors for a single

transversal slice. The main visual difference on all these maps was

the homogeneity of GE compared to the heterogeneity of Philips,

especially in the WM and in the z-direction. More specifically, the

contrast between GM and WM was higher on the Philips CBF and

wsCV-maps. Also within the GM, the CBF was more heteroge-

neous on the Philips maps compared to the GE maps. A CBF

decrease and wsCV increase was observed in the posterior and

superior regions on the GE maps and in the anterior-inferior and

superior regions on the Philips maps. The GM CBF histograms

were comparable between vendors (Figure 4d). The GE WM CBF

histogram had a higher mean, but had the same shape as the

Philips WM CBF histogram. The wsCV histograms, on the other

hand, were less comparable (Figure 5d). The spatial GM wsCV

distribution of Philips had a higher mean and was wider compared

to GE. This difference in mean and spread was even larger for the

WM.

Discussion

The most important result of this study is that - despite several

voxel-wise differences between vendors - there were no inter-

vendor differences in mean CBF or wsCV on a total GM level.

This can be explained by the fact that the variation between the

sessions can for a large part be attributed to physiological factors,

as was previously noted in single-vendor reproducibility studies

[11,29–31]. For clinical studies that focus on the GM in total, it

may therefore be more important to minimize and account for

physiological variation than to account for inter-vendor differences

in ASL implementation.

A different picture arises for smaller GM regions or for the total

WM. We observed several spatial differences between vendors

which can mainly be explained by differences in the readout

module. The most visually striking inter-vendor difference on all

CBF- and wsCV-maps was in the WM. The GM-WM CBF ratio

of the 2D readout (Philips) was twice as large as the ratio of the 3D

Figure 1. Sequence timing diagrams of a) General Electric (GE) and b) Philips, shown at the same time scale (ms). pCASL = pseudo-
continuous arterial spin labeling, PLD = post-labeling delay.
doi:10.1371/journal.pone.0104108.g001
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readout (GE), which is in agreement with a previous readout

comparison on a single Siemens scanner [13]. This can be

explained by the larger extent of spatial smoothing of a spiral 3D

readout (GE) compared to the 2D readout (Philips), which leads to

more contamination of the GM signal into the WM and vice versa.

Therefore, a 2D readout seems most suitable when the goal is to

acquire uncontaminated GM or WM CBF – although the ability

of ASL to measure WM CBF is debatable due to the long transit

time of WM [32].

Figure 3. Cerebral blood flow maps of a representative subject of GE (b) and Philips (c), as compared to gray matter (GM) tissue
probability map (a; for this example the GE 3D T1-weighted image was used). Maps are registered, re-sliced, skull-stripped and shown in
native space.
doi:10.1371/journal.pone.0104108.g003

Figure 2. Bland-Altman plots. Intra-vendor a) GE (n = 22) and b) Philips (n = 22) and c) inter-vendor (n = 44) GM (red) and WM (blue) CBF
differences are plotted against mean CBF. Continuous and broken lines indicate mean difference and limits of agreement (mean difference 61.96
standard deviation of the paired difference) respectively. CBF = cerebral blood flow, GM = gray matter, WM = white matter.
doi:10.1371/journal.pone.0104108.g002

Inter-Vendor Reproducibility of PCASL
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This difference in spatial smoothing may also explain the

homogeneous GM appearance of the mean CBF and wsCV maps

acquired with GE as compared to the more heterogeneous

appearance of those acquired with Philips. In addition, it may

explain the significant inter-vendor CBF difference within the

subcortical GM since this area is surrounded by WM and

therefore suffers more from smoothing with WM signal in GE

(Figure 4c). Another explanation for the smaller spatial variation

of GE, is its higher SNR compared to Philips. The SNR at GE is

most probably higher because of the intrinsically high SNR of a

3D readout and because background suppression is more efficient

for a single-volume readout as compared to a multi-slice readout

[13]. In addition, parallel imaging was not available in the GE

sequence, but was turned on in the Philips sequence. To what

extent the heterogeneous appearance of the Philips CBF maps has

a physiological origin or is rather the result of a too low SNR,

cannot be differentiated with these data.

In regions with long arrival times - i.e. the posterior vascular

territory and posterior watershed area - lower CBF and higher

wsCV was observed in GE but not in Philips (Figures 4 and 5) [5].

This inter-vendor difference can be explained by differences in the

effective post-labeling delay (PLD) between the readouts, even

though both acquisitions had the same initial PLD (1525 ms).

Whereas the 3D readout obtains all ASL signal for the total 3D

volume at a single time-point - i.e. after 1525 ms PLD - the 2D

readout obtains signal from each slice sequentially. With this

multi-slice acquisition, each slice exhibits a longer effective PLD

compared to its previous slice. This inferior-superior PLD increase

of the 2D readout (Philips) allows the labeled blood more time to

reach the superior slices compared to the homogeneous PLD of

the 3D readout (GE). Therefore, the PLD may have been too short

for the label to reach the superior slices in 3D (GE), whereas the

effective PLD for the superior slices in 2D (Philips) was sufficient.

These inter-vendor CBF differences and higher wsCV for GE in

superior regions with long transit times are probably resolved by

selecting a longer PLD for the 3D readout, such as 2000 ms [3].

Other prominent spatial inter-vendor CBF (Figure 4) and wsCV

(Figure 5) differences were observed on the brain edges. We

observed higher CBF and lower wsCV in anterior and inferior

regions in Philips but not in GE. The prominent inferior CBF and

wsCV differences (Figure 4c and Figure 5c) are partly due to the

fact that these slices were simply not acquired by the 2D readout

(Philips). With a 2D sequence, it is common practice to scan

cerebral slices only as well as to optimize the PLD, T1 decay and

background suppression for the cerebral slices. These issues do not

apply for a 3D sequence, whose 3D slab usually has whole-brain

coverage. The differences in the other areas can be explained by

susceptibility artifacts from bone-air transitions at the paranasal

sinuses and mastoid air cells present in the gradient-echo T2*-

weighted readout implemented by Philips [33]. In addition, it is

expected that the echo-planar imaging readout (Philips) exhibits

geometric distortion in these regions [33]. The T2-weighted spin-

echo readout employed by GE is much less sensitive to these

artifacts, in comparison to the gradient-echo readout employed by

Philips. For these reasons, a 3D readout is superior in regions such

as the orbito-frontal lobe and cerebellum compared to a 2D

readout. This especially favors the use of a 3D readout for clinical

applications of ASL, since pathologies in these regions could

remain undetected on a 2D readout [34–36].

A limitation of the current study is that we did not acquire

spatial M0-maps with the same readout in Philips. By employing a

voxel-wise normalization of the ASL-signal, these maps would

have opposed the T2
* susceptibility effects, since these will be

approximately equally large for the DM and M0-map. Therefore,

Philips spatial M0a-maps could have improved quantification in

regions of air-tissue transitions, which may have diminished the

inter-vendor variation to a certain extent. However, the added

value of spatial M0-maps is limited since they cannot improve the

lower SNR of the gradient-echo readout (Philips) near the air-

tissue transitions. Therefore, the inter-vendor reproducibility in

these regions is expected to remain low.

The current study may also be limited by the inter-vendor

calibration of quantification parameters. These may remain

arbitrary, mostly because they have been derived from simulations

rather than measurements. One example is the inter-vendor

differences in labeling efficiency due to a different number of

background suppression pulses (5 and 2 for GE and Philips

respectively) [21]. One way to deal with this is to scale to a phase-

Figure 4. Mean cerebral blood flow (CBF) maps of all subjects (n = 22) are shown for GE (a) and Philips (b), averaged for both
sessions. Voxel-wise significant inter-vendor differences are visualized by a binary parametric map projected on the gray matter (GM) probability
map (c). Red voxels represent where GE ,Philips, blue voxels represent where GE .Philips (Bonferroni corrected p,0.05). On the right, mean CBF
histograms are shown for the total GM and white matter (WM) (d).
doi:10.1371/journal.pone.0104108.g004
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Figure 5. a) GE and b) Philips intra- and c) inter-vendor within-subject coefficient of variability (wsCV)-maps. d) wsCV histograms are shown on the
right for the total gray matter (GM) and white matter (WM).
doi:10.1371/journal.pone.0104108.g005

Figure 6. Single transversal cerebral blood flow slice of all subjects (n = 22) for GE (upper quadrants) and Philips (lower quadrants),
session 1 (left quadrants) and session 2 (right quadrants), after spatial normalization.
doi:10.1371/journal.pone.0104108.g006
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contrast MRI sequence of the main feeding arteries [20].

However, this would shift the inter-vendor CBF variation from

the ASL-sequence towards the phase-contrast MRI measure-

ments.

Inter-vendor CBF and wsCV differences were observed on a

voxel-level but not on the total GM level. Apparently, the effects of

the abovementioned readout differences do cancel out when

sufficient GM voxels are averaged. There are several explanations

for this observation. First, the higher SNR of the 3D module may

be important on a voxel-level, but if sufficient GM voxels are

averaged physiological variation seems to outnumber the SNR

differences between the readout modules. Second, the smoothing

of the GE 3D readout averages signal from multiple GM voxels

which increases SNR and subsequently decreases the wsCV within

a single voxel. This effect is similar to averaging signal from

multiple GM voxels of the 2D readout in post-processing.

Therefore, this difference of spatial signal averaging between both

readouts becomes apparent on a voxel-level but is negligible when

all GM voxels are averaged.

It should be acknowledged that this study evaluated healthy

controls only. The abovementioned inter-vendor readout differ-

ences could become more or less important in patients,

considering the different spatial CBF variation in patients

compared to healthy controls. Furthermore, these inter-vendor

differences should not be generalized to all MRI vendors. Visual

readout differences between GE and Siemens, who both use a 3D

approach, may be smaller than the readout differences in the

current study [13].

In conclusion, the current study shows that pCASL results do

not differ between vendors on a total GM level. Therefore, the

reliability of averaged CBF-values for the total GM can be

expected to be equal in single- and multi-vendor studies. However,

the reliability of measurements in GM regions or in the WM, is

impeded by differences between the readout modules of both

vendors. Therefore, our results strongly encourage the standard-

ization of ASL implementations among vendors, which was also

advocated by the recent ASL consensus paper [3].
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